
Introduction

Multipotent stem cells extracted from many adult tissues 

are an attractive stem cell resource for the replacement of 

damaged tissues in regenerative medicine and have been 

identifi ed in many organs and tissues, including bone 

marrow, peripheral blood, fat, skeletal muscle, brain, 

skin, cornea, heart, gut, liver, ovarian epithelium, and 

testis. Multipotent stem cells are all defi ned as undiff er-

en tiated cells, are able to self-renew with a high prolifera-

tive rate, and have the potential to diff erentiate into 

specialized cells with specifi c functions [1]. Unlike pluri-

potent embryonic stem (ES) cells, multipotent stem cells 

are usually restricted to a particular lineage (mesodermal, 

endodermal, or ectodermal) but have the potential to 

diff erentiate into distinct somatic cell types with appro-

priate stimulation (Figure  1). Two main advantages for 

their use in clinical applications are that they avoid some 

ethical issues associated with pluripotent ES cells, 

resulting in a more timely approval for research and 

thera peutic use, and that adult stem cells and tissues 

derived from them are currently believed to be less likely 

to initiate rejection after transplantation.

Although human adult stem cells represent a promising 

tool for applying new clinical concepts in support of 

cellular therapy, many aspects remain to be explored in 

order to guarantee appropriate quality assurance and 

control of these cells, such as avoiding inappropriate gene 

expression in transplanted cells or the undesirable traits 

of tumorigenesis. Gene expression potential in stem cell 

renewal and diff erentiation could be regulated by epi-

genetic processes that confer a specifi c chromatin confor-

mation of the genome, of which DNA methylation is the 

best characterized (Figure 1) [2]. DNA methylation, the 

addition of a methyl group to the carbon 5 of the cytosine 

into CpG contexts, is known to be an essential process in 

development and cellular diff erentiation [3]. It is involved 

in gene regulation of housekeeping and tissue-type genes, 

silencing of one allele of imprinted genes, and compensa-

tion of the extra copy of the X chromosome in females. It 

acts as a defense mechanism, preventing genomic in-

stability due to transposon movements or insertion of 

endoparasitic sequences in the genome [4]. It must be 

pointed out that DNA methylation does not work alone 
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tests should be applied to ensure the integrity of the 

genome and epigenome.
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in controlling chromatin conformation since histone 

modifi cations and non-coding RNA regulation also 

collaborate in its control. So, we must consider the 

existence of an ‘epigenetic code’ in which several epi-

genetic factors act in a gradual and progressive manner 

for controlling chromatin structure.

Currently, much attention is being paid to the eff ects of 

CpG methylation on stemness and diff erentiation. Th e 

fi rst piece of evidence came from the observation that 

important genes for the maintenance of ES cells, such as 

Oct4 and Nanog genes, are usually hypomethylated when 

activated but became hypermethylated during diff eren-

tiation [5,6]. Knowledge of the genome-wide contribution 

of CpG methylation to stem cell maintenance and diff er-

entiation has increased in recent years, mainly because of 

the development of technical approaches for assessing 

epigenetic factors. High-throughput strategies demon-

strate that human ES cells have a unique CpG 

methy lation signature that, in combination with histone 

modi fi  cations, drives stem cell diff erentiation through 

the restriction of the developmental potential of 

progenitor cells [7,8]. In comparison with the broad-

ranging infor mation obtained from ES cells, the role of 

CpG methy lation in regulating diff erentiation of adult 

stem cells has been less extensively examined. In this 

review, we consider the reported evidence of how the 

developmental potential of adult stem cells could be 

restricted by the gain of DNA methylation of self-renewal 

genes (prevent ing the undiff erentiated features of stem 

cells in adult somatic cells) and the DNA methylation-

dependent control of tissue-specifi c genes (abolishing the 

risks of lineage-unrelated gene expression). Th e 

opportunities that this presents for manipulating the 

epigenome by means of pharmacological treatments and 

its consequences for stem cell diff erentiation and repro-

gram ming will be analyzed.

