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Abstract 

Hematopoietic stem cells (HSCs) with the ability to self-renew and differentiate are responsible for maintaining 
the supply of all types of blood cells. The complex and delicate microenvironment surrounding HSCs is called the HSC 
niche and can provide physical, chemical, and biological stimuli to regulate the survival, maintenance, proliferation, 
and differentiation of HSCs. Currently, the exploration of the biophysical regulation of HSCs remains in its infancy. 
There is evidence that HSCs are susceptible to biophysical stimuli, suggesting that the construction of engineered 
niche biophysical microenvironments is a promising way to regulate the fate of HSCs in vitro and ultimately contrib-
ute to clinical applications. In this review, we introduced the spatiotemporal heterogeneous biophysical microenvi-
ronment during HSC development, homeostasis, and malignancy. Furthermore, we illustrated how these biophysical 
cues contribute to HSC behaviors, as well as the possible mechanotransduction mechanisms from the extracellular 
microenvironment into cells. Comprehending the important functions of these biophysical regulatory factors will 
provide novel approaches to resolve clinical problems.
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Introduction
Hematopoietic stem cells (HSCs) are heterogeneous cells 
at the top of the hematopoietic system that exhibit self-
renewal and differentiation abilities [1, 2]. The hemat-
opoietic system uses billions of fresh cells every day 
to update the blood and immune cells in the body [3]. 
HSCs maintain hematopoietic homeostasis through 
self-renewal, maturation, apoptosis, resting mode, and 
trafficking in  vivo, which are highly complex and con-
trolled physiological features [4]. Since the 1960s, HSCs 
have been used in the clinical treatment of patients with 
hematological diseases such as leukemia and lymphoma 
[5]. The main sources of HSCs for clinical applications are 
cord blood (CB), adult bone marrow (BM), and mobilized 
peripheral blood stem cells. However, because of the low 
availability of matching donors and the number of HSCs 
per transplant, the supply of HSCs is very limited [6]. The 
clinical bottleneck of hematopoietic stem cell transplan-
tation (HSCT) is how to efficiently proliferate functional 
HSCs in vitro. This challenge may be addressed by study-
ing the growth environment of HSCs in vivo.

HSC niches are highly specialized microenvironments 
that provide HSCs with all the signals that regulate HSC 
survival, maintenance, proliferation, and differentia-
tion [7]. Since the HSC niche hypothesis was proposed, 
researchers have continued to discover new cells, fac-
tors, and other parameters that play a role in these 
niches [8, 9]. Efforts have been made to understand the 

heterogeneity of these niches at different stages of devel-
opment, homeostasis, and malignancy [10], enriching the 
complexity of niche regulation. The microenvironment 
surrounding HSCs can provide physical, chemical, and 
biological stimuli that modulate HSC activity and fate 
alone or in combination. Nevertheless, the exploration of 
the biophysical regulation of HSCs remains in its infancy 
[11–13]. This review discusses the heterogeneity and the 
important roles of these biophysical microenvironments 
in HSC fate regulation, which have led to exciting new 
ideas for the design of artificial niches for HSC engineer-
ing and clinical applications.

Complexity of HSC niches
Spatiotemporal heterogeneous niches during HSC 
development, homeostasis, and malignancy
The abilities of HSC self-renewal and maintenance are 
strictly regulated throughout the human lifetime to 
maintain blood system homeostasis. Recent techno-
logical progress has shown that HSC and hematopoietic 
stem and progenitor cell (HSPC) groups are not discrete 
homogeneous populations, but rather heterogeneous 
populations. Evidence shows that there are HSCs with 
lineage bias and progenitor cells with lineage restriction 
in HSC niches [14]. Previous studies have drawn a sin-
gle-cell transcription map of human hematopoietic stem 
cells from hematopoietic endothelium to birth and have 
found that HSC and progenitor cells can be distinguished 

Fig. 1  Anatomical location of hematopoietic stem progenitor cells (HSPC) niches changes with space and time. HSPCs are found in many organs 
in the body across a lifetime. AGM, aorta-gonad-mesonephros
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based on their signature [2]. The HSC niche in develop-
ment also shows heterogeneity. The anatomical location 
of HSPC niches changes with space and time (Fig. 1).

