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Abstract 

Background  Previously, we have demonstrated that the batch variations of human platelet lysate (conventional 
MSC expansion medium) induce MSC heterogeneity and therapeutic inconsistency. On the other hand, the MSCs 
expanded with chemical defined medium have improved therapeutic consistency.

Methods  In the current study, we studied the MSC subpopulation composition and variation in different types 
and batches of MSC expansion medium with scRNA-seq analysis.

Results  MSCs expanded with different batches of media have higher levels of heterogeneity from the perspective 
of cell subpopulation composition at transcriptome levels and therapeutic inconsistency. The CD317+ subpopulation 
has enhanced immune suppression activities. And the percentage of CD317+ MSCs within MSCs is tightly corre-
lated with its immune suppression activities, and also contributes to the heterogeneity and therapeutic inconsist-
ency of MSCs. the CD317+ MSCs have increased expression levels of PTX3, which might stabilize the TSG6 protein 
and improve the therapeutic effects

Conclusions  Thus, purifying CD317+ MSCs is one efficient strategy to reduce MSC heterogeneity and increase 
the therapeutic consistency of MSCs.
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Background
Mesenchymal stem/stromal cells (MSCs) are a diverse 
cell population found in various tissues like bone marrow, 
umbilical cord, teeth, and adipose tissue. Unlike other 
adult stem cells or fully differentiated cells, MSCs pri-
marily function to sense and respond to changes in their 
microenvironment. They adapt to factors like oxygen lev-
els, cytokines, and extracellular matrix composition and 
respond by modifying the extracellular matrix, recruit-
ing immune cells, and releasing bioactive molecules like 
cytokines. Their immunomodulatory properties make 
them valuable in conditions involving immune system 
dysregulation, such as autoimmune diseases [1]. Addi-
tionally, MSCs promote tissue repair and angiogenesis, 
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making them promising for treating diseases like cardio-
vascular disorders, diabetes, and neurological conditions. 
Both pre-clinical and clinical studies support their thera-
peutic potential, positioning MSCs as a key candidate for 
advancing medical treatments across various diseases 
with ongoing research expected to further enhance their 
clinical use [1–5].

After the initial demonstration of MSCs, extensive 
research spanning decades has been dedicated to explor-
ing their therapeutic applications. Regrettably, despite 
the fast growth of clinical trials, only a limited num-
ber have successfully evolved into practical therapeutic 
products. The significant challenge of cell heterogeneity 
stands as a formidable obstacle in the pursuit of antici-
pated clinical outcomes [1, 2, 4, 6, 7]. This heterogeneity 
in MSCs can be attributed to a range of factors, including 
donor conditions such as age, gender, health status, and 
genetic background, along with tissue origin and the spe-
cific strategies employed for MSC isolation and expan-
sion, encompassing variables like digestion enzymes, 
matrix proteins, cell culture medium, and passage num-
bers. These factors collectively contribute to the com-
plexity of achieving consistent and predictable results in 
MSC-based therapies [2, 6–11].

In pursuit of strategies to mitigate MSC heterogene-
ity and improve therapeutic consistency, the approach 
of isolating homogeneous subpopulations guided by spe-
cific markers has gained prominence for its potential to 
yield more predictable clinical outcomes [2, 4, 6]. To date, 
several distinct MSC subpopulations have been devel-
oped, each characterized by its unique functions. These 
functions encompass the regulation of cell adhesion [12–
17], facilitation of regeneration [18–23], and modulation 
of the immune system [11, 24, 25].

In the realm of immune modulation, specific MSC sub-
populations have been explored, including TNFAIP6+ 
MSCs and CD200+ MSCs. TNFAIP6+ MSCs are respon-
sive to inflammatory environments, secreting anti-
inflammatory cytokines like TNFAIP6, which leads to 
immune suppression and reduces MSC death induced 
by activated immune cells. Surviving MSCs express more 
anti-inflammatory cytokines, further enhancing their 
immune suppression capabilities [11, 24]. The therapeu-
tic effects have been validated in the mouse model of 
acute inflammation [11]. However, the levels of TSG-6 
mRNA are negatively correlated with their potential for 
osteogenic differentiation in  vitro and poorly correlated 
with other criteria for evaluating human MSCs [24]. 
CD200+ subpopulations have demonstrated enhanced 
immune suppression in a mouse skin allograft model, 
potentially related to CD200’s involvement in dendritic 
cell and macrophage immune responses, although fur-
ther validation is required. CD200 is down-regulated 

during differentiation [26]. And its expression is absent 
in umbilical cord blood-derived MSCs and minimal 
in adipose-derived MSCs [26–28]. Therefore, current 
research on immune regulation by MSC subpopulations 
remains limited and more MSC specific markers need to 
be identified.