Figure 1. Lineage restriction of human developmental potency. Totipotent cells at the morula stage have the ability to self-renew and 

diff erentiate into all of the cell types of an organism, including extraembryonic tissues. Pluripotent cells – for example, in vitro embryonic stem (ES) 

cells established at the blastocyst stage and primordial germ cells (PGCs) from the embryo – lose the capacity to form extraembryonic tissues like 

placenta. Restriction of diff erentiation is imposed during normal development, going from multipotent stem cells (SCs), which can give rise to cells 

from multiple but not all lineages, to the well-defi ned characteristics of a somatic diff erentiated cell (unipotent). Specifi c chromatin patterns and 

epigenetic marks can be observed during human development since they are responsible for controlling transcriptional activation and repression 

of tissue-specifi c and pluripotency-related genes, respectively. Global increases of heterochromatin marks and DNA methylation occur during 

diff erentiation.
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DNA methylation, global chromatin context, and 

stemness

It is important to point out that the relationship between 

promoter DNA methylation and promoter activity 

depends on the CpG content of the promoters: high CpG 

promoters (HCPs), intermediate CpG promoters, or low 

CpG promoters (LCPs). In ES cells and multipotent 

progenitor cells, HCP promoters are characterized by 

low DNA methylation levels, whereas LCP promoters are 

enriched in DNA methylation [6,8,9] (Figure 2). Further-

more, specifi c histone modifi cations (that is, H3K4me3 

and H3K27me3) in HCPs appear to be more decisive for 

expression of the corresponding genes and suggest a 

degree of protection from DNA methylation [10] (Figure 2). 

Conversely, methylated LCP promoters are depleted of 

bivalent histone marks and are mostly repressed in ES 

cells [6,8,9] (Figure  2). It is suggested that silencing of 

pluripotency-related genes occurs by means of CpG 

promoter hypermethylation, whereas gain of diff erentia-

tion features is defi ned by gene regulation of Polycomb 

targets [8].

Specifi c epigenetic features at a global level also under-

pin the pluripotency of ES cells. Recent studies have 

demonstrated that ES cell chromatin is in a highly 

dynamic state with global DNA hypomethylation and a 

general abundance of transcriptionally active chromatin 

marks such as H3K4me3 and acetylation of histone H4, 

which is refl ected in the relatively decondensed 

chromatin of ES cells [2,11]. Th is global lack of DNA 

methylation in stem cells could be associated with the 

ability of such cells to activate a wide range of cell type-

specifi c genes during the diff erentiation pro grams [2]. It 

must not be forgotten that DNA methylation and histone 

modifi cations do not work alone and that the epigenetic 

inactivation of diff erentiation-specifi c genes in stem cells 

(that is, Hox and Pax family of genes) is usually repressed 

by alternative chromatin remodeling factors, such as 

Polycomb proteins [11,12]. Consequently, further study 

of the interplay of all of the chromatin regulators is 

essential for understanding the dynamism of trans crip-

tional control during stem cell renewal and 

diff erentiation.

DNA methylation-dependent regulation of genes 

associated with self-renewal of stem cells

It has been widely reported that maintenance of the 

pluripotency state is conferred by a set of development-

associated transcription factors – such as OCT4, 

NANOG, and SOX2 – that occupy promoters of active 

genes associated with self-renewal [13,14]. Expression of 

the aforementioned transcription regulators is usually 

controlled by CpG promoter methylation, and diff eren-

tiation of ES cells is accomplished by partial or full 

methylation of pluripotency-associated genes, resulting 

in their downregulation [6,15-17]. Th e opposite asso-

ciation has been found in the reprogramming of induced 

pluripotent stem (iPS) cells from diff erentiated cells, in 

which unmethylated active promoters of ES cell-specifi c 

genes were described [18] (Figure  2). Despite the con-

sider able information about silencing of pluripotency ES 

genes during diff erentiation, very little is known about 

the epigenetic control of genes associated with self-

renewal and maintenance of multipotent adult stem cells. 

In adipose-derived stem cells (ASCs) and mesenchymal 

stem cells from bone marrow (BM-MSCs), OCT4 is 

silenced by promoter hypermethylation, whereas Nanog 

and Sox2 are unmethylated despite the repressed state of 

the genes [19]. Th e same patterns of methylation were 

found in diff erentiated fi broblasts and keratinocytes [19]. 

It seems that, whereas Oct4 regulation is strongly in-

fl uenced by CpG promoter hypermethylation, the control 

of Nanog and Sox2 expression could be due to other 

repressive mechanisms such as histone modifi cation 

patterns [19]. Enrichment of H3K27me3 and H3K9me3 

and reduction of H3K79me3 have been described in the 

Nanog and Sox2 promoters of ASCs and diff erentiated 

cells but not in pluripotent cells [20]. Th ese results 

demonstrate that the transcriptional repression mecha-

nisms could vary depending on the gene and the state of 

cellular diff erentiation (that is, multipotency versus 

diff er en tiation) [19] and could constitute a mechanism 

for preventing aberrant reactivation of pluripotency and 

minimizing the risk of de-diff erentiation [21]. In line with 

this hypothesis, ES cells with genetic mutations of DNA 

methyltransferase result in rapid apoptosis-mediated cell 

death [22,23].

