
Mesenchymal stem cells are stromal progenitors of 

the mesodermal lineage

Mesenchymal stem cells (MSCs) are a heterogeneous 

subset of stromal stem cells that can be isolated from 

many adult connective tissues. Th e cells grow as plastic-

adherent fi broblast-like cells that proliferate in vitro, 

maintaining pluripotency after prolonged culture. Under 

appropriate stimulus, MSCs can diff erentiate in vitro and 

in vivo into cells of the mesodermal lineage, such as bone, 

fat and cartilage cells.

MSCs have mainly been characterized after isolation 

from the bone marrow, where they are likely to represent 

the precursor cells for stromal tissue in close physical 

association with hematopoietic stem cells involved in 

hematopoiesis and maintenance of the homeostasis of 

the hematopoietic stem cell niche [1]. In the bone 

marrow the existence of a population of neural-crest-

derived stem cells was also shown, thus providing an 

expla nation for the reported ability of bone-marrow-

derived stem cells to also generate, to some extent, neural 

cells [2].

Despite evidence showing that MSCs can trans diff er-

entiate into multiple cell types in vitro and in vivo, the 

real contribution of MSCs to tissue repair – through 

signi fi cant engraftment and diff erentiation into biologi-

cally and functionally relevant tissue-specifi c cell types – 

is still elusive [3]. In the bone marrow, MSCs provide a 

sheltering microenvironment contributing to the preser-

va tion of hematopoietic stem cells by shielding them 

from diff erentiation and apoptotic stimuli and regulating 

their quiescence, proliferation and diff erentiation. Owing 

to their ability to support hematopoiesis, MSCs were fi rst 

utilized to enhance immune reconstitution when 

transplanted together with hematopoietic stem cells. Th e 

translation of the capacity of MSCs to diff erentiate into 

other tissues was fi rst exploited for reparative purposes, 

for example, in bone and heart diseases. Th e observation 
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that bone-marrow-derived MSCs suppressed T-cell 

proliferation in vitro [4] and in vivo [5], however, 

unexpectedly drove attention to their exploitation for the 

treatment of immune-mediated diseases; for example, in 

those diseases where their ability of modulating the 

immune response could combine with the ability to 

integrate into damaged tissues and foster repair. Experi-

mental autoimmune encephalo myelitis (EAE), a model 

for multiple sclerosis, has been the fi rst experimental 

autoimmune disease success fully treated with MSCs [6].

Experimental autoimmune encephalomyelitis is an 

example of immune-mediated disease

EAE can be actively induced in susceptible inbred 

rodents by immunization with diff erent neural antigens 

mainly derived from myelin, including myelin basic 

protein, proteolipid protein (PLP) and myelin oligo-

dendro cyte protein (MOG) in complete Freud’s adjuvant. 

Disease induction with PLP in SJL mice, and likewise 

MOG in C57BL/6 mice, requires the use of pertussis 

toxin that facilitates immune cell entry into the central 

nervous system (CNS) and contributes to T-cell tolerance 

breaking. EAE can be also induced in naïve mice by the 

intravenous passive transfer of encephalitogenic myelin-

specifi c T cells. In fact, EAE is considered a prototypical 

MHC class-II-restricted CD4+ T-cell-mediated disease. 

During the induction phase, myelin-reactive CD4+ T cells 

are primed and expanded in the peripheral lymphoid 

organs. Th e eff ector phase involves migration of activated 

myelin-specifi c T cells to the CNS, where they cross the 

blood–brain barrier and require myelin peptides 

presented by local antigen-presenting cells and dendritic 

cells for full reactivation [7].

Several lines of evidence indicate that many subsets of 

T cells play diff erent roles in the onset, maintenance and 

recovery of EAE, T-helper-type 17 cells and regulatory 

T  cells being among the main contributors to the fi nal 

outcome [8]. Not only T cells but also B cells producing 

demyelinating antibodies and macrophages are key 

eff ector cells in EAE pathogenesis. Typical EAE lesions 

resemble patterns of demyelination, infl ammatory cell 

perivascular infi ltrates, reactive microgliosis and astro-

cytosis, observed in multiple sclerosis lesions [9].

