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Abstract 

Many problems related to disorders and defects of bone tissue caused by aging, diseases, and injuries have been 
solved by the multidisciplinary research field of regenerative medicine and tissue engineering. Numerous sciences, 
especially nanotechnology, along with tissue engineering, have greatly contributed to the repair and regeneration 
of tissues. Various studies have shown that the presence of magnetic nanoparticles (MNPs) in the structure of com‑
posite scaffolds increases their healing effect on bone defects. In addition, the induction of osteogenic differentia‑
tion of mesenchymal stem cells (MSCs) in the presence of these nanoparticles has been investigated and confirmed 
by various studies. Therefore, in the present article, the types of MNPs, their special properties, and their application 
in the healing of damaged bone tissue have been reviewed. Also, the molecular effects of MNPs on cell behavior, 
especially in osteogenesis, have been discussed. Finally, the present article includes the potential applications of MNP-
containing nanocomposite scaffolds in bone lesions and injuries. In summary, this review article highlights nano‑
composite scaffolds containing MNPs as a solution for treating bone defects in tissue engineering and regenerative 
medicine.
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Introduction
Bone tissue as a mineral connective tissue has important 
functions in the body, which is disturbed by many bone 
disorders such as bone fractures or defects caused by 
surgery, trauma, or primary tumor removal. Therefore, 
there is a growing need for safe and cost-effective treat-
ment approaches for damaged bone tissues. On the other 
hand, the use of autograft and allograft products to repair 
damaged bone tissue is associated with the risk of disease 
transmission, chronic pain, infection, possible immuno-
genicity, lack of supply, and increased operation time [1]. 
It is anticipated that in the future, the high potential of 
bone for regeneration will lead to the introduction and 
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development of bone tissue engineering (BTE) as a prom-
ising supporter of bone grafting techniques in regenera-
tive medicine. Compared to conventional micro-sized 
materials, nanosized biomaterials have been shown to 
have the ability to induce cell adhesion and proliferation, 
and further bone regeneration [2]. Therefore, nanostruc-
tured biomaterials including biopolymer matrices and 
bioactive fillers in nanodimensions have been developed 
in nanocomposites-based scaffolds for use in tissue engi-
neering, especially BTE [2–4]. Due to their small size and 
large surface area, these structures show good interaction 
with different cells and tissues and can facilitate absorp-
tion by cells.

In bone defects, in addition to the biological stimuli 
that originate from the understanding of bone biology, 
bone regeneration, and fracture repair, they can be stim-
ulated by exogenous or endogenous physical factors such 
as fluid shear stresses, tensile and compressive stresses, 
and heat [5, 6]. Interestingly, magnetic stimulations from 
electromagnetic fields (EMFs) and static magnetic fields 
(SMFs) can also significantly progress bone repair and 
regeneration [7, 8]. Magnetic nanoparticles (MNPs), 
mainly superparamagnetic iron oxide nanoparticles (SPI-
ONs), of small size (about 1–100 nm), with or without a 
magnetic field, can influence the function of ion chan-
nels in stem cells and regulate osteogenic differentiation. 
It also affects various biochemical pathways, scaffold 
activity, and growth factor turnover and can be used as 
a modulator in BTE [9–12]. In addition to dynamic mag-
neto-mechanical stimulation, MNPs and magnetic fields 
provide the necessary growth factors, drugs, and gene 
transfections to accelerate the regeneration and repair of 
damaged bone [13–15]. Surprisingly, static magnetic field 
(SMF) expands the proliferation, migration, and differen-
tiation of bone marrow mesenchymal stem cells (MSCs) 
into osteoblast-like cells and osteogenic cells [16]. In 
addition, electromagnetic field (EMF) also regulates the 
expression of type II collagen, thereby stimulating carti-
lage formation through the differentiation of human bone 
marrow MSCs into chondrocytes [17]. MNPs also have 
the potential to be used as magnetic resonance imaging 
(MRI) contrast agents for tracking implanted cells, bone 
regeneration, and scaffold degradation. Therefore, mak-
ing an optimal magnetic scaffold in BTE can be very use-
ful and effective.

MNPs are one of the most important nanomateri-
als that are assembled in nanocomposite scaffolds, and 
hence these types of scaffolds are called magnetic nano-
composite scaffolds. Among the scaffolds that support 
cell activity, nanofibrous scaffolds provide ideal substrates 
for cell adhesion and nutrient transport due to their 
highly porous structure, adjustable fiber diameter, and 
special network shape [18]. In particular, the integration 

of MNPs with polymer fibers solves the agglomeration 
problem and improves the stability of magnetic nano-
composite scaffolds produced with diverse morphologies 
[19, 20]. Compared to microfibers, nanofibers display 
better surface adsorption to proteins and enhanced cell 
adhesion and proliferation, which designates the impor-
tance of using a bimodal structure to achieve larger 
pores and an appropriate surface for cell adhesion and 
biological applications [21]. On the other hand, the use 
of these scaffolds in combination with MNPs increases 
cell attachment, and cell survival, and also increases 
the mechanical strength of the scaffold, all of which are 
needed for bone regeneration [22].

