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Abstract 

Aim  This study aimed to explore a novel subtype classification method based on the stemness characteristics 
of patients with non-small cell lung cancer (NSCLC).

Methods  Based on the Cancer Genome Atlas database to calculate the stemness index (mRNAsi) of NSCLC 
patients, an unsupervised consensus clustering method was used to classify patients into two subtypes and analyze 
the survival differences, somatic mutational load, copy number variation, and immune characteristics differences 
between them. Subsequently, four machine learning methods were used to construct and validate a stemness 
subtype classification model, and cell function experiments were performed to verify the effect of the signature gene 
ARTN on NSCLC.

Results  Patients with Stemness Subtype I had better PFS and a higher somatic mutational burden and copy number 
alteration than patients with Stemness Subtype II. In addition, the two stemness subtypes have different patterns 
of tumor immune microenvironment. The immune score and stromal score and overall score of Stemness Subtype 
II were higher than those of Stemness Subtype I, suggesting a relatively small benefit to immune checkpoints. Four 
machine learning methods constructed and validated classification model for stemness subtypes and obtained 
multiple logistic regression equations for 22 characteristic genes. The results of cell function experiments showed 
that ARTN can promote the proliferation, invasion, and migration of NSCLC and is closely related to cancer stem cell 
properties.

Conclusion  This new classification method based on stemness characteristics can effectively distinguish patients’ 
characteristics and thus provide possible directions for the selection and optimization of clinical treatment plans.
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Introduction
Lung cancer is a malignant tumor originating from the 
bronchial mucosa or glands of the lung, with the fastest 
growing morbidity and mortality rate [1], and has become 
the leading cause of death among oncology patients [2]. 
Currently, non-small cell lung cancer (NSCLC) is mainly 
treated by a combination of surgery, supplemented by 
chemotherapy, radiotherapy, molecular targeted therapy, 
and immunotherapy according to tumor stage, pathologi-
cal type, and the presence or absence of mutations in the 
driver genes [3]. Despite the efficacy of targeted therapy 
and immunotherapy for patients with advanced NSCLC 
in recent years, the 5-year survival rate for patients with-
out susceptibility mutations has yet to be improved [4, 5]. 
Therefore, new diagnostic and therapeutic modalities for 
NSCLC are urgently needed to be explored.

Cancer stem cells are a very small number of tumor 
cells in tumor tissue with biological properties such as 
unlimited proliferation, self-renewal and multidirectional 
differentiation, which can form a heterogeneous series 
of cell populations in that tumor [6, 7]. It was found that 
cancer stem cells express a variety of ABC transporter 
proteins on their surface [8], which can effectively trans-
port chemotherapeutic drugs to the extracellular thereby 
reducing the damage of chemotherapeutic drugs to cells; 
in addition, the strong repair ability of cancer stem cells 
can repair the damage to the maximum extent [9]. There-
fore, the presence of lung cancer stem cells is one of the 
main reasons for the low survival rate of lung cancer 
patients, their strong resistance to conventional radio-
therapy and chemotherapy, and their easy recurrence 
after surgery or radiotherapy treatment [10]. An in-depth 
study of NSCLC cell stemness could provide new ideas 
for the study of lung cancer occurrence, drug resistance, 
and metastasis and also bring new hope for the clinical 
treatment of lung cancer.

The immune microenvironment is a specific microen-
vironment on which cancer stem cells depend, and the 
immune infiltrating cells in it play an important role in 
the development and progression of NSCLC [11, 12]. It 
has been reported that in the immune microenviron-
ment of lung cancer, the interaction of co-stimulatory 
molecules CD40 and CD154 (CD40L) molecules on the 
surface of B cells resulted in an enhanced ability of acti-
vated B lymphocytes to present antigens to CTL cells, 
leading to a significant increase in the levels of IFN-γ and 
IL-2 secreted by CTL cells and enhanced the killing effect 
of CTL on lung cancer stem cells [13]. As the regulatory 

relationship between immune infiltrating cells and cancer 
stem cells is gradually elucidated, improving the tumor 
immune microenvironment and disrupting the "protec-
tive" effect of the tumor microenvironment on cancer 
stem cells has become a new strategy for lung cancer 
treatment [14–16]. In addition, lung cancer immunother-
apy targeting immunosuppressive signals, and immune 
checkpoints, is also being studied, and a large number 
of studies have shown that immune checkpoint inhibi-
tors, represented by PD-1/L1 and CTLA-4, can restore 
the antitumor immune response and play a role in killing 
tumors [17].

This study was based on the TCGA-LUNG RNAseq 
dataset to calculate the mRNAsi of lung cancer patients. 
Based on the different stemness characteristics, NSCLC 
patients were classified into two subtypes, and the differ-
ent survival outcomes, functional annotation, and clinical 
characteristics of both were analyzed. Then, the differ-
ences in genomic variants, tumor microenvironment, 
and immunogenomic patterns of patients between the 
two stemness subtypes were analyzed comprehensively. 
In addition, multiple machine learning algorithms were 
used to construct stemness subtype prediction models 
that can differentiate NSCLC patients and obtain the 
multivariate logistic regression equations of the charac-
teristic genes. This is verified in the GSE30219 cohort. 
And cell function experiments also confirmed the abil-
ity of ARTN, a gene characteristic of the stemness sub-
type model, to promote cancer and maintain cancer 
cell stemness. The workflow diagram of the whole study 
is shown in Fig. 1. Our study aims to provide personal-
ized survival prediction and better treatment options for 
NSCLC patients based on a new stemness-based molecu-
lar classification.

Methods
Data collection and pre‑processing
The expression profile data were downloaded from the 
University of California Santa Cruz (UCSC Xena, https://​
xenab​rowser.​net/), including lung adenocarcinoma 
(515 cases) and lung squamous carcinoma (502 cases), 
patient clinicopathological data are displayed in Table 1, 
the expression matrix was log2(X + 1)-transformed with 
RSEM normalized counts. In this study, cellular data 
were obtained from the Progenitor Cell Biology Consor-
tium (PCBC, https://​proge​nitor​cells.​org/​front​page). In 
addition, the GSE30219 dataset [18] was used as external 
data to validate the accuracy of the model, and patient 

https://xenabrowser.net/
https://xenabrowser.net/
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clinicopathological information is presented in Addi-
tional file 1: Table S1.