Th e promoter methylation status of additional stem 

cell-determining genes for self-renewal (not exclusively 

markers of pluripotency) has also been investigated [24]. 

Silencing of the mesodermal transcription factor 

Brachyury gene during diff erentiation from BM-MSCs to 

mesodermal lineages involves hypermethylation of its 

promoter but not changes in promoter hypermethylation 

of genes such as LIN28, NESTIN, or ZFP42. Th is could be 

associated with changes of expression during diff eren-

tiation of BM-MSCs [24]. Currently, we have a limited 

understanding of how multipotency is established and 

maintained in adult stem cells, and it would be very 

interesting to study the CpG promoter methylation status 

of transcription factors that confer multipotency on adult 

stem cells beyond the traditional role of pluripotency 

genes such as Oct4, Nanog, and Sox2.

Specifi c CpG methylation during diff erentiation of 

multipotent stem cells

Cellular diff erentiation is determined by a loss of 

proliferation potential and a gain of cell-type identity. 

Th is reduction of developmental potential could be 
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restricted by epigenetic modifi cations that prevent the 

risks of lineage-unrelated gene expression or undiff er-

entiated features of stem cells in adult cells [3]. However, 

the role of specifi c promoter methylation in controlling 

gene diff erentiation remains a matter of controversy. On 

one hand, there are some clues in favor of the hypothesis 

that cell type-specifi c patterns of DNA methylation 

infl uence cell type-specifi c gene expression and, by 

extension, cellular diff erentiation. For example, promoter 

methylation of SERPINB5 is inversely correlated with the 

unique expression of SERPINB5 in epithelial cells [25], 

and the rSPHK1 and hSLC6A8 promoter hypermethy-

lation associated with gene silencing in specifi c tissues 

allows expression in unmethylated brain tissue only 

[26,27]. On the other hand, genome-wide analysis of CpG 

methylation changes during the conversion of human 

pluripotent/multipotent stem cells into diff erentiated 

somatic cells reveals small changes in DNA methylation 

at promoter regions [8,9,28-30]. For example, lineage 

commitment of neural progenitor cells into terminally 

diff erentiated neurons occurs with a very moderate 

number of promoter DNA hypermethylated genes as 

cells diff erentiate [8]. Further work is needed to test 

whether these weak associations between gene repression 

and CpG hypermethylation during diff erentiation are due 

to limitations of the analytical techniques or to the 

existence of additional methylation-independent regula-

tory mechanisms.

Does CpG methylation of multipotent stem cells 

restrict lineage specifi cation?

One of the main features of adult stem cells is their 

multipotency (that is, their ability to diff erentiate into a 

number of cell types), but, in contrast to pluripotent cells, 

they are restricted to those of a closely related family of 

cells. For example, BM-MSCs primarily form mesodermal-

specifi c cell types such as chondrocytes, myocytes, 

adipo cytes, or osteoblasts [1]. However, we should 

remember that, given the information collected in recent 

years, this could be a very general statement, and there is 

some evidence to suggest that lineage restriction could be 

more permissive. For instance, BM-MSCs could be diff er-

en tiated into cells of all three germ layers and generate 

tissues such as osteocytes (mesoderm), hepatocytes 

(endoderm), or neurons (ectoderm) [31-33]. Multipotent 

cells isolated from diff erent tissues have common in vitro 

phenotypic and functional characteristics (for example, 

MSCs share fi broblast-like morphology, plastic adher-

ence, proliferation ability, and clonogenicity) but diff er in 

the expression of specifi c lineage markers (for example, 

ASCs and BM-MSCs diff er in the expression of the 

surface markers CD90, CD105, CD106, and adhesion 

molecules [34,35] and in their diff erentiation potential). 

