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Neoinnervation and neovascularization of
acellular pericardial-derived scaffolds in
myocardial infarcts
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Abstract

Engineered bioimplants for cardiac repair require functional vascularization and innervation for proper integration
with the surrounding myocardium. The aim of this work was to study nerve sprouting and neovascularization in an
acellular pericardial-derived scaffold used as a myocardial bioimplant. To this end, 17 swine were submitted to a
myocardial infarction followed by implantation of a decellularized human pericardial-derived scaffold. After 30 days,
animals were sacrificed and hearts were analyzed with hematoxylin/eosin and Masson’s and Gallego’s modified
trichrome staining. Immunohistochemistry was carried out to detect nerve fibers within the cardiac bioimplant by
using βIII tubulin and S100 labeling. Isolectin B4, smooth muscle actin, CD31, von Willebrand factor, cardiac troponin
I, and elastin antibodies were used to study scaffold vascularization. Transmission electron microscopy was performed
to confirm the presence of vascular and nervous ultrastructures. Left ventricular ejection fraction (LVEF), cardiac output
(CO), stroke volume, end-diastolic volume, end-systolic volume, end-diastolic wall mass, and infarct size were assessed
by using magnetic resonance imaging (MRI). Newly formed nerve fibers composed of several amyelinated axons as the
afferent nerve endings of the heart were identified by immunohistochemistry. Additionally, neovessel formation occurred
spontaneously as small and large isolectin B4-positive blood vessels within the scaffold. In summary, this study
demonstrates for the first time the neoformation of vessels and nerves in cell-free cardiac scaffolds applied over
infarcted tissue. Moreover, MRI analysis showed a significant improvement in LVEF (P = 0.03) and CO (P = 0.01)
and a 43 % decrease in infarct size (P = 0.007).
Findings
Background
Myocardial infarction (MI) was first described over a
century ago, yet it remains a leading cause of death
worldwide despite the significant advances achieved
in recent years [1]. In this context, cardiac tissue
engineering is a new discipline of growing interest for
rebuilding and regenerating myocardial necrosis after
ischemic events [2]. To ensure the effectiveness of
engineered bioimplants, they should be electrome-
chanically coupled with the host myocardium and
supported by functional vasculature and innervation to
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produce viable and stable contractile function [3]. Non-
innervated cardiac bioimplants may lead to incomplete
integration with the surrounding cardiac tissue, which is
innervated by the autonomic nervous system [4].
Currently, the de novo innervation of cardiac engineered
bioimplants is incompletely characterized and little is
known about its occurrence after MI. Accordingly, we
studied the presence of nerve sprouting and neovas-
cularization in a cell-free pericardial-derived scaffold
implanted over a post-infarct scar in swine after 30
days of follow-up.
Methods
A detailed description of the experimental process and ana-
lysis is provided in Additional file 1 of the supplemental
material. This study was approved by the Minimally Inva-
sive Surgery Centre Jesús Usón Animal Experimentation
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Unit Ethical Committee (#ES 100370001499) and complies
with all guidelines concerning the use of animals in re-
search and teaching as defined by the Guide for the Care
and Use of Laboratory Animals (National Institutes of
Health Publication #80–23, revised 1996). Human pericar-
dial samples were acquired after written informed consent
was obtained from all patients undergoing cardiac surgery.
The Germans Trias i Pujol University Hospital ethics com-
mittee approved this study (PI-14-050), and the protocol
conformed to the principles outlined in the Declaration of
Helsinki.
Briefly, 17 animals were submitted to an MI. Thirty

