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Abstract 

Adipose-derived stem cells (ASCs) are a critical adult stem cell subpopulation and are widely utilized in the fields 
of regenerative medicine and stem cell research due to their abundance, ease of harvest, and low immunogenicity. 
ASCs, which are homologous with skin by nature, can treat immune-related skin diseases by promoting skin regen-
eration and conferring immunosuppressive effects, with the latter being the most important therapeutic mechanism. 
ASCs regulate the immune response by direct cell–cell communication with immune cells, such as T cells, mac-
rophages, and B cells. In addition to cell–cell interactions, ASCs modulate the immune response indirectly by secret-
ing cytokines, interleukins, growth factors, and extracellular vesicles. The immunomodulatory effects of ASCs have 
been exploited to treat many immune-related skin diseases with good therapeutic outcomes. This article reviews 
the mechanisms underlying the immunomodulatory effects of ASCs, as well as progress in research on immune-
related skin diseases.
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Introduction
Immune-related skin diseases are a type of damage 
caused by disorders of the immune system, which are 
characterized by overactivated immune cells, high 
levels of pro-inflammatory factors, and a series of 
complex immune responses. Clinical symptoms of 
immune-related skin disease include fibrosis, red-
ness, swelling, itching, and dandruff of the skin [1]. 

Topical and oral immunosuppressive drugs are the 
most widely used to treat immune-associated skin 
diseases, and new, more targeted approaches to treat-
ment are being developed, but existing methods are 
still limited by the long course of treatment, limited 
efficacy, and significant expense [2]. ASCs are a type 
of mesenchymal stem cells (MSCs) derived from adi-
pose tissue, also originate from the mesoderm, and are 
closely related to the skin. ASCs can thus be used to 
replenish and treat damaged skin tissue. Compared 
to other MSCs, ASCs have a potent immunosuppres-
sive effect, which is a significant treatment advantage 
for immune-related skin diseases [3]. ASCs undergo 
cell–cell interactions with a variety of immune cells, 
including T cells, macrophages, B cells, dendritic 
cells (DCs), and natural killer cells (NK cells). Parac-
rine mechanisms of ASCs also indirectly regulate the 
immune system via secretion of cytokines, growth 
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factors, anti-inflammatory mediators, active enzymes, 
and extracellular vesicles (EVs). ASC-secreted EVs 
and apoptotic ASCs have similar therapeutic benefits 
to viable ASCs, suggesting that the paracrine mecha-
nisms of ASCs are central to their immunomodulatory 
effects [4]. The present review describes ASC immu-
nomodulatory mechanisms that contribute to their 
therapeutic effects in treatment of immune-related 
skin diseases and summarizes the progress of preclini-
cal research and clinical application of ASC treatment 
of autoimmune skin diseases. In addition, the chal-
lenges and adverse reactions faced by ASCs in clinical 
application are also mentioned.

ASC overview
ASCs are a type of MSC derived from adipose tissue. 
Compared with bone marrow mesenchymal stem cells 
(BM-MSCs), umbilical cord MSCs, and other MSCs, 
ASCs display unique advantages with respect to immu-
nomodulation [5]. They can be harvested repeatedly, 
and in large quantities, from subcutaneous tissue by 
liposuction under anesthesia. Liposuction is also more 
comfortable than the painful bone marrow aspiration 
process and is more desirable because more stem cells 
can be harvested from the same amount of tissue; the 
process even has esthetic effects [6]. Additionally, stud-
ies gradually show that ASCs facilitate generation of 
keratinocytes and the secretome, resulting in improved 
skin regeneration [7]. Generally, ASCs have outstand-
ing immunomodulatory and skin repair-promoting 
effects, which makes them an ideal candidate for stem 
cell therapy of immune-related skin diseases.

ASCs have many abilities favorable for the treatment 
of immune-related skin diseases, such as direct differ-
entiation into skin cells and release of secretomes that 
promotes skin growth, together with their immunoreg-
ulatory effects. However, the latter plays a central role 
in the therapeutic effects. This is because the restora-
tion of the disordered immune system is the corner-
stone for treatment of immune-related skin diseases 
[8].

The immunomodulatory effects of ASCs are due to 
both cell–cell interactions and paracrine mechanisms, 
which affect different targets. Cell–cell interactions 
with ASCs are most common in T cells, macrophages, 
and B cells, which are also related to the pathophysi-
ological characteristics of pathogenic immune cells 
in immune-related skin diseases. Paracrine effects of 
ASCs affect the fate and function of immune cells and 
the immune microenvironment via multiple bioactive 
factors in secretomes, and these paracrine effects are 
essential to the immunomodulatory role of ASCs [9].