Since gene expression in adult stem cells is regulated by 

epigenetic processes, a question arises: is the diff er en-

tiation potential in adult stem cells predicted by DNA 

methylation of specifi c lineage promoters? Th ere is some 

evidence in favor of a diff erentiation restriction imposed 

by promoter hypermethylation in progenitor stem cell 

states, whereas promoter hypomethylation does not have 

any predictive value with respect to diff erentiation 

potential [35,36]. Characterization of DNA methylation 

profi les of all human RefSeq promoters in mesenchymal 

adult stem cells from various origins, including adipose, 

hematopoietic, and neural progenitors and muscle tissue, 

shows that the majority of the lineage-specifi c genes are 

hypomethylated even if the progenitor is not able to 

diff erentiate into this specifi c lineage [10]. Th ere are 

some examples of epigenetic silencing associated with 

restriction to diff erentiation: endothelial markers such as 

CD31 and CD144 are strongly methylated in ASCs that 

show very limited capacity for endothelial diff erentiation 

[36] or osteogenic and adipogenic restriction of C2C12 

myoblast cell line diff erentiation [37]. Furthermore, the 

restriction for diff erentiation in specifi c programs im-

posed by means of DNA methylation is established early 

in development, in the progenitor state, and persists after 

diff erentiation, as most of the hypermethylated 

promoters in undiff erentiated cells remain hypermethy-

lated in somatic cells [10,37]. Th is is in agreement with 

the low level of de novo methylation described after 

diff erentiation of adult stem cells [8,9]. Results lead to the 

conclusion that the diff erentiation restriction associated 

with promoter hypermethylation clearly diff ers between 

pluripotent and multipotent cells: lineage-specifi c 

promoters are mostly hypermethylated in ES cells [6] in 

contrast to the low-percentage hypermethylation found 

in MSCs [35].

Treatment with demethylating agents results in 

spontaneous diff erentiation

Th e involvement of DNA methylation in controlling the 

diff erentiation potential of stem cells has been supported 

by several reports of spontaneous diff erentiation after 

treatment with demethylating agents (Table 1). For exam-

ple, the use of 5-aza-2’-deoxycytidine (5-ADC) promotes 

diff erentiation of ASCs into cardiac myogenic cells [38]. 

Pretreatment with 5-ADC also drives the osteogenic 

diff erentiation of BM-MSCs by enhancing the expression 

of osteogenic genes (such as Dlx5) associated with 

demethylation of its CpG shore [39,40]. However, we 

must remember that DNA methylation is just one com-

po nent of the epigenetic machinery and that removing 

DNA methy lation is often insuffi  cient to reactivate gene 

expression (Table  1). Treatments with the histone de-

acetylase (HDAC) inhibitor trichostatin A (TSA) enhance 

chon dro genic diff erentiation of BM-MSCs accomplished 

by increased expression of Sox9 [41]. Similarly, neural 
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induction was achieved when multipotent stem cells 

were exposed to TSA simultaneously with 5-ADC [42]. 

Furthermore, the eff ects of treatments with HDAC 

inhibitors are known to alter DNA methylation levels 

[41,42]. Additional evidence for the role of epigenetic 

control in diff erentiation comes from the functional 

consequences of defects in enzymes of the epigenetic 

machinery. For example, recovery of the expression of a 

defect in a histone modifi er (NSD1) suppresses cell 

growth and increases the diff erentiation of neuro blas-

toma cell lines [43]. Recovery of epigenetic patterns, by 

treatment with epigenetic drugs or by genetic models, 

highlights the potential of epigenetic modifi ers, possibly 

in combination with other factors, to enhance the ability 

of multipotent stem cells to form functional diff erentiated 

cells and has signifi cant therapeutic implications. Some 

consistent lines of evidence support this therapeutic 

application since epigenetic drugs, among them de-

methy lating agents, have shown signifi cant antitumor 

activity and the US Food and Drug Administration has 

approved the use of some of them to treat patients with 

cancer [4]. Indeed, new HDAC inhibitors (that is, 

romidepsin, belinostat, or givinostat) that are currently  

being tested in clinical trials for anticancer therapy [44] 

must also be considered as candidate molecules for 

assessing stem cell diff eren tiation. Further understanding 

of the epigenetic regula tion of tissue-specifi c genes along 

with the development of additional specifi c epigenetic 

drugs may hold the key to our ability to reset the 

epigenome successfully during stem cell diff erentiation.