minutes later, a decellularized pericardial-derived scaf-
fold, rehydrated with RAD16-I, was placed over the
ischemic myocardium as previously described [5]. After
sacrifice, the hearts were excised and analyzed with
hematoxylin/eosin (H/E) and Masson’s and Gallego’s
modified trichrome staining. Immunohistochemistry was
carried out to detect nerve fibers within the cardiac
bioimplant by using βIII tubulin and S100 labeling.
Isolectin B4, smooth muscle actin (SMA), CD31, von
Willebrand factor (vWF), cardiac troponin I, and elastin
antibodies were used to study scaffold vascularization.
Moreover, transmission electron microscopy (TEM) was
performed to confirm the presence of vascular and ner-
vous ultrastructures. Additionally, seven animals were
submitted to magnetic resonance imaging (MRI) to
measure the effect of the pericardial-derived scaffold on
cardiac function. Functional parameters were monitored
at baseline, 48 h post-MI, and after 1 month, before
sacrifice. Left ventricular ejection fraction (LVEF), cardiac
output (CO), stroke volume, end-diastolic volume, end-
systolic volume, end-diastolic wall mass, and infarct size
measurements were blindly analyzed. Statistical analysis
was performed with SPSS statistic software (19.0.1 version;
SPSS Inc., Chicago, IL, USA). Differences in MRI analysis
were analyzed by using Student’s t test for paired samples.
Data are presented as the mean ± standard error of
the mean, and statistical significance was achieved
when P <0.05.

Results and Discussion
First, we examined the composition of native human
pericardial tissue (Fig. 1a), which was snap-frozen, and
10-μm sections were made. To describe the histological
structure of this tissue, it was subjected to H/E and
Masson’s and Gallego’s modified trichrome staining. The
morphologic structure of the pericardium had two main
domains: (1) an extracellular matrix (ECM) rich in
collagen and elastin fibers (Figs. 1b, f, and j) and (2) a
cellular domain composed mainly of adipocytes (Figs. 1c,
g, and k). Native pericardium includes blood vessels
(Figs. 1d, h, and l) and nerve fibers (Figs. 1e and i), as
confirmed by the presence of isolectin B4-positive
vessels, with and without SMA (Figs. 1n and o), and
nerve fibers labeled with βIII tubulin (Figs. 1p and q).
Vascular ultrastructures were also observed in TEM im-
ages (Fig. 1m).
Next, the pericardium was subjected to a complete

decellularization, lyophilization, and sterilization process
(Fig. 1r), resulting in a newly engineered pericardial-
derived scaffold ready to apply over the MI (Fig. 1s).
Figure S1 of Additional file 2 shows pericardial-derived
scaffolds free of nuclei and cellular debris preserving its
ECM. Furthermore, a previous work showed that, after
detergent treatment, scaffold DNA content was signifi-
cantly lower than native pericardium; reduction was
approximately 70 % [5].
Twenty-one animals underwent to a transmural MI by

final artery ligation. During follow-up, one swine died of
ventricular fibrillation and three were excluded from the
study because of local scaffold infection. The remaining
17 animals were sacrificed after 28.45±4.25 days of
follow-up. Before sacrifice, the heart was exposed and
the pericardial-derived scaffold covering the myocardium
was examined in all cases (Fig. 1t). Then this area was ex-
cised, paraffin-embedded, or snap-frozen (Fig. 1u).
H/E and Masson’s and Gallego’s modified trichrome

staining provided a histological description of the
pericardial-derived scaffold. The presence of de novo
nerve fibers (Figs. 2a-c) and blood vessels (Figs. 3a-c)
within the scaffold was confirmed. Moreover, Fig. 3a il-
lustrates perfect adhesion and integration of the scaffold
with the adjacent myocardium. Immunohistochemistry
showed newly formed nerve fibers positive for S100
protein (Figs. 2d-d′′) and βIII tubulin (Figs. 2e and f).
Additionally, TEM images helped to discern nerve struc-
tures composed of several amyelinated axons (Fig. 2g),
numerous transport vesicles, microtubules, and mito-
chondria (Fig. 2h).
The examination of vascular structures under immuno-

