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Abstract

Objectives: Over the past decades, many studies focused on mesenchymal stem cells (MSCs) therapy for bone
regeneration. Due to the efficiency of topical application has been widely dicussed and systemic application was
also a feasible way for new bone formation, the aim of this study was to systematically review systemic therapy of
MSCs for bone regeneration in pre-clinical studies.

Methods: The article search was conducted in PubMed and Embase databases. Original research articles that
assessed potential effect of systemic application of MSCs for bone regeneration in vivo were selected and evaluated
in this review, according to eligibility criteria. The efficacy of MSC systemic treatment was analyzed by random
effects meta-analysis, and the outcomes were expressed in standard mean difference (SMD) and its 95% confidence
interval. Subgroup analyses were conducted on animal species and gender, MSCs types, frequency and time of
injection, and bone diseases.

Results: Twenty-three articles were selected in this review, of which 21 were included in meta-analysis. The results
showed that systemic therapy increased bone mineral density (SMD 3.02 [1.84, 4.20]), bone volume to tissue
volume ratio (2.10 [1.16, 3.03]), and the percentage of new bone area (7.03 [2.10, 11.96]). Bone loss caused by
systemic disease tended to produce a better response to systemic treatment (p=0.05 in BMD, p=0.03 in BV/TV).

Conclusion: This study concluded that systemic therapy of MSCs promotes bone regeneration in preclinical
experiments. These results provided important information for the systemic application of MSCs as a potential
application of bone formation in further animal experiments.
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Introduction
The problem of bone regeneration has always been a hot
topic of research. In many cases, such as bone defect,
fracture, osteoporosis, and osteonecrosis, bone regener-
ation is an urgent problem to be solved [1–4]. As we all
know, bone undergoes continuous remodeling during
life. Healthy bone remodeling includes both bone

formation by osteoblasts and resorption by osteoclasts.
An intricate balance between the activities of osteoblasts
and osteoclasts determines the health of bone [5, 6].
Normally, small bone defects can be effectively repaired.
However, in some cases, this balance may be disrupted,
our body cannot maintain self-regenerate, and clinical
treatment is needed [7, 8]. Therefore, further interven-
tion in bone tissue engineering is required. For ortho-
pedic and craniofacial surgeons, achieving complete and
functional bone regeneration remains a major challenge.
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A variety of techniques are used in the clinic for bone
regeneration, such as bone grafting, distraction osteo-
genesis, and guided bone regeneration [9–11]. Several
treatment methods have achieved clear therapeutic ef-
fects, especially autogenous bone grafts. Autogenous
bone grafts is the gold standard for bone regeneration
due to the osteoinductive, bone conductivity, and histo-
compatibility of autologous bone [12]. However, there
are still several shortcomings of the gold standard such
as extended recovery time, unpredictable absorption,
and dependence of the donor’s bone quality and avail-
able bone size [13]. As the improvement of comprehen-
sion of bone tissue biology as well as current advances
in the development of tissue engineering, mesenchymal
stem cell (MSCs) therapy has become a hot topic in en-
hancing bone tissue reconstruction [8, 14, 15]. The main
source of MSCs is bone marrow. In addition, they can
also be isolated and identified from adipose tissue, per-
ipheral blood, placenta, and other tissues [15–17]. MSCs
play a vital role in bone formation [8], and bone is
formed via endochondral and intramembranous ossifica-
tion [18]. On the one hand, MSC-driven condensation
occurs firstly, and then MSCs differentiate into chondro-
cytes during the process of formation of growth plates,
which are replaced by new bone in longitudinal-
endochondral bone growth. This type of healing mostly
occurs in large bone defect with less mechanical stabil-
ity, initiating the recruitment of MSCs from the perios-
teum, bone marrow, and circulation [19–21]. On the
other hand, MSCs can also directly differentiate to oste-
oblasts in bone formation such as skull, facial bones, and
pelvis, generating by intramembranous ossification with-
out a cartilaginous template [22, 23]. This type of heal-
ing usually occurs in minimal bone defects and fractures
within the bone metaphysis [21, 24]. However, in recent
years, scholars have reported that in patients with osteo-
porosis, MSCs tend to differentiate into adipocytes ra-
ther than osteoblast, leading to disorders of bone
formation [25].
Above all, majority of researches are devoted to appli-

