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Abstract

Treating a myocardial infarction (MI), the most frequent
cause of death worldwide, remains one of the most
exciting medical challenges in the 21st century. Cardiac
tissue engineering, a novel emerging treatment, involves
the use of therapeutic cells supported by a scaffold for
regenerating the infarcted area. It is essential to select
the appropriate scaffold material; the ideal one should
provide a suitable cellular microenvironment, mimic the
native myocardium, and allow mechanical and electrical
coupling with host tissues. Among available scaffold
materials, natural scaffolds are preferable for achieving
these purposes because they possess myocardial
extracellular matrix properties and structures. Here, we
review several natural scaffolds for applications in Ml
management, with a focus on pre-clinical studies and
clinical trials performed to date. We also evaluate scaffolds
combined with different cell types and proteins for their
ability to promote improved heart function, contractility
and neovascularization, and attenuate adverse ventricular
remodeling. Although further refinement is necessary in
the coming years, promising results indicate that natural
scaffolds may be a valuable translational therapeutic
option with clinical impact in Ml repair.

Introduction

Myocardial infarction (MI) occurs when coronary artery
blood flow is blocked. Currently, MI remains the most
frequent cause of death worldwide [1]. In the United
States alone, approximately 8 million people per year
have a MI episode [2]. For effective MI treatment, it is
necessary to limit adverse ventricular remodeling,
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attenuate myocardial scar expansion, enhance cardiac
function and regeneration, and preserve synchronous
contractility. Among the current therapies, only heart
transplantation can fully achieve all these outcomes.
Nonetheless, transplantation is highly limited by heart
donor availability and host immunological response
against the donated organ [3].

An alternative, novel therapeutic option is to deliver
cells into the injured myocardium; this approach was
demonstrated to be safe and feasible [4, 5]. To date,
several cell types have been used for cardiac regener-
ation, including embryonic stem cells (ESCs) [6], cardi-
omyocytes (CMs) derived from induced pluripotent
stem cells (iPSCs) [7], mesenchymal stem cells (MSCs)
[8], bone marrow MSCs [9], cardiac stem cells [10], car-
diac progenitor cells [11], skeletal myoblasts [12], endo-
thelial cells (ECs) [13], adipose tissue-derived stem cells
(ATDSCs) [14], and CMs [15]. However, modest results
have been obtained due to massive cell loss after
administration, low cellular survival or lack of cellular
effect triggered by hypoxic conditions in the host tissue,
failure to establish electrical or mechanical heart coup-
ling, which results in arrhythmias, and low rates of cell
differentiation into a cardiac lineage [3]. To overcome
these limitations, new methods for enhancing the final
outcome have been proposed.

Cardiac tissue engineering offers a plausible solution
to the drawbacks encountered previously. This alterna-
tive consists of seeding cells onto a structural, supportive
platform, known as a scaffold, and may also be supple-
mented with cytokines, growth factors, or peptides. The
scaffold provides a biomimetic environment which
resembles the physiological cardiac environment; thus, it
favors cell attachment and differentiation, and it avoids
direct administration of cells into an adverse environ-
mental niche (that is, infarcted myocardium) [16, 17].
Therefore, an optimal scaffold for cardiac repair should
recreate the myocardial microenvironment, structure,

© 2015 Perea-Gil et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13287-015-0237-4&domain=pdf
mailto:cprat@igtp.cat
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Perea-Gil et al. Stem Cell Research & Therapy (2015) 6:248

and three-dimensional organization, permit vascularization
to ensure oxygen and nutrient flow to the cells, match elec-
trical and mechanical requirements for proper host tissue
coupling, be easily replaceable, and enhance cell survival
and engraftment [3, 16, 17].

Depending on the origin of scaffold material, scaffolds
are divided into two groups: natural and synthetic.
Although synthetic materials offer the ability to directly
control and adjust scaffold properties, natural materials
appear to be more biodegradable and biocompatible. In
addition, natural materials can better recreate the native
myocardial microenvironment [18], which is necessary
for generating the optimal, most suitable scaffold.

Here, we review natural scaffolds and hydrogel applica-
tions developed to repair injured myocardium after a MI.
We describe constructs of natural materials combined
with different cell types and other elements, and we
analyze the main outcomes of heart function recovery in
pre-clinical MI models and in clinical trials currently avail-
able (Tables 1, 2, 3, 4, 5 and 6). This summary provides an
in-depth view of the current state of natural scaffold use
in cardiac tissue engineering. Finally, we discuss the posi-
tive and negative aspects of the latest investigations in the
field of myocardial regeneration.

Natural scaffold materials for myocardial
regeneration

In recent years, in vitro studies have consolidated our
understanding of natural scaffold generation and their
application in cardiac tissue engineering. This progress
has enabled further investigation and improvements in
this field, leading ultimately to in vivo progressive im-
plantation of the developed scaffolds, supported by the
positive results obtained in vitro (Fig. 1). In the following
sections we review the most notable and latest improve-
ments for in vivo MI treatment using different natural
scaffold implantation methods (Fig. 2).

Collagen

Collagen, the predominant protein in mammalian extra-
cellular matrix (ECM), provides structural support for
maintaining tissue integrity and contributes to the speci-
ficity of ECM microenvironments [19]. Several optimal
properties, such as being biocompatible, adhesive, sutur-
able, porous and readily combined with other materials,
have made collagen appropriate for use as a natural scaf-
fold in tissue engineering applications [20—-25].

In cardiac tissue engineering, collagen scaffolds pro-
mote cardiac commitment, vascularization, and electrical
coupling, thus representing a good candidate platform
for MI repair. Collagen scaffold-associated benefits have
been observed in different MI models (Table 1). Specific-
ally, collagen type I delivery 3 hours after induction of a
MI, without cells or added growth factors, can prevent
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adverse ventricular remodeling and long-term deterior-
ation of heart function [26]. Furthermore, collagen can
increase angiogenesis, reduce cell death, and limit the
area of fibrosis, although these therapeutic effects were
lost when the collagen scaffold was administered 1 or
2 weeks post-MI [26]. Another study revealed similar
results when they inserted a collagen type I patch into
rats subjected to MI [27]. After 4 weeks, compared with
infarcted rats without the collagen patch, those with the
patch had reduced adverse ventricular remodeling, lim-
ited fibrosis propagation, and significantly greater blood
vessel formation. Remarkably, cardiac function was