Concluding remarks

It is clear that cell diff erentiation of multipotent stem 

cells is a result of a complex and dynamic network of 

transcriptional regulators, among them epigenetic factors 

that play a central role through controlling the expression/

repression of tissue-specifi c genes and multipotency-

related genes. However, it is not currently possible to 

manipulate cell diff erentiation even if we consider all of 

the genetic and epigenetic knowledge available for a 

specifi c lineage commitment. For example, epigenetic 

treatments may have a pleiotropic eff ect on the diff er-

entiation of stem cells, depending on multiple factors, 

mainly the origin of the precursor cell and environment 

conditions (presence of growth factors, transcriptional 

regulators, and so on) [39,41,45], suggesting that global 

epigenetic modifi cations, though necessary, are not suffi  -

cient to transdiff erentiate by themselves [46]. Th ese fi nd-

ings underline the necessity of evaluating in more detail 

the importance of epigenetic chromatin remodel ing for 

establishing and maintaining stemness or, on the other 

hand, initiating a diff erentiation program. Th e repro-

gram ming of somatic cells provides a new oppor tunity to 

study the contribution of epigenetics to diff erentiation. A 

mature cell can be converted into a pluripotent state by 

three experimental approaches: somatic nuclear transfer 

into enucleated oocytes, the in vitro application of a 

defi ned set of transcription factors creating iPS cells, or 

fusing ES cells with somatic cells to generate hetero-

karyons and hybrids [47]. Epigenetic rearrange ments are 

observed independently of the technique [48,49]. In fact, 

Table 1. Eff ects on diff erentiation potential of multipotent/pluripotent stem cells after treatment with epigenetic drugs

Stem cell classifi cation Epigenetic drug Diff erentiation after treatment Reference

Multipotent stem cells   

 Adipose-derived stem cells 5-aza-2’-deoxycytidine Cardiomyocytes [38]

 Adipose-derived stem cells 5-aza-2’-deoxycytidine; trichostatin A Cardiomyocytes [57]

 Bone marrow mesenchymal stem cells 5-aza-2’-deoxycytidine Osteocytes [39,40]

 Bone marrow mesenchymal stem cells 5-aza-2’-deoxycytidine Cardiomyocytes [45,58]

 Bone marrow mesenchymal stem cells 5-aza-2’-deoxycytidine; trichostatin A Osteocytes; chondrocytes [41]

 Bone marrow mesenchymal stem cells 5-aza-2’-deoxycytidine; trichostatin A Neural-like cells [42]

 Bone marrow mesenchymal stem cells Sodium butyrate Osteocytes [59]

 Cardiac progenitor stem cells 5-aza-2’-deoxycytidine Cardiomyocytes [60]

 Neural progenitor stem cells Trichostatin A Neuronal cells [61]

 Neural progenitor stem cells Valproic acid Neuronal cells [62]

 Umbilical cord mesenchymal stem cells 5-aza-2’-deoxycytidine Cardiomyocytes [63]

Pluripotent stem cells   

 Embryonic stem cells 5-aza-2’-deoxycytidine Cardiomyocytes [64,65]

 Embryonic stem cells 5-aza-2’-deoxycytidine Endothelial cells [66]

 Embryonic stem cells Trichostatin A Cardiomyocytes [67,68]
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there is evidence that HDAC inhibitors and DNA 

demethylating agents are useful for enhancing iPS 

reprogramming [50,51]. A prerequisite in reprogramming 

of iPS from somatic cells is that some stemness-related 

promoters become demethylated. How might this 

demethylation be achieved? It could be done through a 

DNA repair mechanism [52,53] or by the recent dis-

covery of TET proteins, a group of enzymes that convert 

methylated 5-methylcytosine to 5-hydroxy methyl-

cytosine [54]. Although experimental models for repro-

gram ming have generated a considerable amount of 

infor mation, many questions remain. How diff erent is the 

epigenetic regulation of pluripotent and multipotent 

cells? Does CpG methylation underpin self-renewal in 

adult stem cells, as it does in ES cells? Do epigenetic 

marks defi ne the lineage potential of an adult stem cell? Is 

it possible to revert the diff erentiation program by 

manipu lating the epigenome? How safe is this reversion? 

Th e recent discovery that nearly one quarter of all 

methylation identifi ed in ES cells was found in a non-CG 

context [55] suggests that the genomic context must also 

be addressed. Do ES cells use a diff erent methylation 

mechanism for gene regulation? Furthermore, long-term 

in vitro culture of adult stem cells, a prerequisite for 

large-scale expansion previous to implantation with 

thera peutic purposes, showed specifi c alterations of CpG 

island methylatyion [56]. As a consequence, it is 

necessary to optimize and standardize the experimental 

protocols used for in vitro expansion which minimize 

epigenetic-related instability. In conclusion, although 

manipulation of epigenetic activity might be an interest-

ing means of generating populations of specifi c cell types, 

additional epigenetic research on the understanding of 

stem cell biology must be done before they can be used as 

diff erentiation agents in stem cell-based therapies.
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