Calculation of stemness index
Stemness index (mRNAsi) is an index calculated based 
on expression data describing the similarity of tumor 
cells to stem cells, ranging from 0 to 1, with closer to 1 
indicating lower differentiation and stronger stem cell 
characteristics [19]. The cell expression data were trained 
with the OCLR (one-class logistic regression) machine 
learning algorithm [20], and a cell stemness model was 

constructed using the gelnet R packalge [21]. Based on 
the obtained stemness model, mRNAsi was calculated for 
TCGA data.

Patient samples
Patient samples (n = 5) used for immunohistochemical 
and qRT-PCR were obtained from surgical specimens 
from patients of Department of Thoracic Surgery of the 
First Affiliated Hospital of Nanchang University, and all 
specimens were collected with the informed consent of 
the patients. Clinical information of 5 patients is shown 

Fig. 1  Schematic diagram containing the study design and main findings of the present study
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in Additional file  1: Table  S2. The specific procedure of 
collecting specimens was as follows: Firstly, the speci-
men was observed to confirm the site and scope of the 
tumor, and the identification with surrounding tissues 
and necrotic tissues was noted. The specimens were cut 
within 10 min after the specimens were separated from 
the body, and the cancer and paracancerous tissues were 
cut into pieces of about 1  cm in diameter and put into 
sterilized lyophilized tubes with numbers, which were 
quickly stored in liquid nitrogen tanks.

Immunological characterization of NSCLC samples
Single sample gene set enrichment analysis (ssGSEA) 
was used to assess the level of immune cell infiltration 
in the samples. We used the complete clustering method 
to classify NSCLC patients into two immune subtypes 
(Immune Subtype I/II). Meanwhile, we used the Estima-
tion of Stromal and Immune cells in MAlignant Tumor 
tissues using the Expression data(ESTIMATE) algorithm 

to obtain the stromal score and immune score of the two 
immune subtypes, which were summed to obtain the 
estimate score reflecting the tumor purity to assess the 
tumor microenvironment [22].

High and low mRNAsi group difference analysis
“Survival” and “Survminer” R-packs were used to cal-
culate the difference in progression-free survival (PFS) 
between the two groups with high and low mRNAsi, 
and the best cutoff values were used for grouping. The 
“limma” package was then used to identify differential 
genes (DEGs) between the high and low mRNAsi groups, 
using the default false discovery rate (FDR) to correct for 
P values, with |log2FC|> 2 and FDR < 0.01 being consid-
ered as significantly different genes. Next, ClusterPro-
filer was used for differential gene function enrichment 
analysis, including Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) enrichment 
analysis [23–25], with q-value < 0.05 indicating signifi-
cantly enriched pathways.

Unsupervised consensus clustering identifies stemness 
subtypes of NSCLC
ConsensusClusterPlus is a method that provides quan-
titative evidence for determining the number and mem-
bership of possible clusters in a dataset, based on the 
k-means machine learning algorithm for cluster typing 
of differential gene matrices using the “ConsensusClus-
terPlus” package in R. The clustering algorithm used was 
PAM to obtain stemness subtypes of NSCLC samples 
[26].

GSVA analysis
The GSVA package in R was applied for KEGG enrich-
ment analysis [27] to assess the most significantly 
enriched molecular pathways in the stem subtype, and 
KEGG gene sets were obtained from MSigDB (https://​
www.​gsea-​msgdb.​org/​gsea/​msigdb/​colle​ction.​jsp). The 
GSVA enrichment analysis was performed to assess the 
differences between the enriched molecular pathways 
between the high and low mRNAsi groups. We then used 
the limma package to analyze the difference in enrich-
ment scores between the two groups, and |log2FC|> 0.5 
and P.adj < 0.05 were considered molecular pathways 
with a significant difference.

TIDE predicts patient response to immunotherapy
TIDE (the Tumor Immune Dysfunction and Exclusion, 
http://​tide.​dfci.​harva​rd.​edu/) was used to predict immu-
notherapy response in NSCLC patients and subsequently 
analyzed the survival difference between the two groups 
with high and low TIDE scores and the distribution of 
different cancer subtypes and also demonstrated the 

Table 1  Patient clinical information and pathology data

LUAD (N = 515) LUSC (N = 502) Total (N = 1017)

Stage

N/A 8 (1.6%) 5 (1.0%) 13 (1.3%)

Stage I 275 (53.4%) 244 (48.6%) 519 (51.0%)

Stage II 122 (23.7%) 162 (32.3%) 284 (27.9%)

Stage III 84 (16.3%) 84 (16.7%) 168 (16.5%)

Stage IV 26 (5.0%) 7 (1.4%) 33 (3.2%)

Gender

N/A 0 (0.0%) 1 (0.2%) 1 (0.1%)

FEMALE 277 (53.8%) 130 (25.9%) 407 (40.0%)

MALE 238 (46.2%) 371 (73.9%) 609 (59.9%)

Age

Mean (SD) 62.955 (15.722) 65.865 (12.670) 64.391 (14.364)

Range 0.000–88.000 0.000–90.000 0.000–90.000

TP53

N/A 17 (3.3%) 21 (4.2%) 38 (3.7%)

Unaltered 228 (44.3%) 65 (12.9%) 293 (28.8%)

Altered 270 (52.4%) 416 (82.9%) 686 (67.5%)

Mutation_Count

N/A 17 (3.3%) 21 (4.2%) 38 (3.7%)

< 150 218 (42.3%) 110 (21.9%) 328 (32.3%)

> 300 152 (29.5%) 123 (24.5%) 275 (27.0%)

150–300 128 (24.9%) 248 (49.4%) 376 (37.0%)

Tobacco_Smoking_History

N/A 14 (2.7%) 13 (2.6%) 27 (2.7%)

1 75 (14.6%) 18 (3.6%) 93 (9.1%)

2 119 (23.1%) 133 (26.5%) 252 (24.8%)

3 135 (26.2%) 83 (16.5%) 218 (21.4%)

4 168 (32.6%) 250 (49.8%) 418 (41.1%)

5 4 (0.8%) 5 (1.0%) 9 (0.9%)

https://www.gsea-msgdb.org/gsea/msigdb/collection.jsp
https://www.gsea-msgdb.org/gsea/msigdb/collection.jsp
http://tide.dfci.harvard.edu/
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difference in TIDE scores among different cancer sub-
types [28].

