
Introduction

In vitro microphysiological multiorgan systems using 

human cells provide a novel method to identify promising 

drug candidates [1]. Skeletal muscle is an important 

component of such systems because skeletal muscle 

accounts for 40% of the body’s mass and about 30% of the 

resting metabolic rate [2]. Under resting conditions about 

20% of cardiac output passes through muscle, and during 

heavy exercise muscle requires as much as 80% of cardiac 

output. Muscle is responsible for about 75% of whole-

body insulin-stimulated glucose uptake.

Sarcopenia, the age-associated loss of skeletal muscle 

mass, is a major consequence of aging and leads to lower 

metabolic adaptation, slowed immunological responses 

to disease, weakness, poor function and disability with 

advancing age [3]. Th e onset and progression of sarco-

penia is a strong predictor of mortality and prevalence 

increases with advancing age [4]. Type 2 diabetes or low-

grade infl ammation is more common in individuals who 

have sarcopenia [5]. Other major diseases that involve 

muscle include muscular dystrophy and neurodegenera-

tive diseases.

Skeletal muscle is both a potential target for drug 

therapy and a site of drug toxicity. Treatments for type 2 

diabetes aff ect and even target skeletal muscle metabo-

lism as therapeutic mechanisms. Several candidate drugs 

are under investigation to treat sarcopenia, although 

special considerations are needed to defi ne effi  cacy [6] 

and to ensure that side eff ects are limited [7].

Mitochondrial toxicity is a major reason why a drug 

may fail in clinical trials or is recalled after approval [8]. 

Like the liver and heart, skeletal muscle is aff ected by 

mitochondrial drug toxicity. Certain statins, used to treat 

dyslipidemia, can cause severe myopathy. Drugs known 

to cause mitochondrial toxicity, such as cerivastatin [9] 

and thiazolidinediones [8] (used to treat type 2 diabetes), 

also aff ect muscle function.

Engineered three-dimensional human skeletal 

muscle tissue

To evaluate functional changes to human skeletal muscle 

after exposure to drugs, we developed a micro physio-

logical system consisting of highly aligned, functional, 

and metabolically active engineered human muscle and 
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human tissue-engineered blood vessel (TEBV) (Figure 1). 

Myoblasts were obtained from biopsies of the vastus 

lateralis of healthy middle-aged volunteers, endothelial 

cells were cultured from blood-derived late outgrowth 

endothelial progenitor cells in human umbilical cord 

blood [10], and vessel wall medial cells were either 

human dermal fi broblasts or mesenchymal stem cells. 

Th ese individual units are cultured separately for about 

2  weeks to enable the skeletal myoblasts to fuse and 

diff erentiate and to allow the blood vessels to develop 

suffi  cient mechanical strength. Th e two engineered 

tissues are inte grated into a perfusion system that enables 

monitoring of function.

Major challenges for in vitro culture of human skeletal 

muscle are the lack of effi  cient methods to diff erentiate 

large numbers of human muscle cells from induced 

pluripotent stem cells and the slower doubling time and 

rate of fusion for primary human skeletal muscle cells 

compared with mouse or rat myoblasts. Further, rat and 

mouse myotubes undergo spontaneous contractions in 

two-dimensional and three-dimensional cultures, where-

as contractile human muscle fi bers in vitro have only 

been obtained following co-culture with rat or human 

motoneurons [11].

We utilized our prior fi ndings with engineered rodent 

muscles [12-18] to fabricate three-dimensional primary 

human skeletal muscle tissue bundles. Optimization of 

the dimensions of the muscle bundles, the media and 

hydrogel composition, the cell density, and the diff eren-

tiation procedure (Figure 1) resulted in three-dimensional 

human muscle bundles with highly aligned, cross-striated 

myofi bers containing myogenin-positive nuclei and 

acetylcholine receptor clusters (Figure  2b1). Functional 

properties of such engineered muscle were tested using 

standard force test protocols [17]. In response to single 

electrical stimuli, the bundles produced twitch contrac-

tions; at higher stimu lation frequencies, the twitch 

responses fused into a more forceful tetanic contraction. 