cation of MSCs in bone regeneration. Most researched
treatments are local injection or local application of
MSCs combined with scaffold [26–28]. However, local
strategies still have some limitations, especially in sys-
temic diseases such as multiple fractures and osteopor-
osis [29]. In these cases, systemic application is easier
and more suitable for these patients. To the best of our
knowledge, several systematic reviews have been pub-
lished on the local application of MSCs for bone regen-
eration [30–32]. Nevertheless, no one focus on systemic
application. This systematic review would help provide
sufficient evidence to prove the therapeutic potential of
systemic applying MSCs to regenerate animal bone tis-
sues and clarify the limitations of existing studies.

Materials and methods
Eligibility criteria
Type of studies
All preclinical controlled animal model studies with sys-
temic treatment of MSCs for bone regeneration were eli-
gible for this review. Abstracts, reviews, letters, and PhD
theses were excluded.

Type of participants
All kinds of animals were selected in this review irre-
spective of type, sex, and age. And any type of MSCs
was considered in this systematic review such as bone
marrow-derived mesenchymal stem cells (BMSCs),
adipose-derived mesenchymal stem cells (ADSCs),
gingiva-derived mesenchymal stem cells (GMSCs), den-
tal pulp stem cells (DPSCs), and so on.

Type of intervention
Systemic application was compared with control treat-
ment, including intravenous (IV) injection through tail
vein or ear vein, intra-ventricular injection, bone marrow
cavity’s injection, and so on. Studies utilizing only local
application were excluded.

Outcome measures
To verify new bone formation, most researches adopted
the measurement of bone volume (BV) to tissue volume
(TV) ratio, bone mineral density (BMD), and percentage
of new bone area. And the methods of measurement
were comprised of histological analysis (such as haema-
toxylin and eosin) and radiographic evaluation (such as
computed tomography [CT] scans and micro-CT).

Database search protocol
A comprehensive search of literature published up to
July 2020 was performed in electronic databases
PubMed and Embase. Four components were involved
in the search strategy: bone regeneration, MSCs, system-
atic application, and animals (see Supplementary Table
S1 for complete search strategy, Additional File 1).

Study screening
For selection of literatures, two independent reviewers
screened the titles and abstracts of literatures independ-
ently according to the following eligibility criteria: bone
regeneration, in vivo animal studies, original paper, and
systemic therapy. Full texts of eligible publications were
obtained for further independent evaluation. Any dis-
agreement was solved by discussion or consultation with
a third reviewer. Besides, reviews recorded reasons for
each rejecting study. All of the progress of screening was
performed in Rayyan, the systematic reviews web app
(https://rayyan.qcri.org).
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Data extraction process
Data were extracted independently by two reviewers,
with disagreements resolved by discussion with a third
reviewer. Data was extracted from the full texts of in-
cluded literatures on: author(s), year, species, age, sex of
animals, number of animals per group, animal model,
type of MSCs, cell passage number, number of cells,
number of cells/kg, the way of administration, applica-
tion protocol of MSCs (time, frequency of injection),
treatment duration, quantification of new bone, combin-
ation treatment, and cellular fate of MSCs.

Quality assessment and risk of bias
Quality assessment of selected articles was performed
independently by two reviewers, and the names of the
authors, institutions, and journal titles were blinded.
Systematic Review Centre for Laboratory animal Ex-
perimentation (SYRCLE) Risk of bias (RoB) tool for
animal studies was modified and used to performed
RoB assessment [33], which was judged as “high,”
“low,” or “unclear.” Two questions were added to
overcome the problem of scoring excessive “unclear
RoB” due to poor reporting details of the include ex-
periments: “1) was it stated that the experiment was
randomized at any level?2) was it stated that the ex-
periment was blinded at any level?” [34, 35]. Any dis-
agreement between the reviewers was resolved by
discussion and consensus.