Primitive hematopoiesis begins in the yolk sac, and 
definitive hematopoiesis occurs in the aorta-gonad-
mesonephros (AGM) region [15]. HSCs then undergo 
active expansion and specification in the fetal liver [16]. 
Afterward, HSCs emigrate from the fetal liver to the 
fetal spleen [17]. Finally, stromal cell-derived factor 1 
generated by BM stromal cells induces the expression of 
CXCR4 from HSC, which mediates HSC reside into the 
BM [18].

Throughout adult life, HSCs are maintained and regu-
lated in BM niches. According to different anatomical 
positions, niches close to the endosteum are currently 
defined as endothelial niches [19], while niches close to 
the BM sinusoids [20] or arterioles [21] are defined as 
perivascular niches. Obviously, each of these BM niches 
is produced by a variety of cell types and the constitu-
ent cells vary greatly [22]. These different microenviron-
ments have different functions, and the HSCs hosted in 
them are also heterogeneous [23]. Many recent studies 
have confirmed that the phenotypes and functions of 
HSCs are heterogeneous in different niches [24, 25]. The 
use of new technologies has revealed that HSCs are not 
a pool with unified functions, but a heterogeneous pool 
composed of different HSC subgroups. HSCs comprise 
several HSC subgroups with different immunopheno-
types. These subgroups have different self-renewal and 
regeneration abilities, and the selectivity of lineage dif-
ferentiation is also biased [26]. In addition, there is rea-
son to believe that the heterogeneity of HSCs is closely 
related to the heterogeneity of HSC niches.

Generally speaking, the main site of hematopoietic 
activity is the BM. However, when the BM microenviron-
ment becomes unsatisfactory, extra-medullary hemat-
opoiesis may occur in the liver or spleen [27]. When the 
blood system is stable, the HSCs are in a dormant state. 
When infection, acute blood cell loss, chemotherapy, 
radiation-induced cytotoxicity, and other forms of stress 
and injury occur, HSCs can reversibly switch from a dor-
mant state to an active state to restore the stable state of 
hematopoiesis. Once the blood system regenerates and 
re-establishes its stable state, the activated HSCs will re-
enter their dormant state [28, 29]. HSCs in a dormant 
state can minimize the accumulation of DNA damage, 
thus preventing HSC exhaustion and BM failure [30, 31].

Alterations to the hematopoietic microenvironment 
upon aging might lead to diseases such as hematologic 
malignancies [10]. Therefore, the compositional and 
functional heterogeneity of niches in various anatomi-
cal sites during different developmental stages should 
be emphasized when identifying their special contribu-
tions to the fate of HSCs. The aging of HSCs partially 
contributes to the impairments of an aged hematopoietic 
system. Research shows that in young- and middle-aged 
mice, there is a stable balance between myeloid-biased, 
lymphoid-biased, and balanced HSC subsets [32, 33]. 
However, this balance was found to be broken in older 
mice. Myeloid-biased HSCs increased and became the 
main type. The self-renewal and regeneration ability of 
these HSCs decreased, resulting in a decline in the pro-
duction of mature blood cells [24, 34]. Aging leads to the 
reduction in comfort of the HSC niche, thus breaking the 
hematopoietic  homeostasis. Some studies have changed 
the mitochondrial membrane potential of HSC through 

Fig. 2  Hematopoietic stem cells (HSCs) are stimulated by the biochemical, biological, and physical parameters of the microenvironment 
in vivo. HSCs are subjected to biochemical and biological signals elicited by cell–cell interactions including direct contacts and communication 
through soluble factors as well as cell–matrix interactions. At the same time, cells are stimulated by the physical parameters of the environment. 
Intrinsic forces (Fi) are generated intracellularly and transferred to other cells through cell–cell junctions, such as cadherin receptors, or via traction 
on extracellular matrix (ECM) adhesion ligands those are bound to integrin receptors. Extrinsic forces (Fe) are externally applied by shear or tension 
and/or compression on cells, and they can be sensed by mechanically gated ion channels, changes in receptor-ligand binding, deformation 
of the cytoskeleton, and the primary cilium. Physical properties, for example, the elastic modulus and nanotopography of the ECM, govern 
how mechanical cues are transduced. The cytoskeleton generates and transfers forces from membrane proteins to intracellular structures, such 
as the nucleus
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pharmacological operations and have found that it can 
have beneficial effects on the function of HSC [35].