Immunomodulatory effect of ASCs 
in immune‑related skin diseases
Compared to other MSCs, ASCs have the strongest 
immunomodulatory properties, suggesting the therapeu-
tic utility of ASCs in immune-related skin diseases [3]. 
Because ASCs and skin are both derived from the meso-
derm and are anatomically closely related, ASCs alleviate 
immune-related skin diseases by both promoting regen-
eration of damaged skin and suppressing autoimmunity. 
However, the immunomodulatory effects of ASCs are the 
most studied (Fig. 1).

According to the type of target, the immunomodula-
tory effects of ASCs can be divided into direct cell–cell 
interactions and indirect paracrine mechanisms (Table 1) 
[10].

Direct cell–cell interactions
Direct cell–cell interactions between ASCs and immune 
cells are general. Studies confirm that ASCs regulate 
immune cells, including T cells, macrophages, B cells, 
and other immune cells, to promote immune tolerance. 
These direct cell–cell interactions occur in the context of 
immune-related skin diseases. ASCs inhibit the overacti-
vated autoimmune responses that cause immune-related 
skin diseases. Their immunomodulatory effects include 
regulating immune cell phenotypic and secretory func-
tion, and promoting a shift from a pro-inflammatory 
state to a static or anti-inflammatory state.

T lymphocytes
T cell immune dysregulation involves predominantly 
 TH1/TH17 polarization and the inability of  Treg cells to 
repress the immune response, which is implicated in 
immune-related skin diseases [76]. Prior studies have 
demonstrated that ASCs downregulate pro-inflamma-
tory factors by affecting the expression of T cell subset 
transcription factors and promoting differentiation of 
 TH0 cells into  TH1,  TH2,  TH17, and  FoxP3+  Treg cells to 
regulate adaptive immunity. Additionally, ASCs decrease 
the number of activated T cells by arresting the cell cycle 
in the G0–G1 phase [49]. Compared to ASCs derived 
from healthy donors, ASCs derived from patients with 
immune-related diseases can also affect the function and 
phenotype of T cells, which makes the latter a reliable 
source for autologous applications [77].

The immunosuppressive effects of ASCs are regu-
lated by maintaining the  TH1/TH2 balance and regulat-
ing T cell secretory phenotype. ASCs inhibit effector 
 TH1 cells in autoimmune diseases and restore the  TH1/
TH2 balance by promoting  TH1 cytokines and inhibit-
ing  TH2 cytokines [15, 16]. ASCs and ASC-derived cells 
attenuate atopic dermatitis (AD) by suppressing inflam-
mation associated with the  TH1/TH2 response [78, 79]. 
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Additionally, prior studies have demonstrated that ASCs 
suppress development of lupus dermatitis by suppressing 
 TH1/TH2 ratio and maintaining their secretome balance 
[80].

ASCs also inhibit  TH17 cell differentiation and secre-
tion of IL-17 factors to prevent the pro-inflammatory 
effects of  TH17 cells [20]. However, prior studies have also 
identified that ASCs promote differentiation of activated 
T cells into  TH17 cells in some inflammatory environ-
ments, suggesting that development of future ASC-based 
immunotherapies should carefully consider these com-
plex and detailed molecular interactions [18]. Psoriasis is 
a typical  TH17-driven immune-related skin disease, and 
its clinical manifestations are alleviated by ASCs [81, 82]. 
Subcutaneous injection of ASCs also ameliorates AD by 
downregulating IL-17 secretion by  TH17 cells [83].

ASCs also respond to the stimuli of pro-inflammatory 
factors and secrete specific factors to induce formation 
of  Treg cells, which are recruited to the skin and resolve 

inflammation associated with multiple autoimmune skin 
diseases and promote tissue healing in these contexts [12, 
84]. Surprisingly, ASC-EVs also induce formation of  Treg 
cells. A prior study found that ASC-EVs induce periph-
eral blood mononuclear cell (PBMC) apoptosis and sup-
press PBMC and  CD4+ T cell proliferation [14].

Transplantation of ASCs ameliorated autoimmune 
pathogenesis in a mouse systemic lupus erythematosus 
(SLE) model by modulating the balance between  Treg 
cells and  TH17 cells [85]. ASC-induced  Treg cell amplifi-
cation significantly alleviates the clinical and pathological 
changes of immune-related skin diseases and promotes 
immune tolerance to the skin barrier.