Data synthesis and statistical analysis
Data were analyzed using Review Manager. The pri-
mary outcomes BMD between experimental and con-
trol groups was performed by meta-analysis,
calculating the standardized mean difference (SMD).
Besides, BV/TV and percentage of new bone area
were also analyzed in this review. If one reference
studied with different treatment duration, we just an-
alyzed the longest follow-up time point. I2 statistic
assessed statistical heterogeneity among included
studies, and a random effects model was used if high
heterogeneity existed. Forest plots were selected to
graphically display effect sizes and their confidence
intervals (CI). Subgroup analysis and investigation of
heterogeneity were used to explore possible sources
of heterogeneity. And subgroup analysis was carried
out based on following factors: animal species and
gender, the type of cells, frequency and time of injec-
tion, and bone diseases. But when we analyzed the
gender subgroup, studies with animal models of ovari-
ectomy (OVX)-induced bone loss were excluded be-
cause of the limited gender. In addition, it was
performed only if it contains at least four independ-
ent experiments.

Results
Selection of the studies
After duplication in Endnote, the initial search in the
PubMed and Embase databases resulted in 3579 papers.
After initial screening based on titles and abstracts in
Rayyan, 110 publications were obtained for analyzation
of full text. Eventually, 23 articles were included after
full-text screening [36–58], and 21 studies were selected
for meta-analysis (Fig. 1). Two trials [43, 58] were with-
held from meta-analysis due to the quantification of new
bone was not involved in BV/TV, BMD, or the percent-
age of newly formed bone.
Study characteristics of selected papers are displayed

in Table 1. Four different animal species were used:
most commonly used species was mice (15 studies),
followed by rat (5 studies), swine (2 studies), and dog (1
study). Male and female animals were approximately
equally used in these researches and 2 papers did not
mention the gender of animals. Various animal models
of bone disease were involved, including different sizes
of bone defects (5 studies), different types of bone frac-
tures (9 studies), and different causes of bone loss in-
cluding osteoporosis, ovariectomy, and osteonecrosis (9
studies). BMSCs were evaluated for bone regeneration in
most studies (16 studies), and other five different cell
types were also reported, including DSCs (1 study),
GMSCs (1 study), ADSCs (2 studies), uterine stem cell-
derived osteoprogenitor cells (1 study), umbilical cord
blood (UCB)-MSCs (1 study), and MSCs of uncertain
origin (1 study). Moreover, both passage number and
cell dosing varied greatly across the researches, ranging
from passage 1 to passage 8, from 3 × 104 to 4 × 109

cells. Generally, IV injection is the most frequently ap-
plied method for systemic therapy (20 studies), and
other studies also used bone marrow cavity’s injection (1
study) and intra-ventricular injection (2 studies). Most
researches used a single injection (18 studies), and other
researches used two (2 studies), four (1 study), five (1
study), or eight (1 study) injections. In the majority of
cases, MSCs were injected after surgery (16 studies) or
during surgery (5 studies), and only one study used MSC
injection before the femoral fracture model was con-
structed. Moreover, the heterogeneity between the com-
bination treatments was discovered among articles (8
studies), and only LLP2A-Alendronate was mentioned
twice.

Risk of bias
Assessment of risk of bias for included studies was
assessed and listed in Fig. 2. 56.5% of these studies
reported randomization of the group designing. But
none of these articles described the methods of
randomization and the method used to conceal the
allocation sequence, so the allocation sequence
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inadequately generated and applied. Almost half of
the included studies described that all groups were in
the same conditions at the start of experiments. And
only 17.4% of studies randomly housed the animals
during the experiment. Moreover, all studies were de-
fined as low risk of bias of “random outcome assess-
ment” for performance deviation items since the
effect of experiment groups and control groups were
evaluated at the same time. Meanwhile, 73.9% of ex-
periments failed to mention that the experiment was
blinded even 91.3% of studies without blinding of
housing procedures and operators. In final analyzation
of outcomes, 21.7% of studies reported outcome as-
sessors were blinded to different groups and 21.8% of
studies did not report the incomplete outcome data.
In addition, the majority of studies scored at low risk
in the bias of other problems. In conclusion, selection
bias and performance bias were scored at unclear
risk, but detection bias and attrition bias were almost
scored at low risk.

Meta-analysis
Twenty-one researches were included and three main
outcomes were selected in this meta-analysis, including
BMD (12 studies), BV/TV (10 studies), and percentage
of new bone area (4 studies).