Systemic eff ect of the intravenous delivery 

of mesenchymal stem cells in experimental 

autoimmune encephalomyelitis

In the study by Zappia and colleagues we demonstrated 

that intravenous injection of syngeneic MSCs into 

C57BL/6 mice immunized with peptide 35 to 55 of MOG 

signifi cantly improved the clinical severity of EAE, in 

parallel decreasing CNS infl ammation and demyelination 

[6]. More impor tantly, we demonstrated that one 

injection of MSCs at disease onset or at the peak of 

disease suffi  ces to induce peripheral tolerance, as demon-

strated by the inability of T  cells isolated from lymph 

nodes of MSC-treated mice, but not from control 

animals, to proliferate when stimulated with the 

immunizing antigen MOG. We also observed a dose-

dependent eff ect that reached maximum effi  cacy and 

negligible mortality at the dose of 1  ×  106 MSCs. No 

clinical eff ect was observed when MSCs were infused 

during the chronic phase of EAE, suggesting that multiple 

injections may not provide further advantages if 

permanent tissue damage has occurred [6]. In another 

study, Zhang and colleagues demonstrated that intra-

venous administration of human MSCs could improve 

the clinical course of PLP-induced EAE in SJL mice 

through some level of engraftment in the CNS and subse-

quent release of neurotrophic factors promoting oligo-

dendrogenesis [10]. Th ese results highlighted that MSCs 

can cross MHC boundaries and exert their therapeutic 

eff ect also in the CNS, regardless of a very limited 

engraft ment. Following these pioneer works, in the last 

years several studies have focused on the mechanisms 

underlying the therapeutic eff ect of MSC transplantation 

on EAE.

Th e concept that MSCs ameliorate EAE through the 

induction of peripheral immune tolerance was further 

nourished by the demonstration that intravenous admin-

is tration of allogeneic MSCs in PLP-immunized mice 

inhibits the production of myelin-specifi c antibodies 

compared with controls [11]. In addition, the exposition 

of encephalitogenic T cells to MSCs in vitro signifi cantly 

decreases their ability to passively transfer EAE to healthy 

syngeneic mice [11]. Many other studies have confi rmed 

that MSCs can modulate the peripheral immune 

response to myelin antigens [12-19]. Th ese in vivo results 

have been corroborated by detailed in vitro studies 

dissecting the mechanisms of action of MSCs on 

T  lymphocytes, B lymphocytes, dendritic cells, natural 

killer cells and other immune cells [20].

Mesenchymal stem cells are neuroprotective

It is important to underline that eff ects of MSCs on EAE 

are not exclusively due to their immunomodulatory 

activity, as many groups have shown that MSCs can also 

protect neurons and spare axons with no or very limited 

evidence of engraftment and/or transdiff erentiation into 

neural cells [11-13,15,16,21]. Th ese fi ndings posed the 

question of whether the observed neuroprotection in 

EAE is due to the peripheral eff ects suppressing the 

immune response that damages myelin or to a direct 

protective and reparative activity that follows their 

engraftment in the CNS.

Several lines of evidence suggest that, somehow, MSCs 

have a direct eff ect on neural cells. Th ey have been shown 

to enhance remyelination in vivo [15,16], provide in vitro 
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Figure 1. Local mesenchymal stem cell administration does not provide signifi cant advantage compared with systemic infusion. 