The emergence and development of high-throughput 
technologies have revolutionized various fields of life 
sciences [29–31]. Within the realm of high-throughput 
technologies, single-cell RNA sequencing (scRNA-seq) 
has emerged as a significant innovation in the MSC field, 
garnering widespread interest in recent years. By unrave-
ling the gene expression profiles of individual cells within 
a population, this technique unveils the remarkable intri-
cacies of cellular diversity and heterogeneity, ushering in 
a revolutionary breakthrough in cellular biology research 
[32, 33]. Unlike traditional bulk RNA sequencing meth-
ods, scRNA-seq offers precise insights into cell functions 
and types, all while overcoming the challenges posed by 
sample heterogeneity [33–35]. Through scRNA-seq, vari-
ous new subpopulations of MSCs have been unveiled. 
These include CMKLR1+ MSCs with enhanced immune 
suppression capabilities [36], LRRC75A+ MSCs produc-
ing increased levels of VEGF [37], and S100A9+ and F3+ 
MSCs demonstrating superior regenerative properties 
[38–40].

Previously, we have demonstrated that the batch 
variations of human platelet lysate (conventional MSC 
expansion medium) induce MSC heterogeneity and ther-
apeutic inconsistency [9]. On the other hand, the MSCs 
expanded with chemical defined medium have improved 
therapeutic consistency [9]. To further investigate 
whether the MSC subpopulation variations are involved 
in the induction of MSC heterogeneity and therapeutic 
inconsistency by the batch variation of MSC expansion 
medium, in the current study, we studied the MSC sub-
population composition and variation in different types 
and batches of MSC expansion medium with scRNA-seq 
analysis. Our data revealed that the CD317+ MSCs have 
improved immune suppression activities and therapeutic 
effects in the mouse model of IBD (inflammatory bowel 
disease). Furthermore, the percentage of CD317+ MSCs 
could be an efficacy predictor of its therapeutic effects 
in vivo.

Methods
Human MSCs isolation, expansion and purification
This study was approved by the ethics committee of 
Shenzhen Zhongshan Urology Hospital and Shenzhen 
University, and followed the tenants of the Declaration 
of Helsinki. The human umbilical cord derived MSCs 
were isolated, expanded and characterized as described 
previously [8–11]. Briefly, the MSCs were isolated from 
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human umbilical cords (donor age: 28  years old) after 
the tissue was minced and digested with 1  mg/mL col-
lagenase B (STEMCELL Technologies). MSCs were 
expanded with chemical defined medium NBVbe we 
developed [10] or different batches of PL plus 2  U/ml 
heparin [9]. The MSCs were characterized with Stem-
Pro® Adipogenesis Differentiation Kit (Gibco), Stem-
Pro® Osteogenesis Differentiation Kit (Gibco), StemPro® 
Chondrogenesis Differentiation Kit (Gibco) according 
to instructions. The CD317+ and CD317− MSCs were 
purified with BD FACSAria SORP cell sorter (BD Bio-
sciences) after staining with anti-CD317-PE (Thermo 
Fisher Scientific) or IgG-PE. For PTX3 overexpression, 
the coding region sequence was cloned into the lentiviral 
vector (pLVX-Puro) as described before [8]. For shRNA 
construction, target sequences were cloned into the lenti-
virus pLKO.1-puro vector as described before [41]. Len-
tivirus production and cell infection were performed as 
described previously [8]. Target sequences of PTX3 were 
listed in Additional file 1: Table S1.