Macrophages
The immunomodulatory effect of ASCs on macrophages 
is promoted by promoting the transition from the pro-
inflammatory phenotype (“classically activated” or “M1” 
macrophages) to the anti-inflammatory phenotype 

Fig. 1 Direct and indirect (paracrine mechanisms) interactions of ASCs during immunomodulation. This schematic highlights the direct cell–cell 
interactions of ASCs, such as their effects on T lymphocytes, macrophages, B lymphocytes, DCs and NK cells, and the factors secreted by these 
cells. Additionally, the paracrine effects of cytokines, growth factors, anti-inflammatory mediators, active enzymes, and EVs play an important role 
in regulating the immune environment and immune cell function. Created with BioRender.com
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(“alternatively activated” or “M2” macrophages). As 
classic immune cells, pro-inflammatory macrophages 
promote differentiation of  TH1 cells and release pro-
inflammatory factors such as tumor necrosis factor-α 
(TNF-α), monocyte chemoattractant protein-1, IL-6, 
and NOS [63]. ASCs relieve tissue inflammation by 
inhibiting infiltration of pro-inflammatory macrophages 
and secreting  PGE2 to promote polarization to the anti-
inflammatory phenotype [23]. The inhibition of ASCs on 
pro-inflammatory macrophages synergizes with the anti-
proliferative properties of ASCs to suppress abnormal 
cell hyperplasia induced by chronic inflammation [86].

Anti-inflammatory macrophages secrete anti-
inflammatory factors such as IL-10 and Arg-1. The 
two arginine metabolic pathways catalyzed by Arg-1 
and NOS arrest each other, which has essential func-
tions in regulating macrophage polarization [63]. ASCs 
secrete IL-10 to activate the STAT3/Arg-1 pathway, 

thus inducing differentiation into an anti-inflammatory 
phenotype [28]. A prior study of remote ASC trans-
plantation demonstrated that tissue infiltration of 
anti-inflammatory macrophages is increased by inter-
vention, suggesting that the secretory function of ASCs 
likely has essential regulatory roles in macrophages 
[26]. Apoptotic ASCs also promote Arg-1 activity and 
decrease nitric oxide levels in macrophages [25].

Pro-inflammatory macrophages promote the devel-
opment of psoriasis by maintaining  TH1 cytokine levels, 
which could be inhibited by ASCs [87]. In the bleomy-
cin-induced systemic scleroderma (SSc) mouse model, 
ASCs alleviate skin fibrosis by suppressing infiltration 
of macrophages into the dermis [88, 89]. Moreover, AD 
induced by skin infection with Staphylococcus aureus in 
mice is alleviated via enhancing the phagocytic activity 
of macrophages by ASCs [90].

Table 1 Mechanisms of ASC immunomodulatory effects

Treg cells, Regulatory T cells; Th1, Type 1 helper T cells; Th2, Type 2 helper T cells; Th17, Type 17 helper T cells; CTL, Cytotoxic T lymphocyte; Breg cells, Regulatory B 
cells; IL, Interleukin; TGF, Transforming growth factor; MLRs, Mixed lymphocyte reactions; HGF, Hepatocyte growth factor; VEGF, Vascular endothelial growth factor; 
 PGE2, Prostaglandin  E2; TSG-6, Tumor necrosis factor alpha induced protein-6; IDO, Indoleamine-pyrrole 2,3,-dioxygenase; NOS, Nitric oxide synthase; Arg, Arginase; 
CM, Conditioned medium; Exos, Exosomes

Target Components Mechanisms References

T cells Treg cells Promote Treg cells differentiation and proliferation [11–14]

TH1/TH2 Maintain TH1/TH2 balance by regulating their secretory phenotype [15, 16]

TH17 Inhibit secretion of  TH17 cytokines and induce IL-10 production [17–20]

CTL Inhibit proliferation and CD8 receptor expression of CTL [21, 22]

Macrophages Pro-inflammatory phenotype Inhibit differentiation and infiltration of pro-inflammatory phenotype [23, 24]

Anti-inflammatory phenotype Induce differentiation to anti-inflammatory phenotype [25–28]

B cells Activated B cells Inhibit differentiation and antibody production of active B cells [29, 30]

Breg cells Support  Breg cells proliferation and differentiation [31, 32]

NK cells – Inhibit NK cells proliferation and their secretory phenotype [33, 34]

DCs – Inhibit DCs maturation and costimulatory signals [35, 36]

Cytokines IL-10 Inhibit activation of multiple immune cell types [37–40]

TGF-β Induce  Treg cells and anti-inflammatory macrophages
Inhibit DCs and MLRs

[40, 41]

Growth factors HGF Inhibit  TH1 cells and  TH17 cells
Suppress fibrosis

[42–45]

VEGF Promote angiogenesis and lymphangiogenesis
Inhibit effector immune cells and promote anti-inflammatory cells

[46, 47]

Anti-inflammatory 
mediators

PGE2 Induce IL-10 production and  Treg cells
Inhibit NK cells

[48–53]

TSG-6 Promote anti-inflammatory macrophages and inhibit pro-inflammatory 
immune cells

[54–58]

Active enzymes IDO Mainly inhibit T cells function [3, 59–62]

NOS Promote pro-inflammatory macrophages [63, 64]