Connectivity map (CMap) analysis
The CMap database was used to explore potential com-
pounds associated with different stemness subtypes, 
which not only predicted drugs based on gene expres-
sion profiles but also revealed the mode of action (MoA) 
of the compounds [29]. The limma package was used to 
analyze differential genes between stemness subtypes, 
and |logFC|> 2 and FDR < 0.01 were considered genes 
with significant differences. The first 150 genes with posi-
tive and negative difference multiplicities, for a total of 
300 different genes, were selected for querying the CMap 
database, and compounds with negative enrichment 
scores and P value < 0.05 were considered potential thera-
peutic agents for the stemness subtypes.

Multiple machine learning methods to construct 
and validate stemness subtypes
The expression of DEGs was used as an input variable 
and the stemness subtypes were selected as the outcome 
and four machine learning methods were used for least 
absolute shrinkage and selection operation (LASSO) 
regression, support vector machine (SVM), Boruta 
(RFB), and extreme gradient boosting (XGBoost) analysis 
to obtain the significant genes associated with stemness 
typing [30–32]. The predictive performance of the four 
machine learning algorithms was evaluated by ROC 
curves to compare the area under the ROC curve (AUC). 
Then, common genes obtained by LASSO, SVM, RFB, 
and XGBoost were considered signature genes associated 
with stemness subtypes, and multivariate logistic regres-
sion analysis was performed on key genes to construct a 
stemness-based classifier.

Validation of the impact of ARTN on NSCLC
Human NSCLC cell lines (NCIH1299, PC9, NCIH460, 
NCIH292) and human bronchial epithelial cells (HBE) 
were purchased from the Cell Bank of the Chinese Acad-
emy of Sciences (Shanghai, China). RNA was extracted 
from cell samples and patient samples using TRIzol RNA 
Extraction Reagent (Invitrogen™, 15596026) according to 
the instructions. After removal of residual gDNA, reverse 
transcription reactions were performed using 1ug of total 
RNA as template. This was followed by real-time quan-
titative PCR(qPCR) using 2 × qPCR MasterMix(KAPA, 
KM4103) on a LightCycler 480 instrument (Roche). 
Relative gene expression was analyzed by the 2-ΔΔCt 
method, using Gapdh as an internal control. qPCR and 
in vitro cancer cell function assays were also performed 
as described previously [33, 34]. qPCR primer sequences 
are shown in Additional file 1: Table S3. siRNA sequences 

of ARTN were purchased from GenePharma Co. The 
sequences are listed in Additional file 1: Table S4. In addi-
tion, immunohistochemical assays were used to verify 
the difference in protein expression of ARTN in normal 
lung tissue and lung cancer tissue.

Immunohistochemistry
Tissue slides were prepared from patient samples, and 
immunohistochemical staining was performed with anti-
ARTN antibodies to assess ARTN expression in the tis-
sue. The procedure was as follows: The tissue slides were 
deparaffinized, rehydrated, and subjected to antigen 
repair. Subsequently, endogenous peroxidase activity was 
blocked with 6% hydrogen peroxide. Slides were washed 
three times with PBS and then incubated overnight at 
4  °C with anti-ARTN antibody. After three washes with 
PBS, the slides were incubated with horseradish peroxi-
dase-conjugated secondary antibody for 1  h. The nuclei 
were stained with hematoxylin solution. Anti-ARTN 
antibody was purchased from ZENBIO (R23532).

Statistics analysis
Wilcoxon rank-sum test was used to compare differences 
between two groups, and the Kruskal–Wallis test was 
used to compare multiple groups. Correlation between 
normally distributed variables was tested by the Pearson 
correlation test, and the correlation between non-nor-
mally distributed variables was tested by the Spearman 
correlation test. For correlation analysis of categorical 
variables, the chi-square test was used. P value < 0.05 and 
correlation coefficient R > 0.3 were considered to be sig-
nificantly correlated. Statistical analysis for this study was 
performed using SPSS 22.0 and R 4.1.0 software.

Results
Correlation of stemness index with clinical characteristics 
and gene mutations
Using the OCLR algorithm, we calculated the mRNAsi 
for each patient. Subsequently, we evaluated the rela-
tionship between sample mRNAsi and clinicopatho-
logical features, grouped according to different clinical 
features, and the results showed that the subgroups with 
LUSC, Stage II, and Stage III, Mutation Count of 150–
300 and > 300 mRNAsi were significantly higher (Fig. 2A 
and Additional file 2: Fig. S1A). The results showed that 
mRNAsi was higher in high TMB and low TMB accord-
ing to the median TMB, and mRNAsi was significantly 
higher in PTEN, TP53 mutated group than in an unmu-
tated group, while mRNAsi was higher in EGFR unmu-
tated group than in mutated group (Fig. 2B & Additional 
file  2: Fig. S1B). PFS was higher in the high mRNAsi 
group than in the low mRNAsi group (Fig. 2C), and there 
were significant differences in clinical characteristics 
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between the two groups, including smoking history, 
stage, mutation counts, TP53 mutation status, TCGA 
subtype (Additional file 2: Fig. S1C).