Single‑cell RNA‑seq and analysis
Human MSCs were prepared for scRNA-seq (single-
cell RNA sequencing) at passage 6 at 90% confluence. 
Cells were detached with TrypLE and resuspended in 
HBSS containing 0.04% BSA at the concentration of 
1 × 106  cells/mL. Samples (1 × 106 cells for each sample) 
were sequenced with the Illumina NovaSeq 6000 Sys-
tem (paired-end mode) after library construction with 
10 × Genomics Chromium platform. Sequencing data 
were analyzed using Seurat packages in R (v 4.0.0) after 
being processed with 10xGenomics pipeline Cell Ranger 
(v2.1.0).

CD317+/CD317− MSC purification
Human MSCs were prepared for cell purification at 
passage 3. The MSCs were detached with TrypLE and 
stained with anti-CD317-PE (Thermo Fisher Scientific) 
or IgG-PE. Then, the CD317+ and CD317− MSCs were 
purified with the BD FACSAria SORP cell sorter (BD 
Biosciences).

MSC‑PBMC co‑culture
The MSC-PBMC co-culture was performed as described 
previously with modifications [8, 9, 11]. Briefly, the 
human PBMCs (peripheral blood mononuclear cells) 
were isolated with the Ficoll-Paque® Plus (Merk). 
The PBMCs were stained with the CellTrace™ CFSE 
(ThermoFisher), stimulated with Dynabeads® Human 
T-Activator CD3/CD28 (Thermo Fisher Scientific) for 
24 h, and co-cultured with purified CD317+ or CD317− 
MSCs (20 × 104 PBMCs vs 5 × 104 MSCs) for 48  h. The 

fluorescence signal was detected with flow cytometer 
(BD Accuri™ C6 Plus).

Mouse model of IBD (full name)
The mice (C57BL/6J, male, 8 weeks old) were purchased 
from the Guangdong Medical Laboratory Animal Center 
and maintained in specific pathogen-free conditions. 
This study has been reported in line with the ARRIVE 
guidelines 2.0 and approved by the Animal Research Eth-
ics Committee of the School of Medicine, Shenzhen Uni-
versity. The mouse model of IBD (inflammatory bowel 
disease) was induced by providing 3% dextran sodium 
sulfate (DSS) in the drinking water with refreshed every 
two days. After 7  days treatment, the drinking water 
was refreshed without DSS. The disease activity index 
(DAI) was estimated as described before [42]. Mice 
were divided into 3 groups of eight mice each as fol-
lows: Group I, mice transplanted with PBS intravenously; 
Group II, mice transplanted with CD317+ MSCs (1 × 106 
cells/mouse) intravenously; Group III, mice transplanted 
with CD317− MSCs (1 × 106 cells/mouse) intravenously. 
Serum levels of cytokines were measured with ELISA kits 
as described before [11]. Quantitative PCR (qPCR) was 
performed as described before after total RNA extraction 
and reverse transcription [8, 11]. The primer sequences 
were listed in Additional file 1: Table S1.

Tissue analysis
Mice were anesthetized with isoflurane by using the anes-
thesia system (R550, RWD Life Science) and euthanized 
with overdose CO2. The hematoxylin and eosin (HE) 
analysis of the colon tissue was performed as described 
previously [8, 11]. Histology score was estimated as 
described before [43]. Immunohistochemistry staining of 
CD45 was performed as described before [11].

Statistics
Data are shown as mean ± SEM (standard error of the 
mean) and analyzed with SPSS software for Windows 
(version 26, SPSS Inc). Student t-test was applied to the 
two groups comparison. One-way ANOVA analysis was 
applied to the multiple group comparison with normal 
data distribution, parametric test and Tukey Post Hoc 
tests. P < 0.05 indicates statistical significance.

Results
We have demonstrated previously that the MSC expan-
sion medium could induce the heterogeneity and thera-
peutic inconsistency of MSCs [9]. To further explore the 
underlying mechanisms, the MSCs expanded with two 
batches of conventional MSC culture medium containing 
human platelet lysate (hPL) and two batches of full chem-
ical defined medium were subject to single-cell RNA 
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sequencing (scRNA-seq, Additional file  1: Table  S2). 
There totally 19 different MSC subpopulations were 
detected with non-linear dimensionality reduction 
analysis with UMAP (uniform manifold approximation 
and projection) (Fig.  1A, Additional file  1: Table  S3). 
And their distribution and composition vary signifi-
cantly among MSCs expanded with different batches of 
hPL, while they are more stable in the chemical defined 
medium (Fig.  1B, C). Correlation and heatmap analysis 
showed that the Subpopulation 0, 2, 3, 6, 8, 9, 12, 13, 15, 
and 16 were clustered together; Subpopulation 1, 5, 7, 10, 
and 11 were clustered together; and Subpopulation 4, 14, 
17 were clustered together (Fig. 1D–F). Therefore, batch-
to-batch variations of hPL-based media could induce 
MSC heterogeneity from the perspective of subpopula-
tion composition.