The main parameter: BMD
BMD has always been an important index in evaluat-
ing bone regeneration [59]. The twelve identified ref-
erences involved 348 animals (178 treated groups
and 170 control groups) to evaluate BMD of sys-
temic treatment of MSCs on new bone regeneration.
Five experiments showed insignificant differences.
Only one experiment displayed a negative effect on
treated group and eleven experiments represented a
positive effect on treated group compared with the
corresponding control groups. Overall, there was a
statistically significant beneficial effect of systemic
treatment on new bone regeneration, as shown by
the global estimate SMD and its 95% CIs (3.02 [1.84,

Fig. 1 Flowchart for study screening and selection
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4.20]). But heterogeneity testing showed that I2=92%,
indicating high heterogeneity (Fig. 3).
Subgroup analysis was carried out according to dif-

ferent animal species and gender, cell types, frequency
and time of injection, and bone diseases. All analysis
showed positive effect on systemic treatment except
rat subgroup. And the analysis showed that the spe-
cies of animal (p<0.0001) is the significant predictor
of enhancing BMD, although the heterogeneity among
studies was significant high (Table 2).

BV/TV
The nine identified references involved 196 animals (98
treated groups and 98 control groups) to evaluate BV/TV.
Five experiments presented insignificant differences, while
eight experiments showed positive effect on treated group
compared with control group. Overall, there was a statisti-
cally significant beneficial effect of systemic treatment on
BV/TV, as shown by the global estimate SMD and its 95%
CIs (2.10 [1.16, 3.03]). But heterogeneity testing still
showed that I2=78%, indicating high heterogeneity (Fig. 4).

Fig. 2 Risk of bias

Fig. 3 The forest plot: the effects of MSCs therapy on BMD, compared with controls. 95% CI, 95% confidence interval
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Subgroup analysis showed a beneficial effect of all sub-
groups. The subgroups of rat, other types of MSCs, mul-
tiple injections, injection while modeling, and female
were not performed because the analysis required at
least four independent comparisons. In addition, the
analysis showed that bone diseases (p=0.03) are the sig-
nificant predictor of enhancing BV/TV, although the
heterogeneity among studies was significantly high
(Table 3).

New bone formation
The three identified references involved 84 animals (43
treated groups and 41 control groups) to evaluate the
percentage of new bone area. Only one experiment

found a statistically insignificant effect on new bone for-
mation. Overall analysis showed that systemic strategies
enhanced new bone formation, as shown by the global
estimate SMD and its 95% CIs (7.03 [2.10, 11.96]). But
heterogeneity testing showed that I2=93%, indicating the
high heterogeneity (Fig. 5).

Discussion
Twenty-three published animal researches with systemic
treatment of MSCs were analyzed to investigate the ef-
fect of bone regeneration. The following is a brief sum-
mary of these results: (1) systemic application of MSCs
promotes bone regeneration which was measured with
BMD, BV/TV, or the percentage of new bone area. (2)

Table 2 BMD: stratified analysis of MSC-treated vs. control

Subgroup N Effect estimate I2 p* p**

Species of animals Mice 11 5.67 (3.78, 7.56) 94% p<0.00001 p<0.0001

Rat 5 0.34 (− 1.08, 1.76) 88% p<0.00002

Swine Not calculated

Types of MSCs BMSCs 12 3.23 (1.63, 4.84) 94% p<0.00001 P=0.76

Other MSCs 5 2.86 (1.13, 4.60) 87% p<0.00001

Frequency of injection Single injection 14 2.20 (1.03, 3.37) 92% p<0.00001 N

Multiple injection Not calculated

Time of injection Before modeling Not calculated N

At the same time of modeling Not calculated

After modeling 14 3.92 (2.59, 5.52) 93% p<0.00001

Bone diseases Bone defect 12 2.26 (0.99, 3.54) 92% p<0.00001 p=0.05

Systematic bone diseases 5 6.25 (2.45, 10.05) 92% p<0.00001

Sex of animals Male 6 3.64 (1.02, 6.27) 96% p<0.00001 p=0.65

Female 5 2.88 (0.90, 4.86) 89% p<0.00001

p* value for heterogeneity within each subgroup. p** value for heterogeneity between subgroups with meta-regression analysis. MSCs, mesenchymal stem cells;
BMSCs, bone marrow-derived mesenchymal stem cells