Arg-1 Promote anti-inflammatory macrophages [63–65]

CM – Inhibit immune cells infiltration and their secretory phenotype [66–70]

EVs – Inhibit inflammation [71, 72]

Exos Induce  Treg cells and anti-inflammatory macrophages
Decrease inflammatory cytokines
Transfer mitochondrial components

[73–75]
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B lymphocytes
Multiple studies have identified that ASCs affect B cell 
proliferation and differentiation, with complex effects 
depending on the inflammatory environment: At high 
levels of inflammation, ASCs inhibit B cell proliferation, 
while at low levels of inflammation, ASCs support forma-
tion of  Breg cells [91]. ASCs suppress over-proliferation 
of B cells in postinfectious inflammatory state, which 
is mediated by galectin-9 and B cell activating factor, to 
modulate the B cell immune response in vivo [30]. ASCs 
also inhibit production of pathogenic plasma cells and 
autoreactive antibodies in multiple immune-related skin 
diseases, such as SLE, SSc, and psoriasis. Furthermore, 
ASCs increase  Breg cell formation, prompting secretion of 
TGF-β1 and IL-10 to inhibit inflammation in an in vitro 
model co-cultured with B cells [31]. Autoreactive plasma 
cells elicit production of pathogenic antibodies and dep-
osition of immune complexes in SLE [92]. Intravenous 
injection of ASCs alleviates autoimmunity in this context 
by inducing  Breg cell expansion and decreasing effector B 
cells in the SLE mouse model [93].

Other immune cells
ASCs also interact with immune cells such as NK cells 
and DCs to exert immunosuppressive effects. ASCs sig-
nificantly decrease the number of  CD49b+ NK cells, 
decrease production of interferon-γ (IFN-γ), and increase 
production of IL-4 and IL-10 [34]. An additional study 
demonstrated that ASCs secrete high levels of IDO, 
IL-10, and TGF-β1 to affect NK cell phenotype, further 
supporting the immunosuppressive effects of ASCs on 
NK cells [33].

Additionally, ASCs affect DC maturation by altering 
the phenotypic profile of classical markers and decreasing 
production of pro-inflammatory cytokines while increas-
ing the concentration of immunosuppressive factors 
[36]. ASC-derived Exosomes (Exos) also have regulatory 
effects on DCs, not only decreasing DC surface marker 
expression but also inhibiting DC release of inflamma-
tory factors, indicating that the ASC-derived secretome 
is potentially an important modulator of immune-related 
skin diseases regulated in part by DCs [35]. ASCs inhibit 
DC maturation and secretion of cytokines via multi-
ple regulatory mechanisms. DCs are the primary source 
of pathogenic TNF-α and IL-23 in psoriasis, suggesting 
ASC implantation as a potential therapeutic modality for 
this condition [94].

Indirect cell–cell interactions (paracrine mechanisms)
ASCs secrete diverse bioactive factors such as 
cytokines, growth factors, anti-inflammatory media-
tors, and EVs to modulate the immune response in 

many autoimmune diseases (Table 1) [10]. These ASC-
derived immunomodulatory factors can be secreted 
in  vivo through direct transplantation of ASCs, or 
enriched in ASCs derivatives obtained by culture in 
laboratory for further use [95]. Some preclinical trials 
of ASCs in the treatment of immune-related skin dis-
eases are summarized here. ASCs have been found to 
alleviate tissue inflammation in animal models mainly 
by regulating many secretome [22, 78–83, 85, 89, 90, 93, 
96–117]. The preclinical studies of the immunomodula-
tory effect of ASCs in immune-related skin disease are 
summarized in Additional file 1: Table S1.

Cytokines
IL-10 and TGF-β are prominent anti-inflammatory fac-
tors contributing to the therapeutic effects of ASCs. 
IL-10 has crucial immunomodulatory roles in immune-
related skin diseases, suppressing excessive inflamma-
tory responses and promoting tissue regeneration [37]. 
IL-10 inhibits release of pro-inflammatory factors and 
suppresses pro-inflammatory effects of many immune 
cell types [38]. Prior studies have identified that ASCs 
secrete IL-10 to induce polarization of immune cells 
into anti-inflammatory phenotypes [28]. Further, sys-
temic ASC infusion increases spleen-derived IL-10 
expression and release, exerting systemic anti-inflam-
matory effects [39]. Further, ASC-EVs have anti-inflam-
matory and pro-angiogenic effects that alleviate tissue 
damage, which is potentially due to IL-10 harbored in 
EVs [40].