The MSCs expanded with PL1, CDM1, and CDM2 
have higher immune suppression activities than the 
MSCs expanded with PL2 [9]. To identify the MSC sub-
population responsible for immune suppression, a panel 
of immune related genes were plotted (Additional file 1: 
Table  S4). Among them, the gene CD317, interferon-α 
inducible protein 6 (IFI6), intercellular adhesion mole-
cule 1 (ICAM1), TNF Superfamily Member 4 (TNFSF4), 
and CD200 had the similar expression pattern with their 
immune suppression activities (Fig.  2). The expression 
of CD317 was restricted to a subset of MSCs with high 
expression levels (Fig. 2). Furthermore, within the hTERT 
immortalized human bone marrow MSC colonies, it has 
been demonstrated that the MSCs from the CD317+ 
colony have up-regulated mRNA levels of immunosup-
pressive genes than the CD317− MSCs in vitro [44]. And 
our recent investigation also indicated that the CD317+ 
MSCs have enhanced immunological anti-inflammatory 
activities [45]. Therefore, the CD317+ and CD317− MSCs 
were purified with fluorescence-activated cell sorting 
(FACS) from MSCs expanded with hPL. And the MSC-
PBMC co-culture assay showed that the CD317+ MSCs 
have stronger immune suppression activities than the 
CD317− MSCs (Fig.  3A) [45]. To further confirm these 
findings, the CD317+ and CD317− MSCs were trans-
planted into the mouse model of IBD. The CD317+ MSCs 
showed improved therapeutic effects from the perspec-
tives of body weight (Fig. 3B), DAI (disease activity index, 
Fig. 3C), colon length (Fig. 3D, E), and histology scoring 
(Fig. 3F, G). Indeed, the CD317+ MSCs had significantly 
stronger immune suppression activities, from the per-
spectives of reducing spleen weight (Fig. 4A, B), CD45+ 
lymphocytes infiltration (Fig.  4C), and the expression 
levels of pro-inflammatory cytokine IL-6, IL-1β, TNF-α, 
and IFN-γ (Fig. 4D, E). Interestingly, the CD317+ MSCs 
also significantly up-regulated the anti-inflammatory 
cytokine IL-10, TGF-β, and TSG6 (Fig. 4D, E). Therefore, 

the CD317+ MSCs had stronger immune suppression 
activities and improved therapeutic effects than CD317− 
MSCs both in vitro and in vivo.

As we demonstrated before, MSCs expanded with dif-
ferent batches of hPL had different levels of immune sup-
pression activities (Fig.  5A). And the MSCs expanded 
with chemical defined medium had comparable levels of 
immune suppression activities (Fig.  5A). Furthermore, 
the MSCs derived from different donors also had dif-
ferent levels of immune suppression activities (Fig.  5A). 
Interestingly, the percentage of CD317+ MSCs within 
these MSCs also varied significantly and had the similar 
pattern with the immune suppression activities (Fig. 5A, 
B). Indeed, the correlation analysis showed that the 
percentage of CD317+ MSCs within MSCs expanded 
with different batches of hPL was positively correlated 
with the ratio of lymphocytes proliferation suppressed 
(Fig.  5C). In the mouse model of IBD, the percentage 
of CD317+ MSCs was also negatively correlated with 
the histology score (Fig.  5D) and serum level of TNF-α 
(Fig.  5E). In contrast, the CD317+ MSCs purified from 
the MSCs expanded with different batches of hPL had the 
similar level of immune suppression activities in vitro and 
in vivo (Fig. 5F–H). Therefore, the percentage of CD317+ 
MSCs within MSCs is tightly correlated with its immune 
suppression activities, and also contributes to the hetero-
geneity and therapeutic inconsistency of MSCs. Purifying 
CD317+ MSCs is one efficient strategy to reduce MSC 
heterogeneity and increase the therapeutic consistency of 
MSCs.