Functional annotation of high and low mRNAsi groups 
and mutation of DEGs
A total of 217 genes (DEGs) with significant differences 
between the high mRNAsi and low mRNAsi groups were 
identified (Additional file  2: Fig. S1D and Additional 
file  1: Table  S5). GO and KEGG enrichment analysis of 
these differential genes demonstrated the top 30 signifi-
cantly significant BPs, CCs, and MFs (Additional file  3: 
Fig. S2A), and 6 significantly enriched pathways (Addi-
tional file 3: Fig. S2B). In addition, we analyzed the differ-
ences between the enriched molecular pathways between 
the high and low mRNAsi groups using GSVA, and the 
results showed that the high mRNAsi group was mainly 
related to DNA damage repair, homologous recombina-
tion, etc., while the low mRNAsi group was related to 
asthma, complement system, etc. (Fig.  2D). To under-
stand the mutation profile of DEGs, we showed the 10 

genes with the highest mutation frequency in DEGs, 
namely CNTNAP2, MUC5B, ADAMTSI6, DMBT1, 
ITGA8, C6, ROS1, SCN7A, CACNAIB, FAM83B, which 
were mutated in 51.82% of the samples and the mutation 
type was mostly missense mutation (Additional file 3: Fig. 
S2C). In addition, we analyzed the CNV of 217 DEGs, 
and the results showed that there were 100 genes with 
significant amplification and 95 genes with significant 
deletion (Additional file 3: Fig. S2D).

Identification of two stemness subtypes with different 
survival outcomes, functional annotation and clinical 
features
The consistency clustering method was used to typify 
the sample based on the expression of 217 DEGs, and 
the consistency matrix plot had the highest consistency 
when K = 2 (Additional file  4: Fig. S3A) and the lowest 
CDF compared to other clusters (Additional file  4: Fig. 
S3B), and the delta area score was highest at K = 2 (Addi-
tional file  4: Fig. S3C). Therefore, patients were distin-
guished into two subtypes, namely Stemnness Subtype I 

Fig. 2  Clinical and molecular characteristics of NSCLC patients associated with stemness index (mRNAsi). A Violin plot showing mRNAsi differences 
in different clinical feature groupings. B Relationship between mRNAsi and different feature groupings in NSCLC patient samples grouped by TMB 
height, and PTEN, TP53, EGFR, BRAF mutation status. *Indicates P value < 0.05,**indicates P value < 0.01, ***indicates P value < 0.001, ****indicates P 
value < 0.0001. C PFS survival analysis, red line represents high mRNAsi group, green line represents low mRNAsi group. D Differential enrichment 
pathways between the two groups of high and low mRNAsi are shown, each small box represents each patient’s enrichment score, with color 
changes indicating high or low scores: red for high scores and blue for low scores. The grouping of each patient is shown at the top of the heat map
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(456 cases) and Stemness Subtype II (561 cases), and the 
expression of DEGs between stemness subtypes is shown 
in Additional file 4: Fig. S3D.

Further, the survival differences between subtypes 
were analyzed (Fig.  3A), and the results showed that 
patients in the Stemness Subtype I group had a higher 
PFS than Stemness Subtype II. In addition, there 
were significant differences in clinical characteristics 
between the Stemness Subtype I and Stemness Sub-
type II(P < 0.05), including mRNAsi grouping, immune 
subtype, tobacco smoking history, stage, TP53 muta-
tion status, and TCGA subtype (Fig.  3B). GSVA anal-
ysis of Stemness Subtype I and Stemness Subtype I 
groups showed a total of 14 pathways with significant 
differences (|log2FC|> 0.5, P.adj < 0.05), and the results 

showed that Stemness Subtype I was mainly related to 
DNA damage repair and homologous recombination, 
while Stemness Subtype II was associated with primary 
bile acid synthesis, asthma, etc. (Fig.  3C). To assess 
whether the stemness subtype could independently 
predict prognosis, we included mutation count, stage, 
tobacco smoking history, immune subtype, mRNAsi, 
and stemness subtype for univariate and multivariate 
cox regression analyses, and the results showed that 
the stemness subtype was associated with primary bile 
acid synthesis and asthma. The results showed that the 
prognostic analysis of stemness subtype was signifi-
cant in both single factor (P = 0.004, HR = 1.366, 95% 
CI 1.103–1.692) and multifactor (P = 0.023, HR = 1.344, 
95% CI 1.042–1.733) (Fig. 3D & Fig. 3E), indicating that 

Fig. 3  Stemness subtypes are associated with clinical characteristics of NSCLC patients and can act as independent predictors. A Survival 
analysis showing the difference in survival between Stemness Subtype I and Stemness Subtype II. B Differences in clinical characteristics 
between the Stemness Subtype I and Stemness Subtype II groups. Columns indicate samples and rows indicate clinical characteristics. C Display 
of differential enrichment pathways between Stemness Subtype I and Stemness Subtype two groups. Each small box represents the enrichment 
score of each patient, and the color change indicates the high or low enrichment score: red indicates high score, blue indicates low score, 
and the subgroup of each patient is shown at the top of the heat map. D Univariate Cox regression analysis of the TCGA dataset with meaningful 
factors Stage and Stamness Subtype. Multivariate Cox regression analysis of the TCGA dataset with meaningful factors Stage and Stamness Subtype
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stemness subtype can act as an independent prognostic 
factor.

The expression of DEGs in the validation set 
(GSE30219) was classified using a consensus clustering 
approach to the samples, and the cluster analysis of the 
samples identified two subtypes, defined as Stemnness 
Subtype I (57 cases) and Stemness Subtype II (89 cases). 
Further survival analysis showed that Stemness Subtype 
II had a higher disease-free survival (DFS) than Stemness 
Subtype I (Additional file 5: Fig. S4).

Differences in TMB, genetic mutations, and immune 
characteristics among stemness subtypes
TMB was higher in Stemness Subtype I than in 
Stemness Subtype II (Fig. 4A), and TP53, TTN, CSMD3, 

MUC16, RYR2, USH2A, LRPIB, SYNEKZFHX4, and 
KMT2D were mutated in 98.88% of the samples in 
Stemness Subtype I, while the genes with higher muta-
tion frequency in Stemness Subtype II were TP53, 
TTN, MUC16, CSMD3, RYR2, LRP1B, ZFHX4, USH2A, 
KRAS, XIRP2, 84.77% of the samples were mutated 
( Fig.  4B). To understand the CNV differences among 
different stemness subtypes, we performed the analy-
sis using the GISTIC module in genepatern and visual-
ized the data obtained from the analysis using maftools 
(Fig. 4C). In addition, the G-score of Stemness Subtype 
I was higher than that of Stemness Subtype II (Fig. 4D). 
In addition, we analyzed the mutations of biomarkers 
among different stemness subtypes, and the results 
showed that the number of TP53 and PTEN mutations 