Multiple components of HSC niches
The communication between a variety of niche com-
ponents, including niche cells, soluble components, 
and ECM molecular provides chemical signals regu-
lating the fate decision of HSC. As shown in Fig. 2, the 
mechanosensors formed by cell–cell and cell–ECM 
interactions, such as adhesion receptor-ligand bonds, 
the cytoskeleton, mechanically gated ion channels, and 
primary cilia, enable HSCs to autonomously sense and 
react to mechanical cues in niches [36, 37]. Components 
of HSC niches that contribute to HSC fate regulation are 
shown in Table 1.

HSC niches are composed of multiple cell types with 
specific functions [38]. These different types of cells 
either directly or indirectly support the maintenance and 
regulation of HSCs in HSC niches [39]. Mesenchymal 
stromal cells (MSCs) provide niche factors such as CXCL 
12, SCF, and interleukin 7 (IL 7) and play an important 
role in the regulation of HSCs [40]. Osteolineage cells 
(osteocytes, osteoblasts, and osteoclasts) are crucial for 
lymphopoiesis and have been implicated in HSPC regula-
tion [41]. Adipocytes might inhibit HSC activity, but this 
conclusion is still controversial [42, 43]. The endothe-
lium can regulate HSC maintenance and the activity of 
perivascular cells [44]. Adrenergic nerves can regulate 
HSC mobilization and hematopoietic recovery [45]. 
Schwann cells may promote HSC quiescence through 
TGF-β signal conduction [46]. Macrophages may directly 
participate in the maintenance of HSC, and indirectly 
regulate the retention of HSC through niche cells [47]. 
Megakaryocytes can promote HSC quiescence via apply-
ing a feedback loop [48, 49]. T cells and neutrophils 
might direct interact with HSCs or regulate HSC behav-
iors via other immune and stromal cells [50, 51]. Recent 

studies (Table 1) have continuously enriched the known 
functions of each cell and factor during HSC homeostasis 
and niche formation. Although many studies have been 
conducted to elucidate the role of cells in the niche, the 
regulation of HSC populations remains highly complex 
and elusive.

The ECM is a fine and intricate network composed of 
macromolecules synthesized and secreted by cells to the 
outside that are distributed on the cell surface or between 
cells. Its components are mainly collagen, elastin, non-
collagen glycoprotein, and aminoglycan or proteoglycan. 
The ECM maintains the organizational structure of cells 
and provides anchorage sites for cell adhesion and migra-
tion [52, 53]. A variety of ECM proteins participate in the 
regulation of HSCs. For example, structural proteins such 
as collagen, laminin, and fibronectin provide anchorage 
sites for cells to support HSC retention and mobilization 
[52]. In addition, laminins and fibronectin have also been 
found to affect the regulation of HSC proliferation and 
differentiation, and affect the implantation ability of HSC 
[54–56]. Osteopontin has been found to have a negative 
effect on HSC proliferation [57, 58]. The ECM in the BM 
is heterogeneous. The endothelial region is rich in osteo-
pontin and type I collagen, and the vascular region is rich 
in laminin [59–61]. The changes in the ECM composition 
in different regions may lead to different functions of BM 
niches. Variations in the ECM composition may contrib-
ute to differences in biological, chemical, and biophysical 
factors in BM regions.

Studies have revealed that HSCs have the ability to 
sense external biophysical cues, such as shear stress, 
matrix stiffness, and matrix nanotopography [13]. These 
biophysical stimuli, alone or coupled with biological 
stimuli, can modulate the activity and fate of HSCs. HSCs 
convert the macroscale biophysical inputs they sense 
into molecular signals with chemical activity to guide 
cell behavior [62]. However, the mechanotransduction 
mechanism through which HSCs sense and react to the 
mechanical signals remains unknown.

Heterogeneous biophysical microenvironment 
of HSCs
HSC maintenance and self-renewal are strictly regulated 
throughout the human lifetime to maintain blood sys-
tem homeostasis. HSC niches are spatiotemporally het-
erogeneous during HSC development, homeostasis, and 
malignancy. In studying the specific contributions of the 
biophysical microenvironment to the fate of HSCs, the 
heterogeneity of the composition and function of niches 
in different anatomical sites at different developmental 
stages should be emphasized (Fig. 3).