Fig. 4 The forest plot: the effects of MSCs therapy on BV/TV, compared with controls. 95% CI, 95% confidence interval
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Bone loss caused by systemic disease such as osteopor-
osis and osteonecrosis tended to produce a better re-
sponse to systemic treatment. Although the difference
was not statistically significant (p=0.05) in BMD, we be-
lieve that a statistically significant difference would be
observed with more studies.
The meta-analysis results strengthened the evidence

supporting systemic application of MSCs in bone re-
generation. Only one study compared the efficacy of
local and systemic treatments: Huang et al. [51] used
femoral fracture models of mice to demonstrate that
systemic and local application of MSCs promoted
fracture healing equally by direct differentiate into os-
teoblasts. As we mentioned before, systemic bone dis-
ease has a better effect when using systemic injection.
And local application is more suitable for bone frac-
tures and bone defects.
Nowadays, the process of IV of MSCs in vivo was

studied. MSCs are most initially trapped in lung mi-
crovasculature and rapidly phagocytosed by lung resi-
dent tissue macrophages. Then, MSCs may be
recirculated and home to different organs, mostly

liver due to the high circulating blood volume. At
last, a small subset may redistribute to sites of injury
or damage [60, 61]. However, intra-ventricular, which
is a more invasive method, could deliver more MSCs
to target sites. Besides, other methods of systemic ad-
ministration include intra-arterial injection and intra-
peritoneal administration but they were mostly used
in stroke and cancer respectively [62]. In this system-
atic review, most of the included studies showed that
MSCs could home to the site of bone defects or bone
marrow, although some of them confirmed that most
of the cells trapped in lungs, liver, kidneys, lymph
nodes, and spleen (Table 1).
To date, the mechanism of stem cell transplantation

therapy is based on the following: (1) MSCs still have
the ability of homing to the injury site and differenti-
ation into osteoblasts and chondrocytes directly al-
though the number of these MSCs is limited [63–65].
(2) The paracrine effects of MSCs was secreting related
factors such as cytokines, bone growth factors, chemo-
kines to simulate angiogenesis and osteogenesis and
recruiting host cells to the target sites [66, 67]. (3) It has

Table 3 BV/TV: stratified analysis of MSC-treated vs. control

Subgroup N Effect estimate I2 p* p**

Species of animals Mice 11 1.97 (0.98, 2.95) 78% p<0.00001 N

Rat Not calculated

Types of MSCs BMSCs 10 1.55 (0.71, 2.39) 71% p=0.0002 N

other MSCs Not calculated

Frequency of injection Single injection 10 1.96 (0.88, 3.03) 77% p<0.00001 N

Multiple injection Not calculated

Time of injection At the same time of modeling Not calculated N

After modeling 12 1.83 (0.92, 2.73) 76% p<0.00001

Bone diseases Bone defect 8 1.77 (0.64, 2.89) 82% p<0.00001 p=0.03

Systematic bone diseases 5 4.27 (2.26, 6.27) 50% p=0.09

Sex of animals Male 6 1 (0.12, 1.88) 75% p=0.001 N

Female Not calculated

p* value for heterogeneity within each subgroup. p** value for heterogeneity between subgroups with meta-regression analysis. MSCs, mesenchymal stem cells;
BMSCs, bone marrow-derived mesenchymal stem cells