Fig. 4  Functional analysis of stemness subtypes and immunological analysis. A Violin diagram showing TMB differences between stemness 
subtypes, green indicates Stemness Subtype I, yellow indicates Stemness Subtype II. B Waterfall diagram showing the 10 genes with the highest 
mutation frequencies in Stemness Subtype I and Stemness Subtype II samples, different colors indicate different mutation types. The different 
colors indicate the different mutation types. C Copy number difference analysis of Stemness Subtype I and Stemness Subtype II, red indicates 
amplification and blue indicates deletion. gistic analysis assigns a G-score to each mutation, which indicates the magnitude of the mutation. 
D G-score differences between Stemness Subtype I and Stemness Subtype II were analyzed using box plots. E Differences in immune cells 
in different subgroups. F Comparison of differences in immune scores, stromal scores in different stemness subtypes by violin plots, ****Indicates 
P value < 0.0001. G Differences in immune subtype distribution in different stemness subtypes, sky blue indicates low immunity, brown indicates 
high immunity. H Analysis of differences in immune checkpoint genes. Red indicates Stemness Subtype I, green indicates Stemness Subtype II. I 
Gene mutation in different stemness subtypes, sky blue indicates no mutation in the sample, brown indicates mutation in the sample, * indicates P 
value < 0.05, ** indicates P value < 0.01, *** indicates P value < 0.001, ns indicates no statistical significance
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was higher in Stemness Subtype I, and BRAF was more 
mutated in Stemness Subtype II.

Immunoreactivity analysis between stem subtypes 
showed the Overall Score in Stemness Subtype II than 
in Stemness Subtype I, suggesting that Stemness Sub-
type II is less likely to benefit from immune checkpoint 
therapy. The results of immune cell infiltration showed 
differences in the proportion of immune cell infiltration 
between Stemness Subtype I and Stemness Subtype II, 
including CD4 + T cell, CD8 + T cell, CD4 memory cell, 
etc. (Fig.  4E). The results of the immune microenviron-
ment analysis showed that both immune score and stro-
mal score were higher in Stemness Subtype II than in 
Stemness Subtype I (Fig. 4F). In addition, we analyzed the 
immune subtype differences between different stemness 
subtypes in combination with immune subtypes, and 
the results showed that there were more samples with 
high immunity in Stemness Subtype II and more low 
immunity in Stemness Subtype I (Fig. 4G). In Fifty-four 
immune detection sites with differential gene expression, 
the analysis showed that the expression of TP53, PTEN, 

and BRAF was significantly different among the stemness 
subtypes (Fig. 4H, I).

TIDE predicts immunotherapy response between cancer 
types
TIDE scores were obtained by online analysis of gene 
expression matrices, and the results of survival analysis 
showed that high TIDE had a lower survival rate accord-
ing to TIDE scores in two groups (Fig. 5A). In addition, 
LUAD accounted for 67% in the low TIDE group and 
66% in the High TIDE group with LUSC (Fig.  5B), and 
TIDE scores differed across cancers (P < 0.0001) and were 
higher in LUSC (Fig. 5C). To analyze the efficacy of anti-
PD-1 and anti-CTLA4 treatments in different cancer sub-
types, we extracted data on immunotherapy in melanoma 
patients as a reference, and 47 immunotherapy patients 
were included in the analysis. We predicted the NSCLC 
data using submap in genepatern to obtain the efficacy 
of anti-PD1 and anti-CTLA4 treatment, but the results 
showed no significant treatment (Fig. 5D).

Fig. 5  TIDE predicts immunotherapy response between cancer types. A Survival difference between the two groups of high and low TIDE, green 
indicates low TIDE score, red indicates high TIDE score. B Distribution of different cancer subtypes between two groups of high and low TIDE, sky 
blue indicates LUAD, brown indicates LUSC. C TIDE difference between cancer subtypes, green indicates LUAD, yellow indicates LUSC, ****indicates 
P value < 0.0001. D Submap analysis demonstrating the predicted efficacy of different cancer subtypes in immunotherapy



Page 10 of 15Liu et al. Stem Cell Research & Therapy          (2023) 14:238 

Drug sensitivity analysis and identification of potential 
compounds between stemness subtypes
To understand the sensitivity of different stemness sub-
types to antineoplastic agents, we analyzed the sensitiv-
ity of different stemness subtypes to two antineoplastic 
agents, erlotinib and gefitinib. The results showed a 
difference in the sensitivity of Stemness Subtype I and 
Stemness Subtype II to erlotinib and gefitinib, with 
Stemness Subtype I having a higher sensitivity (Addi-
tional file 6: Fig. S5A).

CMap helps to explore potential compounds between 
stemness subtypes of NSCLC, and of the 771 differen-
tial genes between Stemness Subtype I and Stemness 
Subtype II, the top 150 genes with positive and nega-
tive difference multiplicities were included in the CMap 
database query. Compounds with negative enrichment 
scores and P < 0.05 were selected for display and ana-
lyzed for MoA of each compound, showing that 30 
molecular pathways were being targeted by 47 com-
pounds in Stemness Subtype I; while 29 molecular 
pathways were targeted by compounds in Stemness 
Subtype II (Additional file 6: Fig. S5B).