Table 1  Components of HSC niche

Cellular components Extracellular matrix Biophysical 
parameters

Mesenchymal stem cells Polysaccharide Shear stress

Osteolineage cells Proteoglycans Hydrostatic pressure

Adipocytes Collagens Circumferential strain

Endothelial cell Laminins Stiffness

Sympathetic nerves Fibronectin Viscoelasticity

Schwann cells Osteopontin 3D architecture

Macrophages Nanotopography

T cells

Neutrophils
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Biophysical microenvironment of embryonic HSCs
Studies have shown that hematopoietic stem cell for-
mation, development, and regulation are dependent on 
blood flow [63–65]. Blood flow and hematopoietic cells 
occur synchronously, and research also shows that blood 
flow is an important regulatory factor for HSC develop-
ment [66]. Blood flow passing through a vessel gener-
ates three forces: hydrostatic pressure, shear stress, and 
circumferential strain. Shear stress is the frictional force 
tangential to endothelial cells (ECs), while circumferen-
tial strain refers to the force perpendicular to the flow 
direction [67, 68]. At the embryonic stage, HSCs are gen-
erated by the hematopoietic endothelium in the AGM. 
Previous studies have shown that shear stress caused by 
blood flow is a necessary condition for HSC generation 
in this process [37, 62]. Similarly, studies in  vitro have 
shown that shear stress affects the proliferation and dif-
ferentiation of HSCs in vitro. These studies provide a new 
idea for the expansion of HSCs in  vitro and will have a 
beneficial impact on the possible clinical applications of 
HSCs [69, 70]. Large-scale cell expansion requires suffi-
cient medium containing essential nutrients and growth 
factors for the growing cell population. Medium flow also 
induces shear stress, so it is necessary to study whether 
shear stress affects HSC behavior. In addition, stromal 
cells at different regions in AGM lead to changes in the 
maintenance and differentiation of embryonic HSCs [71]. 
The biophysical interactions between embryonic HSCs 
and stromal cells in the AGM compartment regulate the 
development of embryonic HSCs [72]. These indicate 

that the activity of embryonic HSC requires the coordi-
nated regulation of chemical signals, biological signals 
and physical signals from the AGM microenvironment.

Biophysical microenvironment of BM niches
BM niches are the main site of adult HSC maintenance 
and regulation. Most adult HSCs are not directly exposed 
to the fluid environment in the BM, but some functional 
cells in the HSC niche may be in the fluid environment 
and will react the influence of fluid to HSCs through 
paracrine signals [41]. The fluid flow in the cavity of the 
bone produces shear stresses of 6–50 dynes/cm2. These 
shear stresses have been shown to affect bone cells and 
endothelial cells, thereby regulating the quiescence and 
circulation of HSC [73]. In BM, the fibronectin-rich 
endosteum region is stiff (40–50 kPa), while the laminin-
rich perivascular region is soft (3  kPa) [74, 75]. Moreo-
ver, niche stiffness is not a static parameter, but rather 
a dynamical property during physiological processes. 
During the mobilization of HSCs from BM niches to the 
blood circulation, adrenaline stimulates osteoblasts to 
flatten and harden [45, 76]. The composition and molec-
ular cross-linking in the ECM will change due to aging 
and disease, leading to matrix stiffening [77, 78]. Simi-
larly, in the occurrence of diseases such as atherosclerosis 
and myelofibrosis, the hematopoietic tissue is hardened. 
Research has shown that both embryonic and adult 
stem cells are sensitive to substrate stiffness, including 
HSCs. By changing the E-modulus of the substrate, the 
differentiation of MSCs can be controlled [79, 80]. Our 

Fig. 3  Biophysical microenvironment of heterogeneous HSC niches. Bone marrow is the primary niche for adult HSC maintenance. When 
the individual is under severe stress or the BM microenvironment becomes suboptimal due to pathological conditions, extra-medullary 
hematopoiesis (EMH) can occur, mostly in the liver or spleen
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previous work has also shown that matrix stiffness regu-
lates macrophage growth and development [81]. Besides 
matrix stiffness, matrix elasticity, and nanotopography of 
the matrix can also regulate the adhesion of HSCs [82]. 
In addition, mechanical loading is required for HSC dif-
ferentiation. When organisms are exposed to some spe-
cial environments, the biophysical microenvironments 
in vivo will also change [83].