TGF-β regulates immune cell function, for example by 
inhibiting the expansion of  CD8+ cytotoxic T cells, and 
also promoting development of both  CD4+  TH17 cells 
and  Treg cells, with the latter role potentially being more 
functionally significant [41]. Additionally, the TGF-β 
pathway plays a major role in  Breg cell induction and the 
immunomodulatory properties of  Breg cells [32]. DCs are 
also regulated by ASC-derived TGF-β1, inhibiting DC 
maturation and expression of surface markers [118].

ASCs increase IL-10 and TGF-β levels to inhibit patho-
logical inflammation in a variety of immune-related skin 
diseases. For example, ASC extract alleviates pathologi-
cal AD symptoms due to its content of IL-10 and TGF-
β1 [107]. ASC-derived IL-10 increase the proportion of 
CD4 + FoxP3 + cells and ameliorates immunologic dys-
function in the SLE mouse model [103]. However, TGF-
β, a fibrogenic factor, contributes to skin sclerosis of SSC 
and chronic sclerodermatous graft-versus-host disease 
(Scl-GvHD) as well. ASCs also inhibit excessive TGF-β 
levels and subsequent activation of downstream signaling 
pathways in fibrotic dermatoses to improve skin texture 
[98, 117].
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Growth factors
HGF is a pleiotropic growth factor with antifibrotic and 
immunomodulatory effects that are due not only to its 
inhibitory effects on  TH1 and  TH17 cells but also promo-
tion of  Treg cells [42, 45]. ASCs secrete high levels of HGF 
to alleviate inflammation and promote tissue regenera-
tion. A prior study identified that ASC-rich stromal vas-
cular fraction (SVF) expressed high HGF levels to inhibit 
inflammation and fibrosis [44]. Further, ASC-derived 
HGF promotes tissue vascularization and repair [43]. 
These findings suggest that ASC-secreted HGF could be 
advantageous in treatment of tissue damage caused by 
inflammation. ASC-derived HGF exerts the anti-inflam-
matory and antifibrotic effects in improving skin sclerosis 
in SSc [119].

VEGF is widely studied and has immunomodulatory 
effects in addition to its well-known roles in promot-
ing angiogenesis and increasing vascular permeability. 
VEGF secreted by ASCs can both downregulate expres-
sion of adhesion molecules in endothelial cells to hinder 
immune cell adhesion and support the expansion of  Treg 
cells and anti-inflammatory macrophage infiltration by 
promoting angiogenesis [46, 120]. VEGF also directly 
modulates immune cells, for example by inhibiting effec-
tor T cell function, hindering differentiation and acti-
vation of DCs, and increasing recruitment of  Treg cells 
[121]. In immune-related skin diseases, increased VEGF 
levels are primarily related to promotion of vasculariza-
tion and repair of damaged tissue. Many preclinical stud-
ies have demonstrated that local angiogenesis of lesions 
was significantly improved by ASC-derived VEGF and 
that ulcers and skin fibrosis caused by SSc were also alle-
viated [96, 101].

Anti‑inflammatory mediators
Other anti-inflammatory mediators affected by ASCs 
include  PGE2 and TSG-6. The immunosuppressive prop-
erties of  PGE2 are primarily manifested by inducing mac-
rophages to secrete IL-10, inhibiting DC maturation and 
decreasing NK cell cytotoxicity [122]. The effect of ASC-
secreted  PGE2 inhibits T cell proliferation and induces 
formation of  Treg cells [49, 52]. Moreover, ASC-derived 
 PGE2 modulates differentiation of myeloid cells toward 
anti-inflammatory profiles [50]. Co-culture of ASCs with 
T cells derived from SSc and SLE patients revealed that 
ASCs suppressed expansion of  CD4+ and  CD8+ T cells 
by secreting  PGE2 and kynurenines [22]. ASCs also sig-
nificantly activates the COX-2/PGE2 cascade to inhibit 
growth of abnormal fibroblasts in keloids, which exerts 
an anti-fibrotic effect as well [52].

TSG-6, which is produced by TNF-stimulated ASCs, 
attenuates the immune response and promotes tissue 
regeneration in multiple immune-related skin diseases 

[54]. ASCs secrete TSG-6 to inhibit pro-inflammatory 
cytokines, including IL-1β, IL-6, and TNF-α [55]. Intra-
peritoneally injection of ASC enhances TSG-6 levels to 
induce macrophage polarization from pro-inflammatory 
phenotype to anti-inflammatory phenotype [56]. Further, 
TSG-6 plays an important role in ASC-EV induction of 
 Treg cells [57]. TSG-6 secreted by ASCs has essential anti-
inflammatory effects in many autoimmune diseases and 
inflammatory injuries, which are modulated by regulat-
ing macrophage phenotypes and alleviating endoplasmic 
reticulum stress [56, 123]. Future research will bet-
ter define the effects of TSG-6 in immune-related skin 
diseases.