Machine learning for constructing stemness subtype 
models and model validation
Four machine learning algorithms (LASSO, Boruta, 
SVM, and XGBoost) were used to analyze the expres-
sion matrices based on 217 DEGs, respectively, and 
finally to obtain the important signature genes asso-
ciated with the stemness subtypes. the ROC analy-
sis showed that the four machine learning algorithms 
could perform the signature gene selection well 
(AUCs > 0.95, Fig. 6A). The LASSO, Boruta, SVM, and 
XGBoost analyses yielded 56, 149, 80, and 91 signifi-
cant feature genes, respectively, with 22 intersecting 
genes (Fig. 6B). After that, multivariant logistic regres-
sion analysis was performed and prediction models 
were constructed. The formula to obtain the predicted 
stemness subtypes was as follows: stemness subtype 
prediction score = 4.595 + 0.00065 × (ARTN expression)  
−  0 .363 ×  (LRRN4   expression) +  0 .125 ×  (KRT14 
expression) − 0.326 × (DPCR1  expression) − 0.12 ×  
(SFTPB expression) + 0.065 × (DAPLI expression) −  
0 .037 ×  (PNM A2   expression)  +  0 .108 ×  (A2ML1 
expression) + 0.47 × (AKRICI  expression) − 0.207 ×  
(CACNA2D2  expression) − 0.2879 × (LMO3  expres-

Fig. 6  Machine learning to construct stemness models. A LASSO, Boruta, SVM and XGBoost feature selection performance evaluation, AUC 
is generated by ROC curve analysis. B The feature genes shared by the four machine learning algorithms were identified by VENN plots, totaling 
22 important feature genes. C ROC curves of 22 gene signatures predicted to validate stemness subtypes. D Heat map showing the expression 
of the signature genes in the validation set, with red indicating high expression and blue indicating low expression. The top of the heat map shows 
the distribution of clinical features for each patient, including Stemness Subtype, Age, Gender, Histology, Stage, Stage, Status, Relapse. E Survival 
differences between Stemness Subtype I and Stemness Subtype II groups. Red indicates Stemness Subtype I and green indicates Stemness Subtype 
II
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sion) + 0.366 × (KRT5  expression) − 0.167 × (CHIA 
expression) + 0.28 × (KRT6C expression) − 0.27 × (KRT7 
exp re s s i o n )  −  0 . 1 9 8 6  ×  ( H N F I B   exp re s s i o n )  −  
0.216 × (RORC expression) + 0.049 × (UGTIA9 expres-
sion) − 0.036 × (RHCG  expression) − 0.125 × (AQP4 
expression) − 0.155 × (CLDN18  expression) − 0.1799 ×  
(MUC21 expression).

We predicted the validation set, and the samples 
with prediction score < 0.826 were Stemness Subtype 
II (90 cases), and those with prediction score > 0.826 
were Steminess Subtype I (56 cases). The ROC curves 
showed that the differentiation between Stemness 
Subtype I and Stemness Subtype II with the AUC was 
0.999 (Fig.  6C), and the expression distribution of the 
22 important characteristic genes is shown in Fig.  6D. 
Survival analysis showed that Stemness Subtype II had 
a higher DFS than Stemness Subtype I (Fig.  6E). We 
further analyzed the differences in the distribution of 
clinical characteristics of the stemness subtypes in the 
validation set, and the results showed differences in sta-
tus, stage, histology, and gender between the Stemness 
Subtype I and Stemness Subtype II groups (Additional 
file  7: Fig. S6A). Tumor immune infiltration analysis 
showed partial differences in the ratio of immune cells 
between Stemness Subtype I and Stemness Subtype II 
(Additional file 7: Fig. S6B). Tumor microenvironment 
analysis showed that immune score and stromal score 
were higher in Stemness Subtype II and tumor purity 
was higher in Stemness Subtype I (Additional file  7: 
Fig. S6C). We analyzed the differences in gene expres-
sion of 54 immune checkpoints between the validated 
set of stemness subtypes, and the results showed that 
Stemness Subtype I and Stemness Subtype II had signif-
icant differences in multiple immune checkpoint genes. 
We analyzed the differences in gene expression of 54 
immune checkpoints between the validation set of 
stemness subtypes and showed that Stemness Subtype 
I and Stemness Subtype II had significant differences in 
multiple immune checkpoint genes (Additional file  7: 
Fig. S6D). In addition, TIDE scores were obtained 
by online analysis using the gene expression volume 
matrix, and the survival differences between the high 
and low TIDE groups were analyzed according to the 
TIDE scores, and the results showed that the high TIDE 
group had lower DFS (Additional file 7: Fig. S6E). Fur-
ther analysis of the distribution of different cancer sub-
types between the high and low TIDE groups showed 
that ADC accounted for 67% in low TIDE, 66% in SQC 
in high TIDE (Additional file  7: Fig. S6F), and TIDE 
was higher in SQC in different cancer types (Additional 
file  7: Fig. S6G). Drug sensitivity analysis showed that 
Stemness Subtype I was more sensitive to erlotinib and 
gefitinib (Additional file 7: Fig. S6H).

Functional validation of ARTN in NSCLC
We performed bioinformatics analysis and functional 
validation of 22 signature genes, among which ARTN 
exhibited relatively significant oncogenic ability. Kaplan–
Meier plotter analysis showed that lung cancer patients 
with high ARTN expression had poor survival (Fig. 7A). 
To further explore the biological function of ARTN in 
non-small cell lung cancer, qRT-PCR was used to detect 
differences in ARTN expression in normal lung epithe-
lial cells(HBE) and lung cancer cells(NCIH1299, PC9, 
NCIH292, NCIH460) (Fig.  7B), and differential expres-
sion of ARTN in clinical paired tissue samples was 
also detected by qRT-PCR(Fig.  7C) and immunohisto-
chemical staining(Fig.  7D). We performed a series of 
cellular functional assays after interfering with ARTN 
expression(Fig. 7E). Cell growth assay and clonal colony 
formation assay showed that interference with ARTN 
inhibited cell proliferation (Fig.  7F, G). Transwell assay 
showed that interference with ARTN expression inhib-
ited the invasion and migration ability of lung cancer cells 
(Fig.  7H). In addition, to investigate the effect of ARTN 
on the maintenance of stemness of lung cancer cells, we 
performed a stemness sphere-forming assay (Fig. 7I) and 
examined the difference in the expression of cancer stem 
cell markers (SOX2, CD44, NANOG, POU5F1, CD133, 
C-myc, KLF4), and the transcript levels of cancer stem 
cell markers were significantly reduced (Fig. 7J).