Biophysical microenvironment of extra‑medullary HSC 
niches
When the BM microenvironment becomes unsatisfac-
tory, extra-medullary hematopoiesis may occur in the 
liver or spleen [27]. Clearly, the physical microenviron-
ment provided by the liver or spleen for HSCs is com-
pletely different from the BM niche. Taking stiffness as 
an example, the Young’s modulus of the liver and spleen 
ranges from 4 to 7 kPa, which is comparable to the stiff-
ness of blood vessels, but far from the Young’s modulus of 
the endosteal region. Most adult HSCs are located in BM, 
but a small number of HSCs circulate in the body [84]. 
Blood vessels provide another important extra-medullary 

HSC niche. Although blood vessels have no hematopoi-
etic function, they are an important site for HSC activity. 
The biophysical characteristics of these extra-medullary 
niches are obviously different from those of the BM 
niches. For example, the shear force, which is generated 
by blood flow in the blood vessels, is an important stimu-
lating factor that cannot be ignored. In mice, when HSCs 
circulate via blood flow, the shear stress in some areas 
exceeds 600 dyne/cm2 [85].

Changes in the biophysical microenvironmental caused 
by aging and disease
Aging will change the microenvironment of HSCs, 
resulting in the decline of HSC function. Individual HSCs 
can exhibit lineage bias, giving rise to myeloid-biased, 
lymphoid-biased, or more balanced differentiation, with 
the proportion of myeloid-biased HSCs increasing with 
age [86]. With the increase in age, the balance of long-
term hematopoietic stem cells (LT-HSCs) in maintaining 
hematopoietic output is destroyed. LT-HSCs give rise to 
myeloid-biased, and myeloid leukemia eventually devel-
ops. Using single-cell RNA sequencing (scRNA-seq) [87], 

Fig. 4  Mechanosensors and mechanotransduction of HSC. The drawing schematically depicts the mechanosensory units and molecules 
and highlights the molecules downstream of integrin that are expressed by HSPCs and/or play a role in HSPC biology. Biomechanical 
inputs from external loads directly stimulate mechanosensors such as mechanically gated ion channels, adhesion receptor-ligand bonds, 
cytoskeleton, and primary cilia. Intrinsic forces are generated under environmental mechanical constraints, and then transmit to neighboring 
cells through junctional interfaces, and consequently elicit cellular mechanoresponses. Besides, intrinsic forces can directly pass on to the 
nucleus through lamin A/C (LMNA), affecting chromatin structure and thereby controlling epigenetic processes. Biomechanical cues cooperate 
with biochemical signals in mechanotransduction
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a previous study identified an age-related myeloid-biased 
subset and revealed important regulators of inflamma-
tory myeloid bias, providing guidance for preventing 
aging-induced myeloid leukemia [88].

The vascular remodeling and changes in adrener-
gic signaling during aging influence the niche function. 
HSCs and their derivatives remodel the niche compo-
nent. These events may cooperatively bias the fate of 
HSCs toward myeloid differentiation [89].

Mechanosensors and mechanotransduction 
in HSCs
The HSC senses the biomechanical signals from the 
HSC niche through mechanosensors, thereby generating 
intrinsic forces and triggering a series of mechanotrans-
duction. Finally, biomechanical signals will affect the 
cytoskeleton and chromatin structure, thus guiding cell 
behavior (Fig. 4).

Mechanosensors
The signals generated by supporting cells and ECM are 
necessary for the maintenance and regulation of HSCs 
[90, 91]. The mechanosensors formed by cell–cell and 
cell–ECM interactions, such as adhesion receptor–
ligand bonds, the cytoskeleton, mechanically gated ion 
channels, and primary cilia, enable HSCs to autono-
mously sense and react to mechanical cues in niches 
[36].

Integrin‑mediated adhesion
Cell adhesion molecules (CAMs) mediate cell–cell and 
cell–ECM connections. The domain formed by the 
connection initiates intracellular signal transduction 
or interacts with the cell cytoskeleton. CAMs include 
integrins, cadherins, selectins, and the immunoglobu-
lin superfamily [92, 93]. Cadherin mediates intercel-
lular adhesion, while integrin mediates cell–ECM 
adhesion and finally uses intrinsic forces to form focal 
adhesions (FAs) [74, 94, 95]. ECM proteins with Arg-
Gly-Asp integrin recognition motifs, such as fibronec-
tin, laminin, and collagen, can connect with integrin, 
thus enabling cells to sense mechanical signals [73]. The 
activated integrin will bind and activate kindlins and 
talins. In addition, vinculin combines with talin to pro-
mote the enrichment of multiple activated integrins. 
Vinculin also transmits signals to the cytoskeleton by 
combining its tail domain with actin [96, 97].