Fig. 5 The forest plot: the effects of MSCs therapy on the percentage of new bone area, compared with controls. 95% CI, 95%
confidence interval
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been proved that MSCs have highly immunosuppressive
functions which do not depend on the direct contact
with immune cells, but on the recognition of MSCs by
monocytic cells and evoking phagocytosis of macro-
phages [68]. In addition, MSCs can modulate the inflam-
matory micro-environment at the defect area and
decrease the levels of interleukin (IL)-1β, IL-6, and
tumor necrosis factor-α (TNF-α) [69]. Except non-
specific immune suppressive effect, MSCs also has an ef-
fect on the specific immune system. On the one hand,
MSCs can inhibit a series of activities of T cells, includ-
ing the survival, activation, differentiation of T cell sub-
sets, and even transformation of functional regulatory T
(Treg) cells [70]. On the other hand, MSCs can also sup-
press several key steps of B cell-mediated immune re-
sponses, such as activation, proliferation, differentiation,
and chemotactic responses [71]. As for systemic admin-
istration, many researchers who study the diseases of
bone defect and bone fracture often only focus on the
effect of MSCs for bone formation without explaining
the specific mechanism [37, 48, 49]. Some of them veri-
fied MSCs could be recruited and home to defect sites
to enhance new bone formation. Wu, Li, and Wang em-
phasized a key role of stromal cell-derived Factor-1/che-
mokine receptor 4 interaction in the migration of MSCs
to the defect region [36, 38, 54]. Furthermore, more re-
searches focus on the indirect effect of MSCs. The study
by Yao et al. [52] reported that MSCs could alter the tis-
sue microenvironment via paracrine signaling, secretion
of chemokines, as well as angiogenic and anti-
inflammatory factors. Wang et al. also concluded that
MSCs could promote osteogenesis and bone calcification
through the secretion of bone growth factors such as
bone morphogenetic protein 2 and transforming growth
factor-β1 [54]. Besides, Kumar et al. found that the para-
crine effects of MSCs were essential to promote osteo-
genesis by inducing the expression of growth factors and
cytokines in the local micro-environment and recruiting
endogenous progenitor cells [45]. For immunosuppres-
sive function, Li et al. reported that systemic MSC trans-
plantation could suppress IL-17 and γδT cells and
increase the level of Tregs in peripheral blood [57]. Sui
et al. also inferred that systemically infused MSCs re-
duced total T-cell population and suppressed inflamma-
tion [41]. But these studies did not render unifying
conclusions, so the mechanisms of systemic transplant-
ation remain to be further elucidated.
In addition, some of the included studies mentioned

combination treatment in this systematic review. Now-
adays, a lot of researches have studied the combination
treatment with MSCs in local application for bone re-
generation. Compared with the local application of
MSCs alone, the combined application of MSCs with
protein molecules and scaffolds is usually more

conducive to promoting bone regeneration [72, 73].
However, combination treatment in systemic applying of
MSCs for bone engineering is a less explored area of re-
search. Most of researches focus on protein molecule or
ultrasound which could promote the effects on the
angiogenesis efficiency of MSCs, such as erythropoietin
(EPO) [38], LIPUS [49], and PTH1-34 [55]; some com-
bination treatments could have a direct effect on osteo-
genesis, such as IGF-I [58] and BMP2 [45]; some protein
molecules could increase the homing of transplanted
MSCs to bone, such as LLP2A-Ale [43, 52] and PTH1-
34 [55]. Besides, hypoxic was detected to be an effective
way to improve the survival rate, recruitment, and osteo-
genesis of MSCs in transplantation, and its effects were
mainly achieved through the SDF-1/CXCR4 axis [36].
Further researches are needed to evaluate the combin-
ation therapy of MSCs in order to discover more effect-
ive potential bone regeneration treatments.
However, we acknowledge some limitations regarding

this systematic review. First, the assessment of risk of
bias revealed that the body of the evidence was generally
at a low quality, because RoB was scored “unclear” in
the selected studies. As shown in Fig. 2, few articles re-
ported the most important methods to avoid bias, such
as randomization and blinding. For example, neither the
methods of randomization nor whether the outcome as-
sessment was blinded were reported in these included
studies. This will increase the substantial risk of misun-
derstanding the effect of systemic therapy of MSCs on
bone regeneration. Second, the included researches were
differed from animal species and sex, bone disease
model, the number and types of cells, the healing time,
and so on. Therefore, high statistical heterogeneity was
found in this meta-analysis. Random effects model was
used to account for these results, and subgroup analyses
(animal species, sex, bone disease and cell types) were
performed in these analyses, but failed to reduce the het-
erogeneity. So, more comprehensive studies are needed
to further evaluate these results. Third, due to the low
quality of evidence, the results of this systematic review
should be interpreted with caution. In the process of this
systematic review, we have tried to reduce bias in the
following ways: independent screening, data extraction,
independent evaluation of results, and risk of bias
evaluation.
Nowadays, few complete clinical trials for bone regen-