(a) Clinical course of peptide 33 to 55 of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE) in 

C57Bl6 mice after intrathechal (i.t.) or intravenous (i.v.) mesenchymal stem cell (MSC) injection. Arrow, day of injection. *P ≤0.05 Mann–Whitney 

U test. (b) Analysis of demyelination in the spinal cord of treated mice; 5 μm sections were stained with Luxol Fast Blue and the demyelinated 

area was expressed as a percentage of the total surface area. *P ≤0.01 Mann–Whitney U test. (c) Counts of luciferase-labeled MSCs in the central 

nervous system (CNS) of EAE-aff ected mice. Luciferase-positive MSCs were detected using a rabbit anti-luciferase monoclonal antibody (Alexa Fluor 

488-conjugated) after 24 hours and 40 days from intravenous and intratechal injection. Six CNS tissue sections per mouse were analyzed and in 

each section the number of positive cells was reported as the number of positive elements/mm2.
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soluble cues that infl uence fate determination of neural 

cells [16,22], display a potent antioxidant eff ect in vivo 

[23,24] and display a neuroprotective eff ect [25] mediated 

by the release of antiapoptotic molecules in vitro [26] and 

in vivo [27]. Th ese neuroprotective eff ects may well ex-

plain the remarkable eff ect obtained with the adminis-

tration of MSCs in experimental models of stroke [28] 

and spinal cord injury [29]. Th ere is uncertainty, however, 

regarding the ability of MSCs to colonize the CNS after 

peripheral delivery due to their scarce ability to pass the 

lung fi lter following intravenous administration [30] and 

due to the lack of reliable labels or defi nitive markers for 

MSCs [31].

Irrespective of these aspects, the current view suggests 

that MSCs may exert their neuroprotective eff ect at 

distance through the release of trophic molecules, 

possibly aff ecting microglia activation [27] and inducing 

local neurogenesis [15,16,32].

Does local administration provide signifi cant 

advantage compared with systemic infusion?

To enhance the possibility for MSCs to engraft in the 

CNS and provide optimal therapeutic eff ects locally, 

Kassis and colleagues demonstrated, following intra-

ventricular injection of MSCs, the expression of neural 

markers by a few transplanted labeled cells mainly in the 

proximity of infl ammatory lesions – suggesting that some 

level of transdiff erentiation was achieved [12]. Similarly, 

Barhum and colleagues showed that intraventricular 

adminis tration in vitro of MSCs modifi ed to produce 

neuro trophins successfully attenuated EAE [19].

We therefore evaluated whether local injection of a 

high number of MSCs may provide some advantage over 

intravenous systemic administration by comparing two 

diff erent routes of cell delivery in C57Bl/6 mice following 

immunization with the myelin antigen, peptide 35 to 55 

of MOG. Th e intratechal delivery of 1 × 106 MSCs at the 

onset of the fi rst clinical symptoms (around day 10) 

resulted in a signifi cant amelioration of EAE compared 

with intra techally PBS-injected animals. No signifi cant 

diff erence was observed, however, when we compared 

the clinical course of mice intravenously injected with 

those treated intratechally (Figure  1 and Table  1). No 

signifi cant diff er ence was also observed when the extent 

of spinal cord demyelinating lesions was compared 

(Figure 1). As expected, the number of Luciferase-

transfected MSCs, detected after 24 hours in the CNS of 

intratechally injected mice, was higher than in those 

where MSCs were delivered intravenously. After 40 days, 

however, the number of Luciferase-positive cells was 

clearly diminished with no statistical diff erence between 

the two groups (Figure 1). Th ese results favor the current 

hypo thesis that MSCs act by diff erent mechanisms, 

mainly paracrinally on cells both at a distance and at the 

site of tissue damage, without the requirement of long-

term engraftment [33].

Intravenous injection of mesenchymal stem cells 

also modulates the immune response in the CNS

A major issue still unsolved by the above-described 

studies was whether intravenously injected MSCs could 

also impact the immune response inside the CNS. It is 

well known that, following intravenous administration, 

MSCs inhibit infi ltration of T  cells and macrophages in 

mice with EAE [6]. Th ese results, however, are likely to be 

an eff ect of the cells’ tolerogenic ability exerted in the 

periphery on encephalitogenic T  cells, as demonstrated 

by the inhibition of EAE following passive transfer of 

myelin-specifi c T cells [11].

