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Abstract

Introduction: Prior in vivo murine studies suggest circadian oscillations for hematopoietic stem cell release, which
are maintained following administration of granulocyte colony-stimulating factor (G-CSF) or plerixafor. Furthermore,
retrospective data analysis of healthy donors who underwent G-CSF-induced mobilization demonstrated
significantly increased CD34+ cell yields when collected in the afternoon compared with the morning.

Methods: A prospective study was conducted to directly examine the number of peripheral blood CD34+ and
CD34+CD38– progenitor/stem cells at baseline and then every 6 hours for 24 hours on days 4 to 5 of G-CSF
(10 μg/kg/day in the morning) mobilization in 11 allogeneic donors. Data were analyzed using mixed-model
analysis of repeated measures.

Results: Whereas we observed a significant increase in CD34+ cell counts toward the evening, counts were then
sustained on the morning of day 5. The correlation between CD34+CD38– cell counts and the less defined CD34+

populations was weak.

Conclusions: Our results suggest that the pharmacodynamic activity and timing of G-CSF may alter endogenous
progenitor rhythms. Donor age, medical history, and medications may also impact circadian rhythm. Further studies
should examine the circadian rhythm at the peak of G-CSF mobilization and should consider potential confounders
such as the time of G-CSF administration and the age of the subjects.
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Introduction
Hematopoietic progenitor cell (HPC) mobilization using
granulocyte colony-stimulating factor (G-CSF) is currently
the most frequent method to obtain HPC for allogeneic
transplantation. The optimal dose and schedule remains
uncertain [1], but the National Marrow Donor Program
uses a schedule of 10 μg/kg for 5 days, with the fifth
dose ~1 hour prior to the initiation of the first
leukapheresis [2]. CD34+ cell doses >4.5 to 5×106/kg are
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reproduction in any medium, provided the or
associated with improved overall survival and reduced
transplant-related mortality in the allogeneic setting [3,4].
Although obtaining this goal in a single apheresis is
preferable for donor convenience and safety, only 68%
of G-CSF mobilized allogeneic donors reach a CD34+

cell dose ≥4×106/kg in a single apheresis, with a similar
percentage for pegfilgrastim [5,6], and about 70% of allo-
geneic donors actually undergo two leukaphereses [2]. In
addition, the timing of leukapheresis collection on days 5
and 6 is standardized based on staffing convenience rather
than on kinetic data regarding the CD34+ cell number.
Based on preclinical and clinical data showing circadian

oscillations of hematopoietic progenitor and stem cell
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Figure 1 Clinical study design. Blood samples for the number of CD34+ cells ([CD34+]) / CD34+CD38– cells ([CD34+CD38–]) at 06:00 hours were
drawn immediately prior to granulocyte colony-stimulating factor (G-CSF) administration on days 4 and 5. PB, peripheral blood.

Table 1 Summary of allogeneic sibling donor
characteristics

Gender Age (years) Medical diseases (number of patients)

6 females Average: 48 Asthma: 1

5 males Median: 52 Coronary artery disease: 1

Range: 20 to 63 Diabetes mellitus type II: 2

Hyperlipidemia: 3

Hypertension: 3
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release that are maintained with G-CSF or plerixafor
mobilization [7-10], we conducted a single-center,
prospective cohort study in allogeneic donors undergoing
standard National Marrow Donor Program G-CSF
mobilization (10 μg/kg/day for 5 days, administered
between 06:00 and 07:00 hours), with the hypothesis
that evening CD34+ concentrations are significantly higher
than morning CD34+ concentrations. This study is
important because hematopoietic progenitor collections
typically occur in the morning due to convenience. The
National Marrow Donor Program regimen was chosen
because it is the most frequently used G-CSF regimen for
unrelated allogeneic donors in the United States.

Methods
This trial was a single-center, prospective cohort IRB-
approved (Mount Sinai School of Medicine IRB, #08-0446)
study in allogeneic sibling donors. Written and signed con-
sent was obtained from both donors and recipients. All sib-
ling donors for allogeneic transplants at Mount Sinai
Medical Center from January 2009 to December 2011 were
approached to participate. Baseline CD34+ concentrations
prior to starting G-CSF were assessed with two separately
collected samples. Donors were admitted the evening of
day 3 of G-CSF to the Clinical Research Center at Mount
Sinai and stayed through two nights until the morning of
day 5 of G-CSF mobilization, when they were discharged to
the apheresis center to start leukapheresis. All donors
reported normal sleep habits on specific review of symp-
toms and, except for one from Wisconsin, lived in the
New York City area and had no history of travel within
the past month outside their normal time zone.
Starting at 06:00 hours on day 4, prior to G-CSF, we

measured the number of CD34+ cells ([CD34+]) and
CD34+CD38– cells ([CD34+CD38–]) in peripheral blood
(PB) every 6 hours for 24 hours (Figure 1). Blood was
drawn through a 20-gauge angiocath attached to a medlock
placed upon admission, to avoid distress from multiple
needlesticks. Samples were drawn after discard of 2 ml PB,
and were run using a standard technique (Stem-KitW,
CD38 Ab; Beckman Coulter, Brea, CA, USA) in the clin-
ical flow cytometry laboratory. Approximately three blood
volumes were processed on the first day of collection in
all donors.
Statistical analysis was performed using the following
software: ExcelW 2007 (Microsoft Corporation, Redmond,
WA. USA), SPSS StatisticsW 18 (IBM Corporation, Armonk,
NY, USA), and SAS version 9.2 (SAS Institute Corp.,
Cary, NY, USA).