CD317, also known as BST2 (bone marrow stromal 
cell antigen 2) or Tetherin, is involved in immunologi-
cal responses to virus infection and production [46]. The 
functions and the underlying mechanisms of CD317 in 
MSCs remain largely unknown. To reveal the underly-
ing mechanisms, the transcriptomes of CD317+ MSCs 
and CD317− MSCs were analyzed (Additional file  1: 
Table  S5). GO analysis showed that the up-regulated 
genes in the CD317+ MSCs were mainly involved in 
functions such as extracellular matrix modification and 
wound healing (Fig.  6A). Among the top 20 up-regu-
lated genes in CD317+ MSCs (Fig. 6B), the gene PTX3 is 
potentially interesting. PTX3 (Pentraxin 3), also known 
as TSG-14 (tumor necrosis factor inducible gene 14), is 
a soluble pattern recognition molecule which plays criti-
cal roles in inflammation and tissue regeneration [47]. 
Indeed, knocking-down PTX3 in CD317+ MSCs sig-
nificantly reduced the immune suppression activities 
(Fig.  6C), while overexpressing PTX3 in CD317− MSCs 
improved their immune suppression activities (Fig. 6D).

It has been demonstrated that tumor necrosis factor 
stimulated gene 6 (TSG6) is the major effector contrib-
uting to the therapeutic effects of MSCs in treating IBD 
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Fig. 1  scRNA-Seq of MSCs. The MSCs expanded with two batches of conventional MSC culture medium containing PL (human platelet lysate, PL1 
and PL2) and full chemical defined medium (CDM1 and CDM2) were subject to single-cell RNA sequencing (scRNA-seq). A Cell cluster identification 
via non-linear dimensionality reduction analysis with UMAP after integrating 4 samples. B Subpopulation distribution and constitution in MSCs 
expanded with different media. C Percentage of different clusters in MSCs expanded with different media. D Correlation analysis of different MSC 
clusters. E Clustering analysis of different MSC clusters. F The more correlated clusters were labelled with colors
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Fig. 2  MSC Marker Identification. Feature plotting the gene CD317 (A), IFI6 (B), ICAM1 (C), TNFSF4 (D), and CD200 (E) on transcriptome of MSCs 
expanded with different batches of expansion media. IFI6, interferon-α inducible protein 6; ICAM1, intercellular adhesion molecule 1; TNFSF4, TNF 
Superfamily Member 4



Page 7 of 15Shi et al. Stem Cell Research & Therapy           (2024) 15:92 	

with strong immune suppression capabilities [1, 11, 
48–51]. Furthermore, TSG6 has been demonstrated as 
a biomarker to predict the therapeutic efficacy of MSCs 
in vivo [24]. PTX3 could bind to TSG6 directly [52, 53]. 
Therefore, we wondered that whether PTX3 could reg-
ulate the expression or activity of TSG6. Data showed 
that neither knocking-down PTX3 in CD317+ MSCs 
nor overexpressing PTX3 in CD317− MSCs could regu-
late the mRNA levels of TSG6 (Fig.  7A, B). However, 
in the mouse model of IBD, knocking-down PTX3 in 
CD317+ MSCs reduced the serum level of TSG6 and 
therapeutic effects (Fig.  7C), while overexpressing 
PTX3 in CD317− MSCs increased the serum level of 
TSG6 and therapeutic effects (Fig. 7D), indicating that 
the PTX3 might regulate the protein stability of TSG6. 
Indeed, co-transfusion of PTX3 and TSG6 signifi-
cantly delayed the clearance of TSG6 in vivo (Fig. 7E). 
Therefore, we proposed the underlying mechanism 
might be that the increased expression level of PTX3 
in the CD317+ MSCs stabilize the TSG6 protein, which 
improves the therapeutic effects (Fig. 7F).