eration with systemic treatment has been reported until
now while two studies were submitted in the web of
clinical trials. Both of them focus on osteoporosis pa-
tients while allogenic MSC form umbilical cord and
fucosylated BMSCs were used respectively in these stud-
ies. However, there are some problems still need to be
discussed before adapting the systemic treatment of
bone regeneration to clinical application. First of all, the
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type of MSCs used is one of the most important issues.
BMSCs are the most commonly used in this systematic
review, and they are also widely used for bone regener-
ation purposes. Because of the limited number of studies
using other types of MSCs, we designed the studies
grouped by BMSCs and other types of MSCs. And under
the subgroup analysis, BMSCs displayed a favorable ef-
fect on bone regeneration, although there is no signifi-
cant difference between the two subgroups. But this
result should be taken with caution because of the high
heterogeneity and small amounts of studies. Second, the
passage number of MSCs used in treatment requires an
objective measurement standard. MSCs ranging from
passage 1 to passage 8 were conducted in this systematic
review. Because the low frequency of MSCs we can ac-
quired from the donor tissue, in vitro expansion is ne-
cessary for clinical use [74]. MSCs with a high number
of passages enter senescence and begin to lose their
stem cell characteristics such as proliferation and differ-
entiation capabilities [75, 76]. As a result, the passage
number is crucial to the final outcomes, whereas nearly
half of the included studies ignore this important infor-
mation. Thus it is strongly recommended that the pas-
sage number of MSCs should be clarified in future
researches. Besides, the optimal cell dose is still unclear.
MSCs with a concentration ranging from 6.25 × 104/kg
to 4 × 108/kg were used in this systematic review; none
of them studies the effect of different concentrations on
bone regeneration. In this review, 15 included studies
neglected to record body weight and only recorded the
total number of transplanted cells. For the moment, cell
dosing in clinical studies is based on the weight of pa-
tients, generally 1 × 105/kg, not more than 1.2 × 106/kg
[61]. Therefore, it is necessary to display the weight of
animals to provide references for clinical application. In
addition, the cell dosing of different animals varied
greatly. Both Li and Wilson et al. [48, 57] used swine
models and the cell dosing are 2.5–3.3×104/kg and
6.25–8.3×104/kg respectively, while others who chosen
rodents as experimental subjects are ranging from 1 ×
105/kg to 2 × 107/kg. As a result, further studies should
discuss the optimal dosing of MSCs in different species
because the improper dosing may cause different re-
sponses. Moreover, most animal models selected in
these systematic reviews are rodents (20 of 23 studies).
This result may be due to the fact that rodents are easy
to get and house, which tend to be selected to prelimin-
ary screenings. However, they have many anatomical
and physiological differences with humans. And large
animals, such as swine, should be used for validation of
new therapy in the last phase, since large animals have
more similarities with humans [77].
The time and frequency of injections are also issues

that we need to pay attention to. Most of the existing

studies use a single injection, but we found that multiple
injections may have better outcomes in the evaluation of
BMD, though meta-analysis has not been performed due
to too few studies. Therefore, comparing the effects of
single injection and multiple injections on bone regener-
ation is a future research direction. As for the injection
time point, when we observe the preventive effect of
bone loss, injection was normally conducted before or at
the same time as the operation, while injection after sur-
gery showed a therapeutic effect. However, most studies
focus on the therapeutic role of MSCs in bone regener-
ation. Therefore, future researches may also be extended
to the systemic therapy effect of MSCs to prevent bone
loss, which is a promising treatment strategy to prevent
osteoporosis caused by hormone changes or aging.
In summary, before clinical application, more re-

searches on the systemic application of MSCs for bone
regeneration should be carried out. Not only should we
pay attention to application protocol of MSCs, but also
explore how to transform the models into large animals.

Conclusion
Based on the data of this meta-analysis, systemic appli-
cation of MSCs promote bone regeneration compared
with control groups, by assessing the treatment out-
comes including BMD, BV/TV, or the percentage of
new bone area. The role of MSCs in bone formation
may include homing and differentiation, angiogenesis,
inflammation, and immune response. However, due to
the limitations inherent in the design of most included
researches in this systematic review, there is still a long
way to go before systemic treatment of MSCs for bone
regeneration can be applied to the clinic. The results of
this systematic review provide some certain reference for
future experiments.
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