Results
Eleven healthy allogeneic sibling donors were recruited
into this study (Table 1). All participants were over 45
years of age except for three donors (ages 20, 29, and
30) and were 10/10 HLA matched except for one donor,
who was an 8/10 HLA match (mismatched at DRB1 and
DQB1). Stem cell mobilization was successfully com-
pleted in all subjects, with all measurements completed
except for one donor, in whom the 18:00 hours blood
sample was drawn but misplaced. All recipients had a
Karnofsky score of 90 or 100, received graft-versus-host-
disease prophylaxis with tacrolimus/methotrexate or
cyclosporine/mycophenolate mofetil, and have either
died or been followed for at least 1 year (Table 2).
Average absolute baseline PB [CD34+] and [CD34+CD38–]

were 3/μl (range 2 to 7/μl) and 0.6/μl (range 0 to 2/μl),
respectively. Owing to the wide variation in the absolute
number of HPCs mobilized in response to G-CSF
among individual donors, each donor’s PB [CD34+] and
[CD34+CD38–] was normalized as a percentage of that
donor’s mean of day 4 through day 5 values [7]
(Figure 2A,B). There was a very significant rise over day
4 in the PB [CD34+] concentration (P <0.0001), consistent
with the maintenance of circadian oscillations. However,
there was no significant difference in PB [CD34+] and
[CD34+CD38–] comparing the day 4 evening (18:00 or
00:00 hours) with the day 5 morning (06:00 hours) value.



Table 2 Summary of recipient characteristics

Gender Age (years) Hematologic malignancy
(number of patients)

Conditioning
regimen

Acute GVHD Chronic
GVHD

CD34 dosea per recipient
kg (×106)

5 females Average: 46 Acute lymphoblastic leukemia: 1 Myeloablative: 2 Grade I: 1 Limited: 3 Average: 8.1

6 males Median: 56 Acute myelogenous leukemia: 3 Nonmyeloablative: 1 Grade II: 4 None: 8 Median: 9.0

Range: 23 to 60 Hodgkin disease: 1 Reduced intensity: 8 Grade III: 2 Range: 3.6 to 10.0

Myelodyplastic syndrome: 2 None: 4

Non-Hodgkin lymphoma: 3

Plasma cell leukemia: 1

GVHD, graft-versus-host disease. aIn seven patients, the infused amount was less than the amount collected from the donor (remainder frozen).
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Analyzing absolute concentrations, there were also no
significant differences between day 4 evening and day 5
morning PB [CD34+] or [CD34+CD38] values (Figure 2C,
D). The three younger donors aged <45, however, had the
highest [CD34+] mobilization curves and exhibited or
maintained their peak [CD34+CD38–] at day 4 midnight.
The correlation between the 06:00 hours PB [CD34+]

and [CD34+CD38–] was weaker than expected (Figure 3A)
and the utility of using PB CD34+CD38– compared with
CD34+ alone to determine the optimal time for collection
is worth exploring given the correlation between
CD34+CD38– graft content and early engraftment in
the allogeneic setting [11,12] and long-term neutrophil
and platelet reconstitution in the autologous transplant
setting [13,14].
A

C

*  p=0.54

**  p=0.09 *
**

Figure 2 Study outcome data. (A) Normalized peripheral blood (PB) conce
CD34+CD38– cells ([CD34+CD38–]). (C) Absolute PB [CD34+]. (D) Absolute PB [
color in all graphs. For (A) and (B), each dot represents an individual donor’s p
estimate the quadratic trend in normalized values over time, assuming an aut
have time point markers added to their lines. P values were obtained using p
Post-hoc Kaplan–Meier analysis (although hypothesis-
forming only) showed a significant correlation (P = 0.02)
between PB [CD34+CD38–] and relapse (Figure 3B), of
interest since donor CD34+CD38– stem cells may
compete against leukemic CD34+CD38– stem cells
that influence relapse [15,16]. Although a product
CD34+CD38– count was not performed, the correlation
coefficient between product CD34+ count/donor weight
and 06:00 hours PB [CD34+] was 0.86.