Discussion
In this study, we conducted an in-depth analysis of the 
relationship between stemness characteristics of NSCLC 
and tumor immune microenvironment and treatment 
outcome, constructed a model to differentiate sub-
types based on stemness characteristics of lung cancer 
patients, and performed external validation. First, we 
used the OCLR algorithm to calculate the mRNAsi of 
1017 NSCLC patients. Then, the tumor microenviron-
ment, tumor purity, and the abundance of stromal and 
immune cells in NSCLC patients were assessed using 
ESTIMATE. After analyzing the interaction between 
lung cancer stemness characteristics and tumor immune 
microenvironment, CIBERSORT also analyzed immune 
cell infiltration. Unsupervised consistent clustering of 
DEGs between high and low mRNAsi groups was per-
formed, and NSCLC patients were classified into two 
stemness subtypes to elucidate the correlation between 
stemness subtypes and clinical features by comparing the 
differences in clinical features. Subsequently, we found 
that Stemness Subtype I was more sensitive to erlo-
tinib and gefitinib chemotherapy; And that patients in 
this group had better DFS and worse PFS. We identified 
potential compounds targeting stemness-related genes 
by CMap analysis, which laid the foundation for the 
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study of lung cancer treatment. In addition, multivariant 
logistic regression equations for 22 signature genes were 
obtained by applying LASSO, SVM, RFB, and XGBoost 
machine learning methods and validated them in the 
GEO non-small cell lung cancer dataset cohort. Cell 
function experiments demonstrate the ability of the sig-
nature gene ARTN to promote cancer and maintain the 
stemness of lung cancer cells.

In recent years, lung cancer stem cells have gradu-
ally become a new direction in lung cancer treatment. 
Although there are no clear criteria for the identification 
of markers of lung cancer stem cells, there exist some cell 
surface proteins or enzymes that are widely expressed 
in lung cancer stem cells and so on that are widely rec-
ognized as positive markers, such as CD133, CD166, 

ALDH, ABCG2, CD44 and CD166 [35–37]. The mecha-
nisms of targeting drugs against these stem cell-positive 
markers are also being explored experimentally. Lysergic 
acid (SDA) is known to downregulate tumor cell sphere-
forming ability by regulating ABCG2 expression [38]. Tri-
fluoperazine treatment of lung cancer stem cells reduced 
the sphere-forming ability of lung cancer cells and down-
regulated CD44 and CD133 expression, and trifluopera-
zine in combination with gefitinib or cisplatin effectively 
controlled drug resistance in lung cancer cells [39]. It 
was concluded that mRNAsi could help to elucidate the 
pathways by which tumors undergo dedifferentiation and 
identify novel targets for anticancer drugs, thus helping 
to develop novel therapies to inhibit further tumor pro-
gression [40]. In this study, we calculated the mRNAsi of 

Fig. 7  Interference with ARTN inhibits the proliferation, migration, invasion and stemness of lung cancer cells. A K–M analysis shows 
that patients with high ARTN expression have a worse prognosis. B qRT-PCR results demonstrate the difference in transcript levels of ARTN 
in normal lung epithelial cells (HBE) and lung cancer cells (NCIH1299, PC9, NCIH292, NCIH460). C qRT-PCR results demonstrating the differences 
in transcript levels of ARTN in clinically paired tissue samples. D Differential protein expression of ARTN in clinical paired tissue samples detected 
by immunohistochemistry. E qRT-PCR to detect the interference effect of ARTN-siRNAs. F Lung cancer cell growth after ARTN-siRNAs interference. 
(G) Clonal colony formation after ARTN-siRNAs interference. H Invasion and migration of lung cancer cells after ARTN-siRNAs interference. I Stem cell 
formation in lung cancer cells after ARTN-siRNAs interference. J Changes in transcript levels of stem Markers (SOX2, CD44, NANOG, POU5F1, CD133, 
C-myc, KLF4) after ARTN-siRNAs interference
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1017 NSCLC patients and further analyzed the clinical 
characteristics correlation, prognostic correlation, and 
immune correlation of mRNAsi. Interestingly, based on 
the results of our analysis, we found that, unlike most 
tumors, the high mRNAsi group had a better prognosis 
in non-small cell lung cancer, a result consistent with 
the higher mRNAsi of Stemness Subtype I having a bet-
ter prognosis, the reason for which may be related to the 
high drug sensitivity of this group.

We defined 22 signature genes identified by four 
machine learning methods as stemness subtype predic-
tors. Numerous studies have shown that these stemness 
subtype predictors are closely associated with tumor 
development and maintenance of tumor cell stemness, 
such as cytokeratin 14 (KRT14), a marker of bladder stem 
cells, which plays an important role in bladder tumori-
genesis [41]; animal experiments revealed that CLDN18 
is highly expressed in the alveolar epithelium and knock-
down of CLDN18 leads to lung enlargement, paren-
chymal expansion, alveolar epithelial type II (AT2) cell 
abundance and regulates lung stem and progenitor cell 
homeostasis and tumorigenesis by mediating Yes-associ-
ated protein (YAP) activation [42]. Artemin (ARTN) has 
been reported to be able to promote human non-small 
cell lung cancer (NSCLC) progression. Overexpression 
of ARTN stimulates survival, migration, and invasion of 
NSCLC cell lines; overexpression of ARTN in H1299 cells 
(p53 deficient) leads to the formation of larger tumors 
that are highly proliferative, aggressive, and metastatic. 
Increased ARTN expression in NSCLC also predicts 
metastasis to lymph nodes and increased grading of cer-
tain NSCLC subtypes. Mechanistic studies suggest that 
ARTN increases BCL2 expression through transcrip-
tional upregulation and that inhibition of BCL2 elimi-
nates the oncogenic properties of ARTN in NSCLC cells. 
Consistently, both siRNA interference and functional 
inhibition of endogenous ARTN with antibodies reduced 
the oncogenicity and invasiveness of NSCLC cells [43]. 
However, ARTN has little to no reported effect on main-
taining lung cancer cell stemness. In this study, we used 
siRNA to interfere with ARTN expression in lung cancer 
cells to investigate the effect of ARTN on non-small cell 
lung cancer. The results showed that tumor cell prolif-
eration, migration ability, and stemness sphere-forming 
ability were inhibited after siRNA interference. qRT-PCR 
showed that the transcript levels of stemness markers 
(SOX2, CD44, NANOG, POU5F1, CD133, C-myc, KLF4) 
were significantly reduced. These results suggest that 
ARTN is a non-small cell lung cancer procancer factor 
and plays an important role in maintaining stemness.