Therefore, it is important to have an overview of 
magnetic nanocomposite scaffolds used in bone tissue 
repair and regeneration. In this review, after the intro-
duction of bone tissue engineering and types of mag-
netic nanoparticles and their application, the effects of 
various magnetic nanocomposite scaffolds used in bone 
tissue engineering on adhesion, penetration, prolifera-
tion, and specific differentiation of stem cells have been 
discussed.

Bone tissue engineering
Bone tissue engineering (BTE) is an emerging field that 
aims to incorporate three components, including (1) 
osteogenic cells generating the bone tissue matrix, (2) 
a biocompatible scaffold mimicking bone extracellular 
matrix (ECM), and (3) physico-chemical stimuli affecting 
cell behavior. A successfully engineered bone product has 
no permanent graft site complications, exhibits adequate 
vascularization, and does not induce an immunologic 
reaction at the defect site [23].

Over time, the polymer scaffold that supports the tis-
sue regeneration process is absorbed or replaced by 
newly produced bone tissue [24]. As three-dimensional 
structures with high porosity, various scaffolds are widely 
used in bone tissue engineering and support cell-bioma-
terial interactions, cell adhesion, growth, and migration 
[2, 4]. At the same time, they also facilitate the transport, 
survival, proliferation, and differentiation of progenitor 
cells [25]. A suitable biomaterial for the construction of 
scaffolds in bone tissue engineering should have critical 
behaviors such as osteo-induction and osteo-conduc-
tion and also be able to maintain bone integrity so that 
the components of the biomaterial integrate into the 
surrounding bone tissue [26, 27]. In addition, easy steri-
lizability, easy fabrication, non-thrombogenicity, and sta-
bility in different chemical and mechanical conditions are 
other key parameters that should be considered in bio-
materials used in BTE [28]. Furthermore, when the scaf-
folds are implanted in the bone defect, they must have 
sufficient stability and elasticity to withstand the suture 
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site and, in addition, be able to support bone formation 
with homogeneous morphology. Finally, the implanted 
scaffold must be degraded in a controlled manner in vivo 
without or with a minimal degree of inflammatory or 
toxic side effects [29, 30].

Magnetic nanoparticles and magnetic 
nanocomposite
According to the number of nanophases (i.e., < 100  nm) 
of homogeneous solid materials used to make nanocom-
posites, they can be one-dimensional (e.g., thin films and 
surface coatings), two-dimensional (e.g., nanowires or 
nanotubes), or three-dimensional (e.g., multilayer struc-
tures). In other definitions, in the nanocomposite struc-
ture, the interphase spacing is repeated in the nanoscale 
range [31, 32]. Nanoparticles (NPs) are materials that 
are articulated with all three external dimensions at the 
nanoscale, exhibit a high total interfacial area and high 
surface-to-volume ratio, and create extraordinary inter-
actions with molecular and supramolecular structures in 
biological environments [33]. Magnetism is the magnetic 
moment per unit volume of a particle, which is typically 
dependent on the spin or orbital energy that the dipole 
possesses. Therefore, the magnetic behavior is affected by 
the sample temperature and the degree of magnetic order 
[34].

In general, the synthesis of magnetic nanoparticles is 
done using two processes: top down or bottom up, which 
include different techniques such as ultrasonication, radi-
ation, electrochemical, vapor deposition, and microwave 
[35, 36]. In this regard, MNPs (metal oxide NPs and SPI-
ONs) can be fabricated using various methods, includ-
ing co-precipitation, surfactant-assisted techniques, 
solgel and hydro-thermal processing, and emulsion tech-
niques. These methods are used to control the structure, 
surface morphology, and stability of the manufactured 
nanoparticles [37–39]. Among the challenges of creating 
monodisperse magnetic nanostructures are size control, 
particle surface effects, and dipole interactions. However, 
some new chemical synthesis methods have made it eas-
ier to make functional MNPs. MNPs with a size of less 
than 30 nm are the dominant superparamagnetic nano-
particles [40, 41]. For example, superparamagnetic mag-
netite nanocrystal clusters (SMNC) as developed MNPs 
can be synthesized via mini-emulsion/solgel and polyol 
systems and used for multifunctional applications includ-
ing combined drug targeting and cell imaging [42].

Iron oxide nanoparticles in two forms, Fe3O4 and 
Fe2O3, are the most common MNPs that are usually syn-
thesized by conventional co-precipitation method [43] 
and are widely used in MRI applications for imaging can-
cer cells, and in vivo tracking and monitoring of cells and 
transplanted tissues [44]. The excellent biocompatibility 

and low toxicity of these types of MNPs led researchers 
to use them in the biomedical field, especially for moni-
toring engineered tissues [45]. Fe3O4 has been accepted 
by the US Food and Drug Administration (FDA) for 
clinical use [46]. Potential applications of MNPs include 
organ regeneration, tissue implants, drug delivery, imag-
ing, and improved diagnostics.