To address this question we isolated T cells infi ltrating 

the brain of EAE-aff ected mice treated either intra-

venously or intratechally with MSCs and we measured by 

intracellular fl ow cytometry and real-time PCR the 

expression of the transcription factor FOXP3, a specifi c 

marker of regulatory T cells previously demonstrated to 

be expanded in the lymphoid organs of mice with 

collagen-induced arthritis treated with MSCs [34]. We 

observed not only that the intratechal delivery of MSCs 

induced an expansion of FoxP3+ T  cells in the brain of 

EAE-aff ected mice compared with controls, but also that 

a similar result was observed in intravenously injected 

mice (Figure  2). Such a result probably depends on 

increased recruitment of this subset from the peripheral 

blood. To our surprise we observed, in the T cells isolated 

from the brain of both groups of MSC-treated mice 

compared with controls, an increase in the expression of 

Table 1. Clinical features of experimental autoimmune encephalomyelitis-aff ected mice

 Disease Disease onset,  Mean maximum Cumulativ e
 incidence days after immunization neurologic score disease score

EAE control i.v. 14 / 14 (100%) 12 ± 0.8 3 ± 0.5 84.4 ± 13

EAE + MSCs i.v. 14 / 15 (93.4%) 11.5 ± 0.5 2.5 ± 0.9 67.6 ± 28.7*

EAE control i.t. 14 / 14 (100%) 11.6 ± 0.6 3 ± 0.5 85.2 ± 15.3

EAE + MSCs i.t. 14 / 15 (93.4%) 12.3 ± 1 2.4 ± 0.7* 63.7 ± 25.7*

Data presented as n / total (%) or mean ± standard deviation. EAE, experimental autoimmune encephalomyelitis; i.t., intrathecally; i.v., intravenously; MSC, 
mesenchymal stem cell. *P ≤0.05 (Student’s t test).
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Figure 2. Intratechal and intravenous injection of mesenchymal stem cells modulates immune response in central nervous system. 

Expression of FoxP3 in T cells infi ltrating the central nervous system of experimental autoimmune encephalomyelitis aff ected mice at the peak of 

disease: (a) at protein level, evaluated by intracellular fl ow cytometry (FACSCanto II; BD Bioscience, Buccinasco, Milan, Italy); and (b) at mRNA level, 

evaluated by real-time PCR using a LightCycler® 480 (Roche Applied Science, Indianapolis, IN, USA). (c) IL-17 mRNA expression from infi ltrating 

T cells, analyzed by real-time PCR. *P ≤0.05 Mann–Whitney U test. i.v., intravenous; i.t. intrathecal.
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IL-17, a cytokine that plays an important role in the 

pathogenesis of autoimmune diseases (Figure  2). Th ese 

results may be explained by the recent demonstration 

that MSCs can induce T-helper-type 17 cells to acquire a 

regulatory phenotype [35], and may also clarify the 

observation that human MSCs were shown to increase T-

helper-type 17 responses in vitro [36].

Conclusions

Overall, many studies have confi rmed that MSCs, either 

from syngenic or xenogeneic sources, are eff ective in the 

treatment of EAE and dissected their mechanisms of 

action, probably in a much deeper fashion than in any 

other experimental disease. Th e results discussed in the 

present article demonstrate that MSCs can repair neural 

tissues as they display a broad therapeutic activity that 

acts both on immune and neural cells but feebly involves 

their transdiff erentiation. Interestingly, despite a limited 

ability to engraft in the nervous system, MSCs can clearly 

modulate the immune response not only in the peripheral 

lymphoid organs [6] but also within the CNS.

Based on these studies and the available clinical experi-

ence obtained in several human conditions, MSCs can be 

considered an appealing therapeutic option for multiple 

sclerosis individuals with ongoing infl ammatory disease  

refractory to conventional therapies [37,38].
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