Amplitudes of twitch and tetanus-specifi c force were 

signifi cantly lower than those of native muscle, probably 

due to a lower muscle fi ber density and a smaller fi ber 

diameter [19], as well as the presence of immature forms 

of muscle proteins. Similar to native muscle, engineered 

human muscle bundles exhibited a positive Starling-like 

force–length relation ship. After the necessary 

optimization, the method for engineering functional 

human muscle tissues is robust and reproducible and 

tissue bundles remain functional for 4 weeks.

To promote diff erentiation and the production of adult 

forms of muscle contractile proteins, and thereby 

increase contractile force [20], we have transfected myo-

blasts with miRNAs prior to formation of the engineered 

human muscle bundles. miR-133a and miR-696 are of 

particular interest because they aff ect important 

develop mental processes: miR-133 a blocks myoblast 

prolifera tion by inhibiting serum response factor [20], 

and miR-696 inhibits mitochondrial biogenesis and 

oxidative metabolism by blocking the metabolic 

transcriptional co-activator PGC-1α [21]. Engineered 

human skeletal muscle myoblasts were transfected with 

anti-miR-133a, with anti-miR-696, or with both anti-

miRNAs. Th e miRNA transfection produced longer and 

more aligned and cross-striated myofi bers when 

compared with myoblasts that received a scrambled RNA 

sequence. Myoblasts transfected with both anti-miR-

133a and anti-miR-696 exhibited considerable slow 

myosin heavy chain, indicative of type I muscle fi bers, 

and generated higher specifi c contractile forces com-

pared with bundles pre pared from myoblasts transfected 

with only a single anti-miRNA.

To further enhance diff erentiation, normal contractile 

function of skeletal muscle under various physical 

demands can be simulated by applying cyclic stretch or 

electrical stimulation (Figure 1, inset). Electrical stimula-

tion is applied via two platinum electrodes and can be 

synchronized with the mechanical stimulation [14]. Th e 

electrical stimulation waveform is precisely bipolar and 

the amplitude of electrical stimulation is adjusted to 

accommodate potential changes in the excitation 

threshold expected to occur with the muscle maturation.

Designing a microperfusion system for engineered 

skeletal muscle

Engineered human muscle systems are used either as a 

dynamically conditioned standalone culture system to 

enable muscle maturation or as an integrated module with 

other microphysiological units to examine metabolic and 

drug interactions (Figure  2). Th e microphysiological 

system includes a tissue-engineered blood vessel, 750 to 

1,000  μm in diameter, in parallel with the muscle tissue. 

Th e blood vessel consists of a confl uent layer of human 

endothelial cells and a contractile medial layer of human 

dermal fi broblasts. Th e medial layer of the TEBV was 

fabricated either: from aligned human mesenchymal stem 

cell sheets rolled into a tubular structure, cultured in a 

rotating wall bioreactor, followed by maturation in a 

perfusion bioreactor; or by preparing a tubular structure of 

dense collagen containing human neonatal dermal 

fi broblasts that is then cultured in a perfusion chamber for 

1 week [22]. TEBV mechanical strength is enhanced using 

oscillating pressure and fl ow, similar to approaches used 

for larger diameter vessels [23-25]. Physiological pulsatile 

fl ow is generated using a novel magnetoactive porous 

ferrogel [26,27] that acts as a valve, changing its hydraulic 

conductivity under applied magnetic fi elds to tune the fl ow 

rate in the microphysiological system on demand. Other 

microphysiological organs (for example, myo cardium, 

liver) can be added in parallel to the muscle (Figure 2a).

Truskey et al. Stem Cell Research & Therapy 2013, 4(Suppl 1):S10 
http://stemcellres.com/content/4/S1/S10

Page 2 of 5



Functional evaluation in the system involves monitor-

ing the mechanical behavior of engineered muscle and 

blood vessels. Th e diameter of the engineered blood 

vessel is measured in response to changes in pressure, 

from which the incremental elastic modulus and the 

ultimate tensile strength prior to failure are determined 

[24]. Vessel dilation in response to changes in fl ow and 

nitric oxide release are used to monitor the function of 

the endothelium. For the muscle tissue, oxygen uptake 

and the contractile force provide an assessment of muscle 

function.