Immunotherapy has entered the clinic as a first-
line treatment for NSCLC, mainly including immune 
checkpoint inhibitors, antitumor vaccines, and cellular 

immunotherapy [44]. However, the role of immunother-
apy in controlling metastasis and recurrence has not been 
affirmed and further studies are still needed. In addition, 
the effectiveness of immunotherapy for NSCLC remains 
limited, such as the low sensitivity and specificity for PD-
L1 expression, and although PD-1/PD-L1 immune check-
point inhibitors have become the new standard of care 
for advanced NSCLC, immunotherapy alone has a high 
proportion of patients with primary nonresponse [45]. 
In addition, immunotherapy suffers from increased drug 
resistance, frequent and uncontrollable adverse effects, 
and unclear prevention of metastasis, which hinder its 
further development. In this study, a new classifica-
tion of NSCLC based on tumor stemness was proposed. 
The results showed that patients with poorer prognosis 
among the stemness subtypes had lower immune scores 
and stromal scores, higher   anticancer immunity activity 
scores (overall score), and reduced expression of immu-
nosuppressive checkpoints, suggesting a poorer response 
to immune checkpoint inhibitors. These results are of 
clinical value for follow-up studies and may provide a 
new idea for screening patients with predictive immune 
status and sensitivity to immunotherapy in lung cancer 
patients.

However, there are some limitations to this study. 
Because the number of patients currently receiving 
immunotherapy is very limited, and because the results 
of this study are based on transcriptomic data analysis 
from public databases, the relationship between stem cell 
subtypes and immunotherapy responsiveness needs to be 
validated in future immunotherapy cohorts. In conclu-
sion, immunotherapy still has great potential in NSCLC, 
and screening patients who may benefit from immuno-
therapy is one of the important tasks at present.

Conclusion
In summary, this study provides additional evidence that 
cancer stem cells play a key role in the tumor immune 
microenvironment of NSCLC patients. Based on the 
stemness characteristics of NSCLC patients, we con-
structed a novel subtype classifier, which can not only 
provide a reference for basic research before the develop-
ment of lung cancer stem cells and lung carcinogenesis 
but also be applied as a potential screening method for 
NSCLC patients in clinical treatment.
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Additional file 2. Figure S1: mRNAsi correlates with clinical features. (A) 
Relationship between mRNAsi distribution and clinical features, including 
TCGA-Subtype, TP53 mutation, Mutation-Count, Stage, Tobacco-Smoking-
History, the columns indicate the samples with mRNAsi ranked from low 
to high, and the rows indicate different characteristics. (B) Overview of the 
association between mRNAsi and patients with TMB and gene mutations. 
(C) Differences in clinical characteristics between the High mRNAsi and 
low mRNAsi groups. Columns indicate samples and rows indicate known 
clinical features. (D) Heat map showing the expression levels of DEGs 
between the two groups, red indicates high expression and blue indicates 
low expression.

Additional file 3. Figure S2: DEGs pathway analysis and CNV analysis. (A) 
Functional enrichment analysis of DEGs, including BP, CC and MF. (B) Scat-
ter plot of KEGG pathway enrichment statistics. The circle size indicates 
the number of enriched genes (count), and the color shades indicate the 
size of log(q-value), the redder the color indicates the more significant. (C) 
Waterfall plot showing the 10 genes with the highest mutation frequency 
in DEGs, and different colors indicate different mutation types. (D) Circos 
plot showing the CNV of some DEGs, red color indicates amplification and 
blue color indicates deletion.

Additional file 4. Figure S3: The process of stemness subtype construc-
tion. (A) Consistency matrix plot showing clustering at K=2, which is 
the optimal number of clusters. (B) CDF plot showing the consensus 
distributions for each K, K=2-9. (C) Delta area showing the relative change 
in stability, K=2-9. (D) Heat map showing the expression of 217 DEGs, red 
indicates high expression and green indicates low expression. The top of 
the heat map shows the mRNAsi, TCGA subtype and immune subtype for 
each patient.

Additional file 5: Figure S4: Identification of a validation set of stemness 
subtypes based on DEGs. (A) Consistency matrix plot showing the cluster-
ing at k=2, which is the optimal number of clusters. (B) CDF plot showing 
the consensus distribution for each K, k=2-9. (C) Delta area showing the 
relative change in stability, k=2-9. (D) Survival analysis shows differences in 
DFS between Stemness Subtype I and Stemness Subtype II.

Additional file 6. Figure S5. Stemness subtype chemotherapy sensitivity 
analysis and potential compound identification. (A) Box plot showing the 
sensitivity of chemotherapeutic agents between stemness subtypes, red 
indicates Stemness Subtype I, green indicates Stemness Subtype II. (B) 
Scatter plot showing the relationship between compounds and MoA in 
Stemness Subtype I and Stemness Subtype II, rows indicate MoA, columns 
indicate compounds.

Additional file 7. Figure S6: Validation of the analysis of differences in 
clinical characteristics between subtypes, tumor immune infiltration, 
and tumor microenvironment. (A) Differences in clinical characteristics 
between Stemness Subtype I and Stemness Subtype II groups. (B) Com-
parison of the abundance of 22 immune cell types in immune subtypes. 
(C) Comparison of differences in the immune score, stromal score and 
tumor purity among different stemness subtypes by violin plot. * indicates 
P<0.05, ** indicates P<0.01, *** indicates P<0.001, and ns indicates no sta-
tistical significance. (D) Analysis of immune checkpoint gene differences, 
red indicates Stemness Subtype I, green indicates Stemness Subtype II. (E) 
Survival differences between two groups with high and low TIDE, green 
indicates low TIDE score, and red indicates High TIDE score. (F) Distribution 
of different histological samples between high and low TIDE groups, sky 
blue indicates ADC, brown indicates SQC.(G) Differences in TIDE between 
cancer types, green indicates ADC, yellow indicates SQC.(H) Box plot 
showing the sensitivity of chemotherapeutic drugs between stemness 
subtypes, red indicates Stemness Subtype I, green indicates Stemness 
Subtype II.
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