In addition to transmitting the signal to the cytoskel-
eton, integrin also transmits the signal into the cell 
through the intracellular multi-protein complex [98]. 
In this process, paxillin, focal adhesion kinase (FAK), 

Pyk2, Crk, and P130CAS are induced to phosphorylate. 
These key elements play a role in the mechanotrans-
duction of HSCs. FAK and Pyk2 interact with talin 
and paxillin and are involved in the activation of paxil-
lin and guanine nucleotide exchange factors [99, 100]. 
When the adaptor molecule P130cas, as a mechanosen-
sor located at the downstream of integrins, is phospho-
rylated, it becomes the substrate for the interaction 
of kinases of the Src family [101]. In addition, the Src 
family kinases (SFKs) are quickly activated. The SFKs 
can directly bind with integrin and can also connect 
with FAK. SFKs have an effect on the mobilization of 
HSCs from the BM to the circulation and play a role 
in HSCT [102, 103]. Phosphatidylinositol-4,5-bispho-
sphate3-kinase (PI3K) activated by SFKs can regulate 
HSC adherence and motility [76]. The HSCs can sense 
the force from the ECM and can apply traction force to 
the ECM in return. HSCs can secrete matrix compo-
nents or proteases to regulate the ECM, thus enhanc-
ing or eliminating the adhesion interactions between 
HSCs and the ECM [104, 105]. ECM remodeling pro-
teins change the niche microenvironment, thus regulat-
ing the quiescence, mobilization, and hematopoiesis of 
HSCs [106–108].

Intrinsic forces generated by the cytoskeleton
The cytoskeleton is the communication hub between 
the cell and the external biophysical microenvironment. 
Through the changes of the cytoskeleton, HSCs can 
sense, transmit, and generate force [109–111]. It has been 
shown that myosin IIA in HSCs is regulated by matrix 
stiffness. The activity of myosin IIA is enhanced on stiff 
matrices, whereas it is decreased on soft matrices [112, 
113]. When the cytoskeleton or the transmembrane 
adhesion receptors connected with the cytoskeleton are 
stimulated by biomechanical stimuli, the cytoskeleton is 
remodeled and the cytoskeleton tension is rearranged, 
thus generating intrinsic forces [114, 115]. Through a 
component of nuclear lamina proteins, laminin A/C, the 
intrinsic force can be directly transmitted to the nucleus, 
thus modifying the chromatin structure and control-
ling epigenetic transcription [116]. In Ptpn21 deletion, 
HSCs, by dephosphorylating Spetin1 in cells, damages 
the stability of the cytoskeleton, reducing the decrease 
in HSC stiffness and increasing the physical deforma-
tion ability of HSC, thus weakening the quiescence and 
hematopoietic reconstitution capabilities of HSCs [117]. 
Ptpn21-deleted leukemic cells also showed a decrease in 
mechanical rigidity and an increase in cell deformabil-
ity. These studies support the concept that the cytoskel-
eton is a hub of communication in mechanotransduction 
[118].
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Mechanically gated ion channel
Cationic stretch-activated channels can sense mechani-
cal forces as well as intrinsic forces and are permeable to 
Ca2+ as the second messenger [134–137]. The blocker, 
activator, or modulator of Na+ /K+-channels can regu-
late the fate of HSCs [64]. Ca2+ can regulate the activity 
of eNOS and stimulate the release of nitric oxide (NO). 
NO is a necessary regulator for HSC functions [119]. The 
depletion of NO in HSCs leads to the transformation of 
HSCs from differentiation to proliferation [120].

Primary cilia
Increasing evidence indicates that the primary cilia in 
almost all human blood and BM cells (97–99%) may be 
a communication hub for signal transduction. Because 
of the abundant calcium channels and receptors in its 
membrane, cilia have the ability to sense and transmit 
microenvironmental mechanical and chemical stimuli 
[121, 122]. The mechanical signals transmitted by the 
primary cilia are required for the osteogenic response 
and proliferation of human MSCs, and thus contribute 
to the maintenance of the essential components of BM 
niches that support HSCs [123]. In addition, vascular ECs 
sense the fluid flow signals through the primary cilia and 
regulate the biosynthesis of NO [124, 125]. However, the 
further influence of the NO released mediated by the pri-
mary cilia on the outputs of HSCs within vascular niches 
remains unclear.