In line with what was mentioned, in the field of tis-
sue repair and tissue engineering, the unique feature of 
large surface area in biodegradable nanofillers comple-
ments the critical parameters mentioned above for clas-
sical scaffolds (e.g., biocompatibility, physicochemical 
stability, support of cell adhesion, and differentiation) 
which ultimately effectively improves the BTE approach 
[47, 48]. In bone tissue engineering, various technologies, 
including the foam replica method [49], solvent casting 
and particulate-leaching [50], freeze-drying [51], phase 
separation [52], gas foaming [53], rapid prototyping [54], 
and electrospinning [55], have been used to develop and 
introduce efficient nanocomposite scaffolds with control-
lable size and porosity that show a high surface-to-vol-
ume ratio. However, most scaffolds cannot be controlled 
after implantation in  vivo, and since the repair process 
can only be finalized by scaffolds in vivo, then the repair 
will not always be good enough. Therefore, one of the 
suggested approaches to achieve appropriate tissue repair 
and the possibility of controlling tissue fate using external 
stimuli is the construction of composite scaffolds con-
taining magnetic nanoparticles.

Since MNPs can respond to EMF, scaffolds contain-
ing MNPs can also respond to external magnetic fields. 
In addition, MNPs and magnetic responsive scaffolds 
(MRS) can deliver various peptide agents, and also 
improve implant stabilization [56], improve mechanical 
properties and biocompatibility [57, 58], and improve the 
wettability of the scaffolds. Moreover, MNPs and MRS 
increase alkaline phosphatase (ALP) activity and osteo-
genic gene expression of bone cells [59, 60]. Therefore, 
combining the potentials of MNPs and nanocomposite 
scaffolds leads to the development of implantable and 
functional magnetic nanocomposites (MNCs) [61, 62]. 
The most important aspect of these scaffolds is the mag-
netic response, which leads to great progress in tissue 
engineering such as magnetic patterning of cells and 3D 
tissue-like structures [63–65].

Recently, Panseri et  al. made magnetic scaffolds com-
posed of hydroxyapatite/collagen and MNP and showed 
that the presence of magnetic particles causes the 
attraction of growth factors and cells [65]. Also, embed-
ding iron oxide nanoparticles in macro-porous ferrogel 
scaffolds led to the production of MNC with a porous 
structure optimized for cell delivery [66]. In addition, 
doping of magnetic poly (1-caprolactone)/iron into 
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hydroxyapatite leads to the fabrication of MNCs capable 
of simultaneous use in the repair of damaged tissues and 
the treatment of further hyperthermia [67]. It is notewor-
thy that each particle in the structure of MNPs owns a 
single magnetic domain, and thus, the incorporation 
of MNPs into scaffolds generates a nanoscale magnetic 
field that affects the cells and scaffolds interaction in the 
exposed microenvironments. In addition, the endog-
enous force exerted by MNPs or exogenous stimulation 
using a magnetic field has been shown to affect multiple 
cell surface receptors as well as associated signaling path-
ways to modulate cell function toward a specific target 
[68–70].

Magnetic field stimulation also accelerates the bone 
healing process by enhancing the integration of scaf-
folds and host bone and increases calcium content for 
bone density and new bone formation [71–73]. It has also 
been shown that functionalized MNPs injected near the 
scaffold can be absorbed in the damaged site under the 
influence of an external magnetic field to promote tissue 
regeneration [74]. Remarkably, as previously reported for 
wound healing, a moderate external static magnetic field 
can modulate osteoblast differentiation even without the 
presence of MNPs [75–77]. In general, the intrinsic mag-
netic properties of MNCs or exposure to far magnetic 
fields combined with appropriate mechanical support 
lead to the regulation of signaling pathways and various 
biological responses, the promotion of osteogenic cell 
differentiation, and ultimately bone regeneration and 
injury repair [78, 79].

Despite all the positive features and wide applications, 
one of the limitations of using magnetic nanoparticles is 
their instability and low solubility in water environments 
[80]. To deal with this problem and to increase their sta-
bility, using a hydrophilic polymer substrate and cover-
ing magnetic nanoparticles is recommended [81]. Also, 
to prevent aggregation, magnetic nanoparticles should 
either be stabilized by electrostatic or steric repulsion 
[82]. Another limitation of MNPs is the toxicity related 
to size, shape, and chemistry, which should be consid-
ered before clinical use. Therefore, while MNPs seem to 
have significant therapeutic, restorative, and diagnostic 
potential, long-term evaluation is necessary to reduce 
human health risks [83]. Hence, they require comprehen-
sive pre-evaluation in terms of bio-distribution and bio-
compatibility. It should also be noted that MNPs, either 
alone or in a polymer substrate, must be quickly removed 
from the body after reaching the therapeutic endpoint. 
Considering all these, it is concluded that the develop-
ment of MNPs for therapeutic purposes is in its infancy. 
It appears that the collaborative multidisciplinary science 
that will deliver the next generation of MNPs is related 
to theranostics where combined diagnosis and treatment 

will eventually become part of standard medical prac-
tice [84]. Therefore, it is expected that in the near future 
interdisciplinary research in the fields of biology, engi-
neering, physics, and chemistry can provide new tech-
nologies based on magnetic nanoparticles to improve 
global health.