Th e design of the system with human cells requires that 

the shear stress on endothelium in the blood vessel 

ranges from 0.4 to 2.0  Pa [28]; that the rate of oxygen 

delivery to the muscle equals or exceeds the rate of 

oxygen uptake by muscle; and that materials used should 

not bind drugs. Additional requirements for multiorgan 

systems are that the relative size of diff erent micro physio-

logical organs and their fl ow rates should be scaled in 

proportion to in vivo values [1]; that a common media is 

used for all of the diff erent engineered tissues; and that 

the system must operate for at least 4 weeks.

Under resting conditions, oxygen uptake in humans in 

vivo is approximately 1  ×  10–8  moles O
2
/second/cm3 

muscle tissue and can increase 50-fold during exercise 

[29], similar to our estimate for the oxygen uptake levels 

of murine skeletal muscle fi bers in three-dimensional 

cultures [13]. Consequently, we assume that the in vivo 

uptake rates are representative of muscle fi bers in vitro. 

For a muscle cell density of 1 × 108 cells/ml and oxygen 

dissolved in culture medium, the fl ow rate to muscle 

tissue under resting conditions needs to be at least 

2.54  μl/second. Since 21% of the cardiac output fl ows 

through skeletal muscle, the total fl ow rate in the system 

is 12 μl/second. Adjusting the culture medium viscosity 

to the blood viscosity, the time-averaged shear stress 

acting on the endothelium in the TEBV is 0.43 Pa for a 

1,000  μm diameter vessel and is 0.84  Pa for an 800  μm 

diameter vessel, well within the range of values reported 

in vivo. Th e fl ow is laminar, with Reynolds number 

around 5 for the TEBV, and is quasi-static, similar to 

conditions in arterioles [30].

Since skeletal muscle is more abundant than other 

tissues included in an integrated microphysiological 

system, this fl ow rate should meet metabolic demands of 

other tissues  – including the liver, which has a high 

metabolic rate but has 20  times less mass than muscle. 

Control of fl ow distribution with magnetoactive valves 

allows simple interfacing with lower-fl ow microfl uidic 

platforms and permits adjustment of the fl ow rate 

distribution in response to diff erent physiological stimuli. 

Continuous monitoring of the oxygen concentration in 

the perfusate combined with a feedback loop can serve to 

tune fl ow rate in a physiological-like fashion.

Validation and testing of microphysiological 

systems

Validation of the microphysiological system involves 

measuring vessel relaxation and constriction, skeletal 

muscle contractile force and metabolism over a 4-week 

Figure 1. Schematic of the regimen for optimization and validation of engineered three-dimensional human skeletal muscle cultures. 

3D, three-dimensional; ECs, endothelial cells.
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period. Th e robustness of the system can be assessed by 

evaluating perturbations from normal physiology, 

including acute simulated exercise and acute exposure to 

TNFα.

Once the function of the tissues in a microphysiological 

system is validated, a set of candidate drugs known to 

aff ect skeletal muscle and blood vessels, as well as other 

tissues, can be tested. Compounds to be examined 

include those that test normal function (phenylephrine), 

drugs that are safe and eff ective (lovastatin and met-

formin [31]), drugs that are eff ective and unsafe (ceriva-

statin [32,33]), and compounds with known toxicity to 

skeletal muscle or blood vessels (for example, antimycin 

[34], rotenone [34] and doxorubicin [35,36]). Initial 

results indicate that, based upon contractile force genera-

tion, engineered human skeletal muscle bundles are more 

sensitive to doxorubicin than rodent skeletal muscle 

fi bers [35].

In summary, we have developed the components of a 

microphysiological system that uses functional measures 

of blood vessel and skeletal muscle to assess the eff ect of 

drugs and toxins. By adjusting cell numbers and fl ow 

rates, the system is fl exible enough to integrate with other 

microfl uidic and perfusion systems to examine the 

response of a number of organs and tissues to drugs.
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actin striations indicative of sarcomeres. (b2) Human endothelial cells covering a monolayer of diff erentiated human skeletal muscle in two-

dimensional cultures. (c1) Schematic of fl uidic magnetically activated ferrogel valve. (c2) Eff ect of magnetic fi eld on magnetically activated ferrogel. 

(c3) Velocity of microparticles at 1 Hz and 5 μl/minute in fl uidic channel.
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