Mechanoresponsive transcription factor
On and inside the cell membrane, changes in cytoskel-
etal remodeling and protein recruitment are the first step 
of mechanical signal inputting. This step introduces the 
downstream mechanotransductive effects, thus stimulat-
ing the changes in the cytoplasmic localization of mol-
ecules and ultimately stimulating transcriptional effects. 
Yes-associated protein (YAP) and transcriptional co-
activator with PDZ-binding motif (TAZ) are two tran-
scriptional cofactors that shuttle between the nucleus 
and the cytoplasm. They can transmit signals triggered 
by biomechanics to the nucleus to affect gene transcrip-
tion [109, 110]. The activity of YAP/TAZ is limited to 
cells experiencing biomechanical stresses, and its locali-
zation and degradation are regulated by the Hippo path-
way [110]. YAP is detectable at low levels only in murine 
long-term HSCs, but not in murine short-term HSCs 
or Lin+ hematopoietic lineages. In addition, the nuclear 
skeleton proteins laminin A and laminin B are important 
elements involved in biomechanical signal transmission 
to the nucleus. These proteins have been confirmed to be 
biomechanosensitive and play an important role in HSC 
transmigration [126]. KLF2 is an important biomechani-
cally activated transcription factor and a key medium for 

HSC production induced by blood flow [127, 128]. cAMP 
response element-binding protein (CREB) is a down-
stream effector of fluid shear stress that has been demon-
strated to affect the emergence of HSCs [129, 130].

Complicated crosstalk under mechanical conditions
The above describes the mechanosensors and mecha-
notransduction in HSCs. Mechanosensors and mecha-
notransduction work together to determine the fate of 
HSCs. The cytoskeleton is closely related to YAP/TAZ. 
Studies have shown that the F-actin related protein can 
enhance the YAP nuclear translocation and can abro-
gate YAP/TAZ activity [131, 132]. Cdc42-Rho-GTPase 
promotes F-actin polymerization to enhance the nuclear 
retention of YAP [133]. Ciliary bending caused by bio-
mechanical stimuli can induce cytoskeletal deformation 
and membrane stretching, thus initiating extracellular 
Ca2+ influx through calcium channels in the ciliary mem-
brane [134, 135]. In short, these mechanosensors and 
mechanotransduction are highly interconnected rather 
than mutually exclusive.

Currently, previous studies have shown that HSC is 
mechanically sensitive, and some biomechanical sensing 
elements have been proposed, but the molecular mecha-
nism of mechanotransduction needs further clarification.

Engineering the biophysical niches for clinical 
applications
Clinical significance of mimicking niche biophysical signals
Stem cell therapy, such as transplantation and tumor 
purging, is used to treat hematological diseases and 
malignant tumors [136]. HSCT was achieved in the 
1950s [137]. The BM or HSCs extracted from autog-
enous or allogeneic grafts can be infused into patients 
after myeloablative treatment [74]. The main bottleneck 
of this treatment is the lack of sufficient HSC supply, 
because the number of stem cells from common sources 
such as the BM and umbilical cord blood is scarce [138]. 
In addition, there are also obstacles to the function of 
transplanted HSCs, which are mainly manifested in the 
low homing efficiency of HSCs transplanted into the BM 
cavity [139]. Therefore, how to effectively amplify HSCs 
in vitro is of great significance for clinical treatment.

The method of amplifying HSCs in  vitro by referring 
to the natural microenvironment of HSCs is emerging. 
However, the common HSCs culture system only focuses 
on the provision of growth factors and cytokines, and 
rarely pays attention to the influence of biomechani-
cal clues. Such systems can enhance the proliferation of 
HSPCs, but the proliferating HSCs have differentiated 
and lost their self-renewal ability, which has no clinical 
significance [140, 141]. Therefore, in order to reproduce 
the natural microenvironment of HSC, physical factors 
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must be considered. Some designs with biomechanical 
clues help to realize the continuous expansion of HSCs 
while maintaining their ability to self-renew and differen-
tiate [142, 143].

Engineering HSC niches in vitro
How to reconstruct the unique and intricate microen-
vironment architecture and nanotopography of HSC 
niches in  vivo and provide a variety of biophysical cues 
for HSCs and HSC-related accessory cells are impor-
tant research directions of HSC culture in vitro [13, 37]. 
Through biomaterial technology, scaffolds with complex 
structures can be manufactured to provide biophysical 
clues for cells [144]. The methods of mimicking the BM 
niche in vitro and the evaluation of their advantages and 
disadvantages were summarized in our previous investi-
gation [11].