Discussion
In previous human studies, there was an average >2-fold
difference in baseline (nonmobilized) circadian variation
in HPCs [7,9,10]. In this prospective cohort study of 11
G-CSF mobilized allogeneic sibling donors, there was a
D

*  p=0.15

**   p=0.45

**

*

B

ntration of CD34+ cells ([CD34+]). (B) Normalized PB concentration of
CD34+CD38-]. n = 11 patients. Each donor is identified with the same
ercentage change from their PB mean. A mixed model was used to
oregressive order 1 correlation structure. The three youngest donors
aired t testing.
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Figure 3 Hypothesis-generating data. (A) Correlation between
day 5 peripheral blood (PB) concentration of CD34+ cells ([CD34+])
and concentration of CD34+CD38– cells ([CD34+CD38–]) (in cells/μl).
The r value was obtained using Pearson correlation. (B) Kaplan–
Meier probability of relapse based on day 5 PB [CD34+CD38–] <10/μl
or >10/μl. Probabilities of relapse were estimated using the Kaplan–
Meier product limit method with comparison between groups
evaluated by the log-rank statistic.
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highly significant rise in PB [CD34+] and [CD34+CD38–]
throughout day 4 (P <0.0001), but no reductions in the
morning of day 5, as might be expected with a circadian
rhythm pattern.
The expected trough on the morning of day 5 may be

mitigated by the effect of G-CSF. Previous pharmacody-
namic studies show that the peak of G-CSF-induced
mobilization occurs on days 5 and 6 [17,18]. The
significant difference in absolute mean 06:00 hours HPC
concentrations (P = 0.004 for [CD34+], P = 0.037 for
[CD34+CD38–], paired t tests) between day 4 and day 5 is
consistent with a previous report [19].
On the contrary, with a G-CSF effect alone one might

expect the day 5 06:00 hours [CD34+] / [CD34+CD38–]
to be significantly higher than the day 4 evening values;
thus the absence of this finding is consistent with a
circadian rhythm. Ethical considerations precluded
postponing leukapheresis to evaluate the day 5 to day 6
PB HPC concentrations, which might effectively address
the conundrum of dissecting the circadian rhythm from
the G-CSF pharmacodynamic effect, which plateaus
during this time period [19].
The timing of G-CSF administration in the morning
may have overridden endogenous evening peak HPC
counts except in the youngest donors. In a study of serial
administration of a 4-day G-CSF course at different hours
of the day [20], the peak of the CD34+ count on the
fifth day occurred within several hours of the G-CSF
administration time on the previous 4 days (Georg
Bjarnason, personal communication). On day 5 of daily
morning G-CSF administration, there was also a non-
significant trend in 10 healthy volunteers towards a peak
CD34+ count 2 hours after the G-CSF dose [19]. In the
mouse model, where circadian rhythms were maintained
with G-CSF mobilization [9], human G-CSF was injected
subcutaneously at 125 μg/kg every 12 hours for 4 days,
and blood collection was always timed at 3 hours after the
last dose of G-CSF. Perhaps the steadier serum levels
of G-CSF obtained with every 12-hour dosing [21] is
important for maintenance of the circadian rhythm,
given G-CSF pharmacokinetics of a maximum serum
concentration after subcutaneous administration for 2 to
8 hours and a half-life of ~3.5 hours.
The circadian pattern of stem cell egress may be altered

in older people, as it is notable that the three youngest
donors had the highest [CD34+] mobilization, and
reached or maintained their peak [CD34+CD38–] at day 4
midnight. Older patients do not mobilize hematopoietic
progenitors as well as young subjects [22] and previous
studies finding an endogenous circadian rhythm used as
their subjects young mice aged 7 to 8 weeks old [9] or
healthy volunteers with mostly an age range in their 20s
and 30s [7-10].
Donor ailments or medications may have affected their

circadian rhythm, as stem cell mobilization may be affected
by diabetes [23] or by drugs affecting sympathetic tone
[24,25]. The two diabetic patients had relatively low
CD34+ mobilization, while the asthmatic donor on the
β2-adrenergic agonist albuterol (and α-adrenergic agonist
pseudoephedrine) had the highest mobilization.
Finally, the circadian peak may have occurred between

18:00 and 00:00 hours and was thus missed. Previ-
ously reported ~2-fold differences in PB [CD34+] /
[CD34+CD38–] were seen at 20:00 hours compared with
08:00 hours collection times [9]. Previous mouse data
suggest that the circadian HPC concentrations can
fluctuate significantly over 4-hour intervals [8].
The relatively poor correlation of [CD34+CD38–] with

[CD34+] and its possible prognostic importance suggest
that [CD34+CD38–] might be further explored as a
determinant of the optimal time for collection.

Conclusion
This is the first prospective cohort study based on
preclinical mouse as well as retrospective clinical data to
examine whether circadian oscillations to hematopoietic
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stem cell release are maintained with G-CSF (or
plerixafor) mobilization. Such data are important because
a simple change of collection time to coincide with the
peak of circadian egress might theoretically optimize
the number of HPC collected. Our data suggest that
endogenous progenitor rhythms may be altered by
pharmacodynamic effect and the timing of G-CSF, and
also donor age, medical history, and medications. These
findings have important implications for future study
design using G-CSF or possibly other mobilizing agents to
study HPC biology.
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