Active enzymes
ASCs are the most potent MSCs in immunomodula-
tion, and their immunosuppressive effects are mediated 
in part by the IDO-kynurenine pathway, which regulates 
T cell suppression [49]. Consistently, IDO-silenced ASCs 
were unable to increase  TH2 cells, and HGF expression 
was decreased, suggesting that their immunosuppres-
sive effects were attenuated [61]. More in-depth studies 
of IDO have revealed that the two IDO subtypes, IDO1 
and IDO2, have different functions. IDO1 mediates T 
cell suppression, while IDO2 affects B cells, functioning 
as a pro-inflammatory mediator of B cell responses [60].
ASCs-derived IDO1 also induce macrophage polariza-
tion to the anti-inflammatory phenotype, which conse-
quently alleviates inflammation and fibrosis [62].

Arginine metabolism is important for macrophage 
polarization, and its distinct metabolic pathways are cat-
alyzed by NOS and Arg, which block each other [63]. The 
pro-inflammatory macrophages primarily secrete NOS, 
while anti-inflammatory macrophages secrete Arg. ASCs 
decrease the initial expression of inducible NOS and 
promote Arg-1 expression in infiltrating macrophages, 
consistent with a shift toward an anti-inflammatory phe-
notype [64]. Moreover, ASC-Exos transferred into mac-
rophages induce the anti-inflammatory phenotype via 
transactivation of Arg-1 via STAT3 contained in vesicles 
[65].

T cells are central mediators of host rejection in the 
GvHD model, and inhibition of T cells is therefore the 
primary target for prolonging the survival of skin allo-
grafts. In a humanized skin allograft rejection model, 
ASCs suppress T cell-mediated alloreactivity by increas-
ing IDO mRNA expression and IDO protein activity 
[114]. In a full-thickness skin grafts rats model treated 
with ASCs, NOS levels were markedly decreased, while 
Arg-1 and IL-10 levels were substantially increased, sug-
gesting that the anti-inflammatory effect of ASCs could 
indirectly contribute to skin graft survival by regulating 
macrophage polarization [115].
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ASC‑EVs
EVs are subcellular structures consisting of a lipid bilayer 
membrane encasing cytoplasm, formed by invagination 
of the plasma membrane, which is roughly divided into 
two types according to their diameter and origin, includ-
ing Exos with a diameter of 50–150 nm derived from 
endosomes and microvesicles with a diameter of 50–500 
nm derived from the plasma membrane [124]. Multiple 
studies have demonstrated that ASC-EVs have the same 
therapeutic effect as ASCs in inducing immune tolerance 
[95].

A prior study suggested that the anti-inflammatory 
effect of ASC-EVs could be related to the suppression of 
NF-κB-dependent inflammatory/catabolic environments 
[125]. Intravenous administration of ASCs enable the 
transfer of ASC-EVs to anti-inflammatory macrophages 
subsequently enhanced  Treg cell induction, which under-
lies ASC immunotherapy [72].

As subpopulations of ASC-EVs, ASC-Exos also contain 
Arg-1, which promotes anti-inflammatory macrophages 
polarization while inhibiting T cell proliferation [73]. 
Interestingly, ASC-Exos can effectively donate mito-
chondria components to macrophages, which improves 
macrophage mitochondrial integrity and oxidative 
phosphorylation, allowing resumption of macrophage 
metabolic and immune homeostasis and mitigating 
inflammatory pathology [75].

ASC-Exos were injected subcutaneously into the lesion 
sites of AD, which decreased expression of pro-inflam-
matory factors in the skin, increased ceramide synthesis, 
and alleviated clinical symptoms of AD [110]. Further 
studies have demonstrated that ASC-Exo improvement 
of inflammation and skin barrier function is regulated 
by suppressing the JAK/STAT pathway in skin lesions 
of AD [111]. In addition, compared to ASCs, ASC-EVs 
cocultured with SSc-like myofibroblasts significantly 
downregulate myofibroblast markers and inhibit TGF-β 
stimulation, further underscoring the therapeutic poten-
tial of ASC-EVs in SSc [99].

Compared with naive ASCs, ASC-EVs not only have 
the advantages of stable transportation and convenient 
storage but also contain simple and well-defined com-
ponents, allowing a more precise curative effect. Further, 
ASC-EVs can be used as effective carriers for multiple 
drugs, allowing more precise drug delivery and absorp-
tion in skin lesions [126].