BM bionic three-dimensional (3D) scaffold can bet-
ter maintain and expand HSCs than traditional two-
dimensional (2D) culture system [142]. Human umbilical 
cord blood HSCs proliferate more strongly in 3D scaf-
folds than in 2D conditions [145–149]. Similarly, com-
pared with the standard 2D culture system, MSCs have 
a more significant positive effect on the proliferation 
of HSPC in the 3D PEG co-culture system [150]. This 
method of combining stromal cells with bioscaffolds 
mimics the BM microenvironment more effectively. Our 
group has investigated the regulation of HSC by matrix 
dimensionality. Compared to 2D cultures, HPCs within 
3D systems generate a cluster of “3D-macrophages,” 
and 3D matrices enhance the communications between 
such 3D macrophages and other hematopoietic clusters 
based on bioinformatic analyses [151]. The proportion of 
Lin− c-kit+ Sca1+ (LSK) cells in BM cells can be signifi-
cantly increased by culture on stiff matrix [36]. In addi-
tion, although the adhesion of HSCs to material surfaces 
is not strong enough [152], many studies have found 
that nanotopography can indeed affect the behavior of 
HSCs. Since research found that nanotopography can 
affect the behavior of HSPC [152], the regulatory mecha-
nism of nanotopography on HSCs has received extensive 
attention.

Conclusion and perspective
The clinical bottleneck of HSCT is how to efficiently pro-
liferate functional HSCs in vitro. Identifying the influenc-
ing factors during HSC development and grasping the 
underlying mechanisms are the key to understanding 
why HSCs have the abilities of self-renewal and versatil-
ity. The complex and exquisite HSC niche can provide 
physical, chemical, and biological stimuli to regulate 
HSC survival, maintenance, proliferation, and differen-
tiation. When identifying the specific contribution of the 

microenvironment to HSC fate, all types of environmen-
tal stimuli acting on cells must be considered.

The study of biomechanical signals has been underesti-
mated in research on HSC niches. This is a breakthrough 
complementary theory that improves and expands the 
currently known types of HSC regulatory signals. This 
review introduced the spatiotemporal heterogeneous 
biophysical microenvironment during HSC development, 
homeostasis, and malignancy, illustrated how these bio-
physical cues contribute to HSC behaviors, and discussed 
the possible mechanotransduction mechanisms from the 
extracellular microenvironment into cells. Comprehend-
ing the important functions of these biophysical regula-
tory factors will provide novel approaches for resolving 
clinical problems.

HSC maintenance and self-renewal are strictly regu-
lated throughout the human lifetime to maintain blood 
system homeostasis. HSC niches are spatiotemporally 
heterogeneous during HSC development, homeosta-
sis, and malignancy. In studying the specific contribu-
tion of the biophysical microenvironment to HSC fates, 
the heterogeneity of the composition and function of 
niches in different anatomical sites at different develop-
mental stages should be emphasized. In addition, under 
some special environments such as weightlessness and 
high-altitude hypoxia, abnormal physiological processes 
such as obesity and malignancy will cause changes in the 
microenvironment of the niche, which in turn affects the 
fate of HSCs. This is also a direction for future research.

HSC can sense and transmit the biophysical signals 
from HSC niche, so as to guide the behavior of HSC. 
However, most studies only describe the phenomenon 
that HSC has biomechanical sensitivity, without clarify-
ing the intrinsic molecular mechanism, and some key 
problems have not been solved: Whether HSC has the 
same sense and transmission mode for different biome-
chanical signals, whether the feedback of HSC to biome-
chanical signals is short term or long term, and whether 
the complex process of HSCs regulated by biomechani-
cal signal, biological signal, and chemical signal has series 
connection. These are still hot topics to be studied in the 
future.

Burgeoning experimental techniques have also facili-
tated HSC research, such as single-cell sequencing [87], 
high spatiotemporal resolution imaging, CyTOF [153], 
and bioengineering. Advances in these technologies will 
allow researchers to elucidate the mechanisms through 
which the physical microenvironment regulates HSC 
fate, and thus it is conceivable that harnessing these 
biophysical cues as master regulators for HSC fate reg-
ulation could be exploited for artificial niches and thera-
peutic gain.
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