histochemistry demonstrated that de novo small (Fig. 3d)
and large (Fig. 3e) isolectin B4-positive blood vessels
were also found within the scaffold. Indeed, specific
SMA identified arterioles with a thick SMA-positive layer
(Fig. 3f) and venules with a thin muscular layer (Fig. 3e).
Of note, as shown in Fig. 3f, neovessels were dispersed
all over the thickness of the scaffold, often located away
from the adjacent myocardium. These new-formed ves-
sels were also positive for CD31 (Fig. 3g) and vWF
(Fig. 3h) antibodies. TEM better characterized the vas-
cular structures within the scaffold and the presence of
erythrocytes within neovessel lumen, confirming func-
tional conduits with blood flow (Figs. 3i and j). Capil-
laries were identified by endothelial cells surrounded by
pericytes.
Cardiac function analysis after MRI showed signifi-

cant differences between 48 h post-MI and final data



Fig. 1 Native human pericardium. a Native human pericardium. b-l The corresponding sections were composed of dense tissue rich in collagen
and, elastin, and adipose tissue after hematoxylin/eosin staining (b and c, respectively), light green Masson’s (f and g, respectively), and Gallego’s
modified trichrome (j and k, respectively) staining. Vascular (d, h and l) and nerve (e and i) structures in native human pericardium.m Transmission
electron microscopy image of native pericardium showing the presence of microvasculature (arrows). Blood vessels in human pericardium labeled
with isolectin B4 (green), smooth muscle actin (red), and elastin (white) antibodies (n), von Willebrand factor (green) and collagen I (red) (o), and CD31
(green) and collagen I (red) (p). q Nerve fibers in the native pericardium after βIII tubulin (green) and elastin (red) labeling. Nuclei are counterstained with
4′,6-diamidino-2-phenylindole (DAPI) (blue). r Decellularized and lyophilized human pericardium and (s) its implantation after coronary ligature (asterisk).
t Photograph of a decellularized, cell-free pericardium 30 days after implantation. u Snap-frozen sample including the myocardium (M) and the pericardial
scaffold (P) adhered to the cardiac muscle. Scale bars = 100 μm (D, G, J and K), 50 μm (b, c, e, f, h, i, l, o, p, q, and r), and 2 μm (m)
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in LVEF (52.7±1.6 versus 57.9±1.7; P = 0.03) and CO
(1.9±0.1 versus 2.4±0.1; P = 0.01) (Figs. 4a and b,
respectively). Additionally, delayed enhancement im-
ages showed a significant reduction in infarct size
(5.4±1.5 versus 3.1±1; P = 0.007) (Figs. 4c-g).
This study analyzed for the first time neoinnervation

and neovascularization of a cell-free engineered scaffold
implanted in swine after an induced MI and its effect in
cardiac function. This newly engineered pericardial-
derived scaffold was recently shown to integrate well
as a cardiac bioimplant after an acute MI in swine
[5]. In the present work, we decided to use cell-free
scaffolds to unambiguously analyze the contribution
of host-derived cells rather than that of cells delivered
through the scaffold.
In cardiac tissue engineering, synthetic (e.g., polylactic

acid and polyglycolic acid) and biological (e.g., collagen
and fibrin) scaffolds have been extensively used [2].
None of these has proven optimal as far as replicating
the local tissue-specific architecture. More recently,