In summary, MSCs expanded with different batches of 
media have higher levels of heterogeneity from the per-
spective of cell subpopulation composition at transcrip-
tome levels and therapeutic inconsistency. The CD317+ 
subpopulation has enhanced immune suppression activi-
ties. And the percentage of CD317+ MSCs within MSCs 
is tightly correlated with its immune suppression activi-
ties, and also contributes to the heterogeneity and thera-
peutic inconsistency of MSCs. Purifying CD317+ MSCs 
is one efficient strategy to reduce MSC heterogeneity 
and increase the therapeutic consistency of MSCs. The 
CD317+ MSCs have increased expression levels of PTX3, 
which might stabilize the TSG6 protein and improve the 
therapeutic effects.

Discussion
Inflammatory bowel disease (IBD) is attracting more 
scientists to investigate its underlying mechanisms and 
therapeutic approaches, due to its critical roles in the 
development of colorectal cancer (CRC) with increas-
ing prevalence [54, 55]. CRC has been the third most 

Fig. 3  Improved Therapeutic Effects of CD317+ MSCs. A PBMC proliferation assay after coculture with CD317+ or CD317− MSCs. B Body weight 
of IBD mice transplanted with CD317+ MSCs, CD317− MSCs, or negative control PBS (n = 8). C DAI (disease activity index) of IBD mice transplanted 
with CD317+ MSCs, CD317− MSCs, or negative control PBS (n = 8). D Representative figures of colon length. E Colon length of IBD mice transplanted 
with CD317+ MSCs, CD317− MSCs, or negative control PBS (n = 8). F Representative figures of HE staining of colon tissues after 10 days post DSS 
stimulation. G Histology score of IBD mice transplanted with CD317+ MSCs, CD317− MSCs, or negative control PBS (n = 8). *Indicates P < 0.05
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common cancer diagnosis and the third leading cause 
of cancer-related deaths for both men and women. It’s 
worth noting that when looking at overall cancer-related 
deaths, CRC takes the second spot, and it’s the top cause 
of cancer-related deaths among men under 50 years old 
[56]. The pathogenesis of IBD involves intricate immune 
mechanisms [57, 58]. The standard treatment is limited. 
A significant breakthrough in recent years has been the 
introduction of TNF-α inhibitors, which have offered 
substantial, long-term relief and enhancement of the 
condition for the majority of IBD patients [59]. However, 
in clinical trials, up to 40% of patients were observed to 
have a primary non-response to TNF-α inhibitors, and 
about 23–46% of patients experienced secondary loss of 
response after one year of treatment [60]. This suggests 
that IBD still requires new treatment strategies.

IBD is a kind of inflammation related disease [57, 
58]. In light of this, the immunological basis of the 

IBD implies that MSCs-based cell therapies can be a 
rational therapeutic modality to alleviate IBD patho-
logical signs due to their capacity to moderate inflam-
matory responses [61–63]. A growing body of proof 
suggests MSCs as a promising therapeutic tool for IBD 
treatment mainly due to their immunomodulatory and 
anti-inflammatory attributes [64–71]. And its clinical 
efficacy has been confirmed in clinical trials [61–63, 
72–75]. Regrettably, few of them have successfully 
evolved into practical therapeutic products. The sig-
nificant challenge of cell heterogeneity stands as a for-
midable obstacle in the pursuit of anticipated clinical 
outcomes [1–7]. Among different strategies to reduce 
the MSC heterogeneity and improve the therapeutic 
efficacy and consistency [2, 6, 8–10], purifying homog-
enous MSC populations with enhanced biological func-
tions is one promising approach [2, 4, 6].

Fig. 4  Enhanced Immune-suppression Activities of CD317+ MSCs. A Representative figures of spleen of IBD mice transplanted with CD317+ MSCs, 
CD317− MSCs, or negative control PBS. B Spleen weight of IBD mice transplanted with CD317+ MSCs, CD317− MSCs, or negative control PBS (n = 8). 
C Representative figures of CD45 staining of colon tissues after 10 days post DSS stimulation. D Serum levels of IL-6, IL-1β, TNF-α, IFN-γ, IL-10, TGF-β, 
TSG6, and IL-1RA were determined via ELISA (n = 8). E mRNA levels of IL-6, IL-1β, TNF-α, IFN-γ, IL-10, TGF-β, TSG6, and IL-1RA in colon tissues were 
determined via qPCR (n = 8). *Indicates P < 0.05
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We have demonstrated previously that the MSC 
expansion medium could induce the heterogeneity and 
therapeutic inconsistency of MSCs [9]. Therefore, in the 
current study, we studied the MSC subpopulation com-
position and variation in different types and batches of 