Molecular effect of MNPs on osteogenic 
differentiation and bone repair
The differentiation of mesenchymal stem cells (MSCs) 
plays a crucial role in bone repair and regeneration. The 
process of osteogenic differentiation of MSCs is a com-
plex and intricate process that involves the activation 
of several signaling pathways and transcription factors, 
such as Wnt/β-catenin, Notch, BMP/TGF-β, PI3K/Akt/
mTOR, MAPK, PDGF, IGF, FGF, and Ca2+ pathways 
[85–87]. Magnetic stimulations from MNPs alter cell 
behavior and have great potential for BTE applications. 
The use of magnetic field stimulation has been shown 
to activate multiple sensitive receptors on the surface 
of cells and trigger related signaling pathways, result-
ing in enhanced cell activity [69]. Continuous applica-
tion of magnetic field acts as sustained stimulation to 
further increase cellular activity in the bone defect [70]. 
Additionally, magnetic field stimulation can cause bet-
ter integration of scaffolds and host bone, promote new 
bone density through increased calcium content, and 
ultimately accelerate bone healing. These nanoparticles 
that have a particle size smaller than 30 nm exhibit a 
superparamagnetic effect and can be seen as individual 
magnetic domains [40, 41]. Therefore, it is reasonable 
to assume that MNPs in the microenvironments within 
the scaffolds can create a nanoscale magnetic field and 
exert a micromagnetic driving force at the interface 
between the scaffolds and cells, thereby affecting the fate 
of cells and subsequently in tissue repair. This happens 
by activating several sensitive receptors on cell surfaces, 
increasing cell activity and enhancing bone formation 
during bone healing.

The incorporation of MNPs into the structure of scaf-
folds can promote the osteogenic differentiation of MSCs 
in several ways. MNPs increase the surface roughness 
of scaffolds, which enhances surface energy and protein 
absorption, promoting the interaction between cells and 
scaffolds and activating the integrin signaling pathway. 
From the perspective of molecular mechanisms, mag-
netic induction stimulates cellular receptors and ECM 
components to activate the signaling pathways includ-
ing the Wnt/β-catenin, integrin, and BMP2 (Fig. 1). The 
studies indicated that exposure of stem cells to a low-
frequency magnetic field enhanced the expression of 
Wnt3a. This ligand activates the Wnt/β-catenin pathway 
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and improves osteogenic differentiation of human bone 
marrow-derived mesenchymal stem cells (BMSCs) [88, 
89].

ECM proteins (e.g., Integrins and collagens) offer a cell 
adhesion substrate for cellular functions that allows the 
development of subsequent mineralization. Integrins are 
transmembrane receptors that can potentially transmit 
ECM physicochemical and mechanical conditions to the 
cells. MNPs have excellent specific hardness and strength 
as well as large specific surface area. These properties can 
be utilized to enhance the mechanical properties of scaf-
folds through their ability to reinforce and strengthen the 
structure [90]. The mechanical properties of scaffolds, 
including their stiffness, can influence the fate of com-
bined stem cells. High matrix stiffness can induce MSCs 
to differentiate into osteoblasts, so that the upper and 
lower stiffness of the matrix causes the osteoblast and 
nerve differentiation of MSCs, respectively [91]. There-
fore, Integrins can mediate the matrix stiffness affecting 
cells and regulate osteogenic differentiation of stem cells. 
From a molecular point of view (Fig. 1), in the presence 
of high matrix stiffness, integrins can activate osteogenic 

differentiation-related signaling pathways such as the 
PI3K/Akt pathway and FAK or ERK1/2 phosphoric acid 
toward enabling stem cells to differentiate into osteo-
blasts [92, 93]. Indeed, matrix stiffness regulates the ERK 
pathway, which subsequently up-regulates the expression 
of osteogenic genes [94]. At the same time, integrin α5 
activation upregulates the expression of collagen type I 
and Runx2 (runt-related transcription factor 2), leading 
to increased deposition of calcium [95]. Notably, signal-
ing pathways such as BMP and Wnt are critical pathways 
promoting osteogenic differentiation that activated by 
integrin β3 and phosphorylation of GSK3 (glycogen syn-
thase kinase-3) via integrin-linked kinase and β-catenin 
nuclear translocation [96]. The BMP signaling pathways 
mediated by Smad1/5/8 phosphorylation [97].

In a study using decellularized cancellous bone scaf-
folds coated with various proportions of collagen/HA 
mixtures, MSCs implanted on the high-stiffness scaffolds 
demonstrated superior osteogenic ability [98]. Moreo-
ver, matrix stiffness can affect cell morphology, which is 
related to the cytoskeleton and intercellular interactions 
[99]. Cells on stiffer matrices are more spread out, with 
enhanced expression of vinculin, promoting the forma-
tion of focal adhesion and activation of β-catenin signal-
ing, and inducing bone formation and remodeling [100]. 
For example, the treatment of rat BM-MSCs via graphene 
oxide (GO) combination with Fe3O4 (MGO), leads to 
the up-regulation of BMP2 and Wnt/β-catenin signal 
pathways. It also provides cell protective activity where 
ferrous iron from Fe3O4 reacts with hydrogen peroxide 
(H2O2) to produce hydroxide and hydroxyl radicals [101].