Progress in clinical application of ASCs 
for treatment of immune‑related skin diseases
Immune-related skin diseases include a range of complex 
disorders that may affect all systems or have skin-only 
manifestations. According to immune status, they can 
be roughly divided into two categories: suppressed or 

hyper-reactive. Among these, immunodepression leads to 
dermatologic diseases such as Herpes zoster, Kaposi sar-
coma, and fungal infection in elderly patients or patients 
with organ transplants, especially those who have HIV 
[127]. Skin disorders caused by hyper-reactive immune 
responses are the most common immune-related skin 
diseases, which include autoimmune, allergic, infec-
tious, and tumorous skin disorders [128]. ASCs have 
excellent immunomodulatory effects and skin reparative 
effects, prompting much research into their application 
to immune-related skin diseases. The utility of ASCs and 
their cell-free derivatives as immunotherapies in immune 
hyper-reactive dermatosis is supported by multiple stud-
ies (Table 2) [95]. Investigators have used ASCs and ASC 
derivatives for treatment of SSc, psoriasis, SLE, AD, and 
others (Fig. 2). Both autologous and allogeneic ASCs have 
been used in multiple clinical trials. While autologous 
ASCs are considered to be safer due to their lower immu-
nogenicity, allogeneic ASCs are more commonly used 
due to their increased availability and reproducibility.

As early as 2013, Scuderi et al. conducted a clinical trial 
using autologous ASC transplantation for SSc patients, 
and all six patients enrolled in the study benefited from 
arrest of local disease progression. In addition, they also 
demonstrated that neither function nor phenotype dif-
fered between ASCs derived from patient donors and 
healthy donors, establishing the basis for subsequent use 
of autologous ASCs in patients with immune-associated 
skin diseases [129].

Khannaden et al. reported the largest randomized clini-
cal trial thus far. Eighty-eight patients with SSc-induced 
hand disability were randomly assigned to the autologous 
ASC group or placebo group, and changes in hand func-
tion were assessed. Compared to the control group, the 
ASC group had improved hand function, but the differ-
ence was not statistically significant (mean ± SD improve-
ment in Cochin Hand Function Scale score at 48 weeks 
11.0 ± 12.5 vs 8.9 ± 10.5; P = 0.299). Among patients 
enrolled in the study, hand function was most improved 
in patients with diffuse cutaneous SSc (dcSSc) (52% dual-
response rate compared to 16% in the placebo group; 
nominal P = 0.016). The authors suggested that further 
clinical trials of this intervention in the context of dcSSc 
are warranted [130].

Other studies have explored the therapeutic potential 
of ASC derivatives. Comella et al. reported the first case 
study of intravenous SVF implantation in psoriasis. The 
patient benefited from a significant decrease in symp-
toms and skin quality appearance without safety con-
cerns or severe adverse events [131]. Furthermore, Park 
et al. underscored the therapeutic potential of ASC-Exos 
for AD patients. Two patients with AD and refractory 
dupilumab facial redness were successfully improved 
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with ASC-Exos. Importantly, this trial did not use autolo-
gous ASC-Exos, confirming that clinical application of 
allogeneic ASCs-Exos does not cause immune rejection, 
making ASCs derivatives an ideal material for allogeneic 
applications [132].

However, some reports suggest a dualistic function 
of ASCs in SSc as ASCs could function as an additional 
pathogenic source of pro-fibrotic myofibroblasts via adi-
pocyte-to-myofibroblast transition, resulting in lack of 
therapeutic effect or even potential aggravation of SSc 
[133]. A prior study might support this theory. A double-
blind, multicenter, phase II trial assessed the efficacy of 
SVF vs placebo injection into the fingers in improvement 
of hand disability in 40 patients, showing no additional 

therapeutic effects for SVF over time. The author indi-
cated that studies of more patients with the same pheno-
type should be conducted to more accurately assess the 
benefits of ASC treatment [134].

The means for ASC induction to exert the desired 
immunomodulatory and therapeutic effects in different 
stages of different immune-related skin diseases remains 
a major barrier to treatment. Because the immunomodu-
latory effects of ASCs are regulated primarily by parac-
rine mechanisms, multiple strategies to regulate ASC 
paracrine effects have been evaluated [135]. A prior study 
used fibrous-engineered scaffolds to induce ASC expres-
sion of higher levels of anti-inflammatory factors via a 
mechanotransduction pathway [136]. Additionally, using 

Table 2 Clinical efficacy ASCs in immune-related skin diseases

PRP Platelet-rich plasma

Diseases Study design Efficacy Transplant material References

SSc Clinical trial
(n = 6)

Significantly improved tightening of the skin without complications ASCs [129]

Phase I trial
(n = 12)

Significantly improved hand disability, pain, blood supply, and finger edema SVF [139]

Pilot study
(n = 15)

Promotion of ulcer healing and increased capillaries in fingers ASCs [140]

Pilot study
(n = 10)

Both ASCs and fat transplantations had significant effects, but the relative utility 
of each strategy could not be determined

ASCs / fat transplantation [141]

Pilot study
(n = 12)

Improved sclerosis, vascularization, and hand motion and strength SVF [142]