MSC expansion medium with scRNA-seq analysis. The 
data have shown that the MSCs are very heterogenous 
from the perspective of subpopulation distribution and 
constitution. And their distribution and constitution 
vary significantly among MSCs expanded with different 

Fig. 5  Improved Therapeutic Consistency and Efficacy of CD317+ MSCs. The MSCs were expanded with different batches of media 
or from different donors A PBMC proliferation assay after coculture with MSCs (n = 3). B Percentage of CD317+ MSCs (n = 3). C Correlation 
analysis between lymphocytes proliferation suppressed by MSCs and the percentage of CD317+ MSCs within MSCs. D Correlation analysis 
between histology score in IBD mice treated with MSCs and the percentage of CD317+ MSCs within MSCs. E Correlation analysis between serum 
levels of TNF-α in IBD mice treated with MSCs and the percentage of CD317+ MSCs within MSCs. F PBMC proliferation assay after coculture 
with CD317+ MSCs (n = 3). F PBMC proliferation assay after coculture with CD317+ MSCs (n = 3). G Histology score in IBD mice treated with CD317+ 
MSCs (n = 8). H Serum levels of TNF-α in IBD mice treated CD317+ MSCs (n = 8). *Indicates P < 0.05
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batches of hPL, while they are more stable in the chemi-
cal defined medium. To identify the MSC subpopulation 
responsible for immune suppression, a panel of immune 
related genes were analyzed. Among them, the CD317+ 
MSCs represent a MSC subpopulation with enhanced 
immune suppression activities and improved therapeutic 
effect in the mouse model of IBD.

CD317 is a transmembrane glycoprotein that plays 
a role in inhibiting virus replication and regulating the 
immune system. CD317 expression is induced by type 

I and type II interferons in response to viral infections, 
and plays a role in regulating NF-κB signaling, which is 
important for the host’s inflammatory response to viruses 
[46]. It has been demonstrated that the CD317+ colony, 
within the hTERT immortalized human bone marrow 
MSC colonies, has up-regulated mRNA levels of immu-
nosuppressive genes than the CD317− MSCs in  vitro 
[44]. And the CD317+ circulating progenitors had higher 
regenerative potentials [76, 77]. However, it’s worth not-
ing that freshly isolated CD317− MSCs from human bone 

Fig. 6  PTX3 Mediates Immune-suppression Function of CD317+ MSCs. A GO enrichment analysis of up-regulated genes in CD317+ MSCs. B Top 
20 up-regulated genes in CD317+ MSCs. C PBMC proliferation assay after coculture with CD317+ MSCs knocking-down PTX3 (n = 3). D PBMC 
proliferation assay after coculture with CD317− MSCs overexpressing PTX3 (n = 3). GO, gene ontology. *Indicates P < 0.05
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Fig. 7  PTX3 Stabilizes TSG6. A The mRNA levels of PTX3 and TSG6 were determined via qPCR after knocking-down PTX3 in CD317+ MSCs (n = 3). 
B The mRNA levels of PTX3 and TSG6 were determined via qPCR after over-expressing PTX3 in CD317− MSCs (n = 3). C Serum level of TSG6 
and histology score in IBD mice treated with CD317+ MSCs knocking-down PTX3 (n = 8). D Serum level of TSG6 and histology score in IBD mice 
treated with CD317− MSCs over-expressing PTX3 (n = 8). E Serum level of TSG6 after intravenously injection of 1 μg TSG6 protein and 1 μg PTX3 
protein (n = 8). F Proposed potential mechanism of upregulating PTX3 in CD317+ MSCs. *Indicates P < 0.05
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marrow show better immune suppression abilities than 
CD317+ MSCs [77]. The discrepancy might result from 
tissue origin (umbilical cord vs bone marrow), expansion 
medium (platelet vs fetal bovine serum), and cell popula-
tion (primary vs immortalized and clonal selected).