Fig. 2 Neoinnervation of pericardial-derived scaffolds after myocardial infarction. Histological sections of the pericardial-derived scaffold showing
nerve fibers (arrows) after Gallego’s modified trichrome (a), light green Masson’s trichrome (b), and hematoxylin/eosin (c) staining. d-d′′ Immunohistological
analysis exhibiting positive S100 nerve structures in the scaffold and corresponding zoomed images. e and f Immunofluorescence against βIII tubulin
(green), cardiac troponin I (white), and elastin (red) labeled nerve fibers (arrows), myocardium (M) and pericardial-derived bioimplant (P), respectively. Nuclei
are counterstained with 4′,6-diamidino-2-phenylindole (DAPI) (blue) (g and h). Transmission electron microscopy images of the scaffold showing nerve
structures composed of Schwann cells (S), axons (A), and fibroblasts of the perineurium (F), endoneurium (E), transport vesicles (TV), microtubules (M),
mitochondria (MT), and synaptic vesicles (SV). Scale bars = 100 μm (d), 50 μm (a, b, d′, e, and f), 20 μm (c and d′′), 5 μm (g), and 2 μm (h)
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ECM-derived scaffolds obtained from decellularized
natural tissues emerged as promising alternatives since
they preserve the natural tunnels necessary for vessels
and nerves and the porosity to nest specialized cells.
Decellularized native tissues keep their ECM mechanical
integrity and bioactive molecules favoring cell-ECM
adhesion and cellular contact [6]. To date, decellularized
tissues are known to contribute to cell migration, prolif-
eration, and differentiation [7]. It was unclear whether
vascularization to ensure oxygen and nutrient diffusion
and innervation to support contractile properties and
electrical coupling with the target tissues were supported
by ECM-derived scaffolds [8].
Prior cardiac tissue engineering studies have already

demonstrated scaffold revascularization; in most cases,
this was achieved by adding angiogenic factors or
embedding progenitor cells within the scaffold with
paracrine neovascular effects. Here, we show vascular
neoformation in a decellularized scaffold covering
ischemic myocardium in the context of acute MI.
Neovascularization was demonstrated by isolectin B4-,
CD31-, and vWF-positive labeling, and SMA media
thickness enabled characterization of arterial or venous
traits. Vascular connections between the pericardial-
derived scaffold and the underlying myocardium were
not identified, but the neovessels were found to contain
erythrocytes within their lumen, indicating functional
connections with the host vascular system. Finally, the
presence of pericytes surrounding the endothelial cells
indicates dynamic regulation of this vascular system [9].
Elucidating the exact mechanism(s) by which our scaf-
folds become vascularized will require further investiga-
tion. However, it is likely caused by the local myocardial
hypoxic milieu that promotes the expression of vascular
endothelial and platelet-derived growth factors, stromal
cell-derived factor 1α, and macrophage chemotactic
protein, mobilizing host-circulating cells to vascularize
the damaged tissue [10]. Moreover, injectable self-
assembling peptide nanofibers, such as those formed
by RAD16 (used in this study), generate a favorable



Fig. 3 Neovascularization of pericardial-derived scaffolds after myocardial infarction. a Masson’s trichrome staining composition screening demonstrated
the correct adhesion of the cardiac bioimplant with the adjacent myocardium. b and c-c′′ Gallego’s modified trichrome and hematoxylin/eosin staining
exhibiting vessels in the cardiac matrix and zoomed images, respectively. Immunofluorescence analysis in the pericardial-derived scaffold after its
implantation against isolectin B4 (green), smooth muscle actin (red), and elastin (white) indicates the presence of microvasculature (d), venules (e), and
arterioles (f). Red positive immunostaining against CD31 (g) and von Willebrand factor (h) antibodies in pericardial-derived scaffold (arrows). Nuclei are
counterstained with 4′,6-diamidino-2-phenylindole (DAPI) (blue) (i and j). Transmission electron microscopy images of the pericardial-derived scaffold
show vascular structures (arrows) where endothelial cells (EC), pericytes (PC), and erythrocytes (E) are present. Mmyocardium, P pericardial-derived scaffold.
Scale bars = 100 μm (a-c), 50 μm (c′ and d-h), 20 μm (c′′), and 5 μm (i and j)