Regarding osteogenic differentiation, bioinformatics 
analyses of genes microarray test revealed that MNPs 
induced MSCs osteogenic differentiation through modu-
lation of expression of genes (e.g., ALP, COL1, RUNX2, 
and OCN) and induction of the signal pathway such as 
MAPK (classic mitogen-activated protein kinase) [11]. 
ZEB2 is a regulatory factor that inhibits the BMP/Smad-
related osteogenic differentiation. SPIONs support sus-
tained ossification by upregulating the INZEB2 (long 
non-coding RNA) in MSCs, that overexpress INZEB2 
and downregulate ZEB2 expression [102]. In this regard, 
it was observed that gelatin sponges containing SPION 
increased bone regeneration with about a 1.5 times 
increase in BMD and BV/TV (bone volume per tissue 
volume) in comparison with gelatin sponges SPION-free 
[12].

Similar to the magnetic field, a pulsed electromag-
netic field (PEMF) also induces and activates ERK1/2 
and PKA (protein kinase A) signaling pathways to pro-
mote bone repair [103]. PEMF also increases the Ca2+ 
concentration in the cytoplasm by opening ion channels 

Fig. 1  Schematic image of the signaling pathways activated 
by magnetic nanocomposite scaffolds inducing osteogenesis 
(Designed by CorelDRAW 2019)
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(voltage-gated) and inducing the expression of osteogen-
esis-related genes [104]. Moreover, static magnetic field 
(SMF) has a similar effect and induces the expression of 
Wnt and Smad4 and other signaling pathways related 
to osteogenic differentiation, such as nuclear factor-κB, 
p38, and JNK (c-Jun N-terminal kinase)/MAPK path-
ways [101, 105]. For example, SMFs (15 mT) and PCL/
MNPs composites synergistically upregulated the oste-
ogenesis-related genes such as Runx2 and Osterix and 
induced alkaline phosphatase activity in mice osteoblasts 
to enhance osteoblastic differentiation [78]. Overall, 
these pathways detect changes in microenvironments, 
cytoskeletons, cell membranes, and nucleoproteins 
induced by magnetic forces [106, 107]. In summary, the 
incorporation of MNPs into scaffolds by creating a mag-
netic field can influence their surface roughness, wetta-
bility, and mechanical properties, increase their surface 
energy, protein absorption, cell-scaffold interaction and 
stiffness, and subsequently regulate bone differentiation.

On the other hand, angiogenesis supports the delivery 
of nutrients and signaling factors in damaged tissues to 
promote the formation of new tissues [108, 109]. In this 
case, magnetic systems affect the secretory function of 
osteoblasts and indirectly on other cells. The significant 
point in angiogenic responses is that magnetism upreg-
ulates VEGF (vascular endothelial growth factor) and 
angiogenin-1 genes in endothelial cells and promotes the 
formation of capillary tubes [110, 111].

Magnetic nanocomposite scaffolds in bone tissue 
engineering
Along with other medical applications (i.e., drug delivery, 
biosensors, imaging, etc.), nanomedicine has a special 
place in regenerative medicine. Today, nanocomposite 
biomaterials have emerged as a new class of biocompat-
ible materials that are used as bioactive, absorbable, and 
nanosized fillers for developing matrix structures [48]. 
Various studies have been conducted to prepare effi-
cient magnetic nanocomposite scaffolds for use in BTE 
(Table 1).

In 2014, Wang et al. used the electrospinning technique 
to create a composite material containing of MNPs based 
on Fe3O4. They used poly (l-lactic acid) (PLLA) poly-
mer concentrations of 2% and 5% to load nanoparticles 
and finally showed that the spreading and attachment 
of fibroblast cells to the fabricated nanocomposites was 
well done [67]. In addition to unique magnetic proper-
ties and high surface area, Fe3O4 MNPs have high spe-
cific hardness and specific strength, which improves the 
mechanical attributes of magnetic scaffolds [121]. Due 
to the advantages of Fe3O4 MNPs, several studies have 
used biomaterials containing Fe3O4 MNPs for BTE. Pan 

et al., who used the extrusion process to integrate Fe3O4 
into Poly-l-lactide polymer to make Fe3O4/Poly-l-lactide 
composites, finally showed the ability of osteogenic dif-
ferentiation without a cytotoxic effect on fibroblast cells 
in vitro [122].

Similarly, D’Amora et al. prepared the poly(e-caprolac-
tone)/iron-doped hydroxyapatite scaffolds that enhanced 
cell proliferation in  vitro while causing minimal toxic-
ity [123]. Also, in a study regarding the induction of 
bone formation by MNPs, the incorporation of SPIONs 
(superparamagnetic iron oxide nanoparticles) (Fe2O3) 
into calcium phosphate cement (CPC) led to the con-
struction of nanocomposite scaffolds. It was reported 
that compared to CPC scaffolds without SPIONs, the 
shape of the scaffold surface caused better adhesion and 
osteogenic differentiation of human dental pulp stem 
cells (hDPSCs). These scaffolds also released SPION into 
hDPSCs, thereby regulating osteogenic gene expression 
and ALP activity, and bone matrix mineral synthesis in 
cells [59, 124].