Correlation analysis showed that the percentage of 
CD317+ MSCs within MSCs expanded with differ-
ent batches of hPL was positively correlated with their 
immune suppression activities in  vitro, and also their 
therapeutic effects in  vivo. In contrast, the CD317+ 
MSCs purified from the MSCs expanded with differ-
ent batches of hPL had the similar level of immune sup-
pression activities. Therefore, the percentage of CD317+ 
MSCs within MSCs is tightly correlated with its immune 
suppression activities, and also contributes to the hetero-
geneity and therapeutic inconsistency of MSCs. Purifying 
CD317+ MSCs is one efficient strategy to reduce MSC 
heterogeneity and increase the therapeutic consistency of 
MSCs.

Transcriptomic analysis and function validation indi-
cate that the gene PTX3 contributes to the immune 
suppression function of CD317+ MSCs. PTX3 is a solu-
ble glycoprotein, responding to inflammatory cues by 
peripheral blood leukocytes and myeloid DCs, notably 
induced by IL-1β, TNF-α, and microbial components 
[47]. Furthermore, the PTX3 is up-regulated in the IBD 
development, indicating its important role in IBD [47]. 
PTX3 contributes to the M1-M2 switch of macrophage 
mediated by MSCs [78]. Knocking-down PTX3 sig-
nificantly reduced the immune suppression function of 
MSCs and their therapeutic effect, indicating a potential 
marker for improving the therapeutic effects of MSCs 
[78, 79]. Moreover, the PTX3 and TSG6 are coordinated 
expressed under inflammation stresses [80], and they 
two interact with each other [52, 53, 81, 82]. And TSG6 
is the major effector contributing to the therapeutic 
effects of MSCs in treating IBD with strong immune sup-
pression capabilities [1, 11, 48–51]. Furthermore, TSG6 
has been demonstrated as a biomarker to predict the 
therapeutic efficacy of MSCs in vivo [24]. Our data also 
showed here that the increased expression level of PTX3 
in the CD317+ MSCs stabilize the TSG6 protein, which 
improves the therapeutic effects.

TSG6 is a relatively small protein exhibiting a wide 
range of activities. Its diverse functions include regulat-
ing immune and stromal cell activities, contributing to 
extracellular matrix formation and remodeling, and con-
trolling the association of matrix molecules with cell sur-
face receptors and signaling factors, such as chemokines 
and bone morphogenetic proteins (BMPs). It is upregu-
lated in response to inflammation and is produced by 
various cell types, including MSCs. Another unique func-
tion is its enzymatic activity in catalyzing the covalent 

modification of non-sulfated GAG hyaluronan (HA) with 
heavy chains (HCs) from proteoglycans, leading to the 
formation of HC-HA complexes, which are essential in 
processes like ovulation, fertilization, and inflammation, 
where they either confer tissue protection or contribute 
to pathological processes [48]. The most studied function 
of TSG6 in MSCs is its immune suppression activities 
[49, 50, 83–95]. And our previous investigation indicates 
that the purified TSG6+ mouse MSCs have enhanced 
immune suppression activities and improved therapeutic 
effects in the mouse model of acute inflammation [11]. 
TSG6 is involved in the therapeutic effects of MSCs in 
treating IBD, such as mucosal barrier recovery through 
activating endogenous stem cells [96–99], and immune 
modulation [49, 50, 97, 100–102]. Lacking TSG6 makes 
mice more vulnerable to IBD development, resulting 
from dysregulated HA deposit [50, 103]. In addition, 
TSG6 stimulates a macrophage phenotypic shift from 
M1 to M2, having an important role in alleviating DSS-
induced colitis [50, 100].

Conclusions
In conclusion, MSCs expanded with different batches of 
media have higher levels of heterogeneity from the per-
spective of cell subpopulation composition at transcrip-
tome levels and therapeutic inconsistency. The CD317+ 
subpopulation has enhanced immune suppression activi-
ties. And the percentage of CD317+ MSCs within MSCs 
is tightly correlated with its immune suppression activi-
ties, and also contributes to the heterogeneity and thera-
peutic inconsistency of MSCs. Purifying CD317+ MSCs 
is one efficient strategy to reduce MSC heterogeneity 
and increase the therapeutic consistency of MSCs. The 
CD317+ MSCs have increased expression levels of PTX3, 
which might stabilize the TSG6 protein and improve the 
therapeutic effects.
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