Gálvez-Montón et al. Stem Cell Research & Therapy  (2015) 6:108 Page 5 of 7
microenvironment that recruits and promotes survival
and self-organization of endothelial cells [11].
Nerve sprouting assessment in cardiac tissue engineer-

ing is novel, although pilot studies using adenoviral over-
expression of glial-derived neurotrophic factor in the
graft tissue [4] or S100A1 gene transfer to strengthen
the engineered cardiac grafts have already been reported
[12]. S100 proteins are calcium-binding proteins that
regulate multiple cellular and molecular functions,
including contraction, proliferation, differentiation,
and apoptosis in physiological and pathophysiological
settings [13–15]. S100-positive nervous fibers in the
present study support the identification of differenti-
ated neural cells, such as Schwann cells, in the
pericardial-derived scaffolds. Schwann cells are known
to stimulate nerve regeneration in both the central
and peripheral nervous systems [16]. By contrast, βIII
tubulin expression is an early marker of neuronal
commitment identified in primitive neuroepithelium.
Previous studies have shown that hypoxia induces βIII
tubulin expression in different clinical settings such
as glioblastoma, glioma cells, lung and ovarian cancer,
and umbilical cord blood-derived mesenchymal stem
cells from hypoxic infants [17–19]. In the present
work, we also identified MI as a hypoxic model that
induces βIII tubulin expression and gives rise to
neurite outgrowth in the pericardial-derived scaffold.
Additionally, TEM images suggest that these newly
formed neural cells are unmyelinated as the afferent
nerve endings of the heart [20].
Furthermore, after MRI cardiac function analysis,

the cell-free engineered scaffold after MI is respon-
sible for important significant improvements in LVEF
and CO and a 43 % reduction in infarct size. We
may speculate that since the neoinnervated and neo-
vascularizated scaffold is well adapted to the damaged



Fig. 4 Cardiac function analysis by magnetic resonance imaging. Left ventricular ejection fraction (LVEF) (a), cardiac output (CO) (b), and infarct
size (c) at 48 h and 30 days after myocardial infarction (MI) and decellularized pericardial-derived scaffold implantation. Data for individual pigs
(dots) are shown. P = 0.030 (a), P = 0.010 (b), and P = 0.007 (c). Representative turbo-spin-echo (d and e) and T1 short-axis delayed enhancement
(f and g) images from one pig 48 h and 30 days after MI and decellularized pericardial-derived scaffold grafting. Arrows indicate MI in the left ventricular
wall, and T1 images show healthy myocardium (black) and the MI with gadolinium retention (brilliant white)
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myocardium, this new-engineered bioimplant could be
driven to a maturation and functional development,
improving the loss of cardiac function after MI [3].
Conclusions
This study demonstrates neoformation of vessels and
nerves in a cell-free cardiac scaffold made of decellular-
ized pericardium after MI in swine. These data suggest
that vascularization and innervation processes are sup-
ported by the matrix structure, are hypoxia-dependent,
and require mobilization of host cells. Thus, the search
for an optimal scaffold that preserves the natural tunnels
needed for vascular vessels and nerves and with the
porosity to nest cells may be crucial to ensure a func-
tional and successful engineered bioimplant. Further
studies are needed to explore the mechanisms under-
lying neovascularization and neoinnervation of an
acellular scaffold and to assess the clinical benefits of
such phenomena.
Limitations of the study
Landrace × Large White prepuberal pigs were used and
thus results may differ from those of an adult model.
For this purpose, it would be interesting to perform
further studies at later time points in order to analyze
the durability of the biological effects exerted by the
pericardial-derived scaffold after MI.
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Additional file 2: Fig. S1. Decellularized human pericardium.
Histological sections of cell-free human pericardium after hematoxilin/
eosin (a), light green Masson’s (b), and Gallego’s modified (c) trichrome
staining. Immunohistofluorescence against βIII tubulin (green), elastin (red),
and isolectin B4 (white) of a decellularized pericardium showing the
absence of nerves, vessels, and cell nuclei (d). Nuclei are counterstained
with 4′,6-diamidino-2-phenylindole (DAPI) (blue). Transmission electron
microscopy images of human pericardium showing its ultrastructure after
decellularization and lyophilization processes (e and f). Scale bars = 100 μm
(a-c), 50 μm (d), 0.5 μm (e), and 200 nm (f).
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