Another study using ultrasonic irradiation o synthesize 
nanocomposite scaffolds containing bacterial cellulose 
(BC), Fe3O4, and hydroxyapatite (HA) NPs indicated that 
HA and Fe3O4 NPs were uniformly distributed on the 
surface and cross-section of the BC matrix. They have 
also shown high porosity (81.1%) and good mechanical 
attributes (9.87 MPa and 1.85 GPa). BC/Fe3O4/HA devel-
oped MNC showed significant attachment to living bone 
cells without toxicity and also induced cell differentiation 
and proliferation [125]. With all these advantages, pre-
paring magnetic nanofibers with a high content of Fe3O4 
NPs is difficult. To solve this problem, the combination 
of different manufacturing methods, such as the com-
bination of cooperative assembly methods with electro-
spinning technology, is used. This strategy has effectively 
overcome the mentioned challenge and displayed excel-
lent magnetic performance, BMSCs biocompatibility, 
and viability, and more importantly, provided a dynamic 
cell culture microenvironment for a model of actual 3D 
growth under alternating magnetic field without direct 
contact with cells [126].

The freeze-casting method is another strategy to gain 
highly interconnected porous magnetic scaffolds appro-
priate for BTE. For example, a study investigated the 
effect of different percentages of MNPs integrated into 
the chitosan/silk fibroin structures. As shown in the SEM 
micrographs in Fig. 2, the structure of the scaffolds was 
layered. It was also shown that the incorporated nanopar-
ticles did not meaningfully affect the microstructural fea-
tures of the scaffolds. However, interestingly, the samples 
containing 1% MNPs showed a lower degradation rate. 
In this regard, MNPs-free scaffolds showed the highest 
degradation, which was attributed to the hydrophobic 
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nature of MNPs in scaffold structures. In addition, in the 
mentioned study, it was shown that a higher percentage 
of MNPs decreases cell viability, which indicates the need 
to optimize the percentage of MNPs used in BTE [127]. 
MNPs can be considered a single nanoscale magnetic 
domain that may influence cell membrane ion channels 
to control cellular responses [128, 129]. Even though the 
magnetic field intensity of the nanoscale particle is very 
low, the overall effect is likely to be enhanced by increas-
ing the MNP amount, thus having a more substantial 
impact on cellular responses. These somehow create a 
dynamic environment that influences the surrounding 
cellular reactions.

Cobalt-based NPs are another type of MNPs that has a 
high magnetic saturation. On the other hand, due to the 
high biocompatibility of Fe3O4, their combined proper-
ties with cobalt in the form of CoFe2O4 MNPs are consid-
ered as one of the most useful spinel ferrites, which have 
suitable characteristics such as large magneto-crystalline 
anisotropy, medium saturation magnetization, mechani-
cal stiffness, high inductance, high magnetic resistance, 
and chemical stability [112, 130]. Cobalt can also be used 
in combination with zinc, as in a study where cobalt-zinc 
ferrite (CZF) NPs were fabricated and incorporated up 

to 3 wt% into poly(ε-caprolactone) nanofiber compos-
ites scaffolds. In the resulting nanofiber, the diameter 
was reported to decrease to 466 nm. Also, hydrophilicity, 
mechanical stability, biodegradability, and biocompatibil-
ity were demonstrated in the presence of EMF [131].

Similar to this study, in other studies, the integration of 
MNPs into other biological materials, such as ceramic or 
calcium phosphate scaffolds, has been used to induce cell 
proliferation, differentiation, and bone formation in vivo. 
For example, in various studies, adding HA nanoparticles 
to composite scaffolds or calcium phosphate scaffolds 
significantly increased the attachment, proliferation, and 
differentiation of osteoblast cells under EMF and showed 
tissue biocompatibility [132].

The cell-ECM and cell–cell interactions regulation, 
predicting drug sensitivities, providing nutrients or 
stimuli, and removing waste products are essential con-
ditions for the native 3D-microenvironment of bone 
that classical 2D plastic scaffolds in single-cell cultures 
cannot provide. As a result of the absence of these 
conditions, cell death or loss of function and impaired 
repair occurs [133, 134]. These limitations are over-
come by a novel 3D scaffold that provides a high degree 
of porosity, allowing cell interaction, waste removal, 

Fig. 2  a Schematic illustration of chitosan/silk/MNPs scaffolds preparation by freeze-casting method. b SEM images of chitosan/silk and c chitosan/
silk/MNPs. Reprinted from Ref. [127]. Aliramaji, S., A. Zamanian, and M. Mozafari, Super-paramagnetic responsive silk fibroin/chitosan/magnetite 
scaffolds with tunable pore structures for bone tissue engineering applications. Materials Science and Engineering: C, 2017. 70: p. 736–744, 
Copyright (2023), with permission from Elsevier
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and oxygen/nutrient diffusion. In addition, 3D scaffolds 
show a more natural morphology of cells compared 
to 2D structures and provide better differentiation of 
them into physiologically relevant tissue. It should be 
mentioned that the size of the pattern, and the topog-
raphy of the scaffold and the cell type can determine 
morphology of cell, migration, proliferation, and differ-
entiation [135]. These observations indicate the impor-
tance of the fabrication of proper microstructures and 
designing 3D biomimetic scaffolds that mimic the 
native tissue. Of course, the design of such microen-
vironments needs the use of computational modeling 
and computer-aided instruments for tissue engineering 
[136].