Case report
(n = 1)

Improved blood flow and prevention of further amputation SVF [143]

Case report
(n = 1)

Improved skin elasticity and vascularization SVF (& PRP) [144]

Clinical trial
(n = 62)

Improved clinical symptoms in orofacial fibrosis ASC-enriched lipotransfer [145]

Clinical trial
(n = 20)

Improvements in skin fibrosis, hand disability, Raynaud’s phenomenon, and active 
ulcers

SVF [146]

Pilot study
(n = 18)

Improved fat graft retention in the ASC‐assisted group to correct facial atrophy ASC-assisted fat grafting [147]

Phase II trial
(n = 40)

Improved hand function in both groups over time, with no increased therapeutic 
efficacy of SVF relative to placebo

SVF( ±) [134]

Randomized 
controlled trial

(n = 88)

Trends of clinical improvements in patients with diffuse cutaneous SSc ASCs [130]

Psoriasis Case report
(n = 2)

Demonstrated safety and tolerability and decreased dependence on immunosup-
pressant drugs

ASCs [148]

Case report
(n = 1)

Safely improved symptoms with a noticeable difference in skin quality 
and appearance

SVF [131]

Case study
(n = 1)

Completely regressed psoriasis and cleared inflammatory erythematous plaques ASC-CM [149]

Pilot study
(n = 7)

Modality is safe to use and a potential therapeutic option ASCs [150]

SLE Phase I trial
(n = 9)

Established safety of the modality and potential efficacy in decreasing disease 
severity

ASCs [151]

AD Case report
(n = 2)

Marked improved erythematous facial lesions ASC-Exos [132]
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chitosan film as a 3D culture strategy significantly affects 
ASC production of immunosuppressive factors in  vitro 
through increased secretion of TGF-β and IL-10 and 
increased Arg activity [137]. ASC-Exos combined with 
hydrogels are more easily absorbed by the body, alleviat-
ing early inflammation and promoting tissue repair [138]. 
Thus, the combination with materials increases dura-
tion of action, induces sustained release, and changes the 
route of drug administration, increasing the range and 
efficacy of ASC applications. Although the above strate-
gies are presently still in the research stage, their poten-
tial for clinical application is worth expecting.

Challenges and adverse reactions during clinical 
application of ASCs
In recent years, the techniques used to harvest, isolate, 
and inject ASCs have been studied and standardized. 
However, challenges remain with respect to clinical 
application. Differences in donor age, sex, body mass 
index, and donor site lead to heterogeneity of ASCs, 
which makes treatment efficacy unpredictable. In addi-
tion, the research and clinical application of human 
stem cells must follow strict guidelines and pass ethical 
reviews, which limits clinical application of ASCs.

We cannot ignore the existence of adverse reactions 
associated with ASC-based therapies. Current concerns 
related to the clinical application of ASCs focus mainly 
on embolism caused by intravascular injection, and 

possible tumorigenicity, which gives rise to ethical prob-
lems. Although an increasing number of clinical stud-
ies have refuted these concerns, further work is needed 
[152–154].

Although some of the interactions between ASCs and 
immune cells mentioned in this review have not been 
confirmed in models of immune-related skin diseases, 
they have been verified in many models of autoimmune 
disease, a field in which ASCs are likely to be used as a 
treatment. We expect that these interactions will be 
examined in models of immune-related skin diseases in 
the future. In addition, most of the current research on 
the use of ASCs as a treatment for various disorders is at 
the experimental stage; large-scale clinical trials should 
be the ultimate focus of our future efforts.

Conclusions
ASCs directly or indirectly alleviate immune-related 
skin diseases via direct interaction with immune cells 
and paracrine mechanisms. ASCs affect immune cells 
involved in both the innate and adaptive immune 
responses to inhibit their pro-inflammatory functions. 
ASCs also mediate immune pathways by secreting 
cytokines, growth factors, anti-inflammatory media-
tors, and active enzymes. Presently, most clinical 
research focuses on their efficacy and safety in human 
body, while animal studies are devoted to explored 
underlying mechanisms of the interaction of ASCs with 

Fig. 2 Application progress of ASCs on immune-related skin diseases. The image shows the process of harvest, isolation, and in vitro culture 
of ASCs from a donor, and the application of amplified ASCs and collected ASCs derivatives in the treatment of patients with immune-associated 
skin diseases. Created with BioRender.com
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immune cells and immune factors. The immunomodu-
latory effect of ASCs has been reported in multiple 
clinical trials, but these applications need to be fur-
ther explored and refined, including more standardized 
preparation methods, higher numbers of patients, and 
more stringent inclusion criteria. ASC therapy is thus 
a promising candidate for treatment of immune-related 
skin diseases and is expected to suppress disease pro-
gression and improve patient quality of life.
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