To develop magnetic nanocomposite scaffolds contain-
ing Fe3O4, a 3D printing technique can be used and scaf-
folds with uniform pore size, unique morphology, and 
architecture can be prepared. For example, in a study, 
this technology was used to make magnetic nanocom-
posite scaffolds containing Fe3O4, bioactive glass, and 
polycaprolactone (Fe3O4/MBG/PCL). The results showed 
that these scaffolds increased proliferation rate and ALP 
activity and induced the human bone marrow mesenchy-
mal stem cells (h-BMSCs) differentiation toward bone 
repair and regeneration [117]. Another study used PCL/
Fe/HA nanoparticles to prepare 3D fully biodegradable 
magnetic nanocomposite scaffolds. The in  vitro results 
showed a 2.2-fold increase in its potential in the growth 
of BMSCs. In addition, in the mentioned study, after 
four weeks, the magnetized scaffolds were filled with 
new bone in  vivo, which confirmed the excellent tissue 
compatibility of the magnetic scaffolds [113]. In another 
study, electrospinning followed by the layer-by-layer 
assembly (LbL) was used to assemble a film of SPION on 
the surface of a magnetic scaffold containing PCL/PLGA. 
The results showed that hydrophilicity, elasticity, and 
surface roughness were greatly increased, which subse-
quently significantly increased cell attachment and osteo-
genic differentiation of ADSCs [115].

Notably, implantable scaffolds with larger pores pro-
vide a bone-like micro-environments that increase 
cell proliferation and migration [137, 138]. Moreo-
ver, structures with high porosity allow the fast diffu-
sion of medium, oxygen, and metabolites, creating a 
favorable micro-environment for cells [139]. Address-
ing these notes, the solvent casting technique along-
side the overlap of nylon template structures is another 
way to develop bioinspired 3D porous nanocomposites 
scaffolds comprised of piezoelectric polymers, such as 
PVDF (polyvinylidene fluoride) and CoFe2O4. Studies 
on these scaffolds show that their structures are alike to 

the spongy bone (pore sizes 5–20 µm). Also, due to the 
natural crystallization process with magneto-mechani-
cal and magneto-electric stimulation, larger pores with 
more interconnectivity are created after removing the 
nylon template [140].

On the other hand, the use of selective laser sintering 
for the fabrication of PLLA/PGA (polyglycolic acid) scaf-
folds containing MNPs Fe3O4 leads to the construction of 
magnetic scaffolds that provide cell adhesion and viabil-
ity (Fig.  3). According to these studies, the stiffness of 
MNPs increased the modulus and compressive strength 
of the scaffold by 71.6% and 81.9%, and at the same time, 
it improved cell proliferation and alkaline phosphatase 
activity [116].

However, their validity and translation to the clinic 
require their functional evaluation in preclinical animal 
models, including mice, rats, and rabbits. Hence, in vivo 
imaging and ex  vivo histological analysis is performed 
to monitor tissue development and measure them at the 
molecular level [141, 142]. After in  vitro approval, the 
fabricated scaffolds were implanted in orthotopic and 
ectopic models, and collagen deposition, matrix miner-
alization, and bone tissue remodeling were investigated 
[124].

As shown in Fig.  4, implantation of PEG-hydrogels-
MNPs loaded with SVF (stromal vascular fraction) cells 
in nude mice indicated the formation of tissue with dense 
vascularization and high mineralization [143]. These 
results confirm that MNPs provide both matrix calcifi-
cation and proliferation of endothelial cell in  vitro and 
in  vivo to form compact bone tissue in an implanted 
model. Furthermore, mesh of PCL polymer modi-
fied with Fe3O4 (15%) can stimulate vascularization 
and bone regeneration after implantation in segmental 
bone defects in mouse models [113]. The μCT imaging 
exposed that magnetic nanofibrous scaffolds and external 
SMF increased the formation of fresh homogeneous tis-
sue in a rabbit within three months. The magnetic prop-
erties accelerate the remodeling of bone via the thorough 
absorption of the scaffold materials in damaged area [65].

In another study, four weeks of monitoring with MRI 
imaging revealed that implantation of SPION-enriched 
gelatin sponges in the Sprague–Dawley rats (incisor 
sockets) induced new bone formation and preserved 
alveolar [144]. In addition, CT imaging showed that the 
biodegradable Fe3O4 NPs/PLLA scaffolds accelerated 
the bone healing process after 8 weeks of implanting in 
tibia of rabbits [145]. Indeed, Fe3O4/PLLA nanofibers 
promoted bone regeneration in a dose-dependent behav-
ior of nanoparticles, such that bone formation improved 
with increasing Fe3O4 NPs dosage [146] (Fig. 5).
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In another study, Shuai et  al. prepared magnetic scaf-
folds and implanted in rabbit model within radius defect 
(Fig.  6). The results demonstrated that these structures 
remarkably increased angiogenesis, fibrous formation, 
and the creation of new bone tissue after two months 
[116]. Overall, the magnetic microenvironment may 

serve as an appropriate and efficient substrate in BTE in 
the future.

In general, MNPs and their nanocomposite scaf-
folds have several advantages over more conven-
tional implants in bone tissue engineering (Table  1). 
One advantage is that they can be functionalized with 

Fig. 3  a Schematic illustration of PLLA/PGA/MNPs scaffolds preparation by selective laser sintering. b Powders of PLLA, PGA and composite. c 
PLLA/PGA scaffolds fabrication with different content of MNPs. Reprinted from Ref. [116]. Shuai, C., et al., A magnetic micro-environment in scaffolds 
for stimulating bone regeneration. Materials & Design, 2020. 185: p. 108275, open access article distributed under the CC BY-NC-ND license
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ligands that can target specific cells or tissues [147]. 
This allows for precise control over their localization 
and function, which is important for promoting tissue 
regeneration and minimizing unwanted side effects. 
Another advantage is the ability to manipulate mag-
netic nanoparticles through external magnetic fields, 
providing a non-invasive method for stimulating cells 
and promoting tissue regeneration, which is particu-
larly important for bone tissue engineering [148]. 
MNPs can also modulate signaling pathways involved 
in bone formation and remodeling, such as the Wnt/β-
catenin pathway, by functionalizing them with Wnt 

ligands or inhibitors, it is possible to promote or inhibit 
osteogenic differentiation, respectively, and regulate 
bone formation and remodeling [149]. Despite these 
advantages, there are several challenges that must be 
addressed before MNPs can be translated into clini-
cal use. One important challenge is ensuring the long-
term safety and biocompatibility of these materials. 
Magnetic nanoparticles have the potential to accumu-
late in tissues and organs over time, which could lead 
to toxicity and other adverse effects [150]. Researchers 
must carefully evaluate the biocompatibility of mag-
netic nanoparticles and their degradation products, as 

Fig. 4  Osteogenic differentiation and bone formation. a After 3 weeks of culture, gel sections’ mineralization (calcium deposition) was assessed 
using Alizarin red staining. b The samples were subcutaneously implanted in vivo, then observed via micro-computed tomography imaging after 1 
or 8 weeks after extraction. c In vivo μCT image of gels in 3D volumetric view, and sections with gradient density of the tissue generated after 1 
and 8 weeks. d By setting the following thresholds on the image histogram, the pixel intensity was defined based on the intervals of tissue density 
values: 0 to17000 (low density, in gray), 17,000 to 27,000 (moderate density, in green), 27,000 to 39,000 (intermediate density, in blue), and 39,000 
to 65,500 (high density, in red). μCT analysis was used to calculate the tissue volume of gels. Reprinted from Ref. [143]. Filippi, M., et al., Magnetic 
nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells. Biomaterials, 2019. 
223: p. 119468, Copyright (2023), with permission from Elsevier
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well as their potential to induce inflammation or other 
immune responses. Another challenge is understand-
ing the mechanisms by which magnetic nanoparticles 
affect cell behavior and tissue regeneration. While there 
is growing evidence that magnetic nanoparticles can 
modulate signaling pathways involved in bone forma-
tion and remodeling, the underlying mechanisms are 
not yet fully understood. Further research is needed 
to elucidate the molecular and cellular mechanisms 
by which magnetic nanoparticles exert their effects, as 
well as their potential to interact with other signaling 
pathways and affect tissue regeneration in vivo.

Conclusions
There are many studies on the application of MNPs 
alone or in the structure of nanocomposite scaffolds in 
TERM. A lot of these studies have also investigated and 
confirmed the physical and biological effects of MNPs 
in the microenvironment of stem cells. In particular, 
the increasing current advanced research in BTE and 
growing amounts of experimental data point to the high 
potential of MNPs in the repair and healing of bone inju-
ries. According to the conducted studies, incorporation 
and homogeneous distribution of MNPs in scaffolds 

leads to biological effects on cell activity and plays a role 
in their fate toward osteogenic differentiation. In this 
regard, many researchers investigated the molecular 
mechanisms and signaling pathways related to the osteo-
genic differentiation of stem cells and related or helpful 
factors in bone healing, especially angiogenesis, in the 
presence of MNPs or scaffolds containing them. Finally, 
the activation of molecular mechanisms and signaling 
pathways related to bone regeneration, as well as the 
creation of angiogenic responses and the formation of 
blood vessels and capillary tubes have been confirmed in 
recent years. Therefore, according to the present review, 
scaffolds reinforced with MNPs have been very helpful 
and effective in the reconstruction and healing of dam-
aged bones. It is expected that in the near future, great 
achievements will be made available in the field of bone 
reconstruction using magnetic nanocomposite prod-
ucts. To achieve this important goal in bone tissue engi-
neering, biosafety issues in the field of magnetization 
strategies should be further investigated. Although so 
far in vivo studies of magnetic scaffolds have not shown 
any serious toxic and inflammatory effects, these stud-
ies need to be completely conducted in  vivo and over a 
longer period of time.

Fig. 5  a Rabbit’s tibia was scraped and two implantation holes were prepared with a diameter of 4 mm. Next, neat PLLA was grafted into one 
defected site and PLLA/MNP was grafted into the other. b, c Micro-Computed Tomography (μCT) images of defect sites after 4 weeks and d, e 8 
weeks. Histological images of defected sites grafted with: f blank; g PLLA; h 2% MNP/PLLA; and i 5% MNP/PLLA scaffolds after 8 weeks. Reprinted 
from Ref. [146]. Lai, W.-Y., et al., In vivo investigation into effectiveness of Fe3O4/PLLA nanofibers for bone tissue engineering applications. Polymers, 
2018. 10(7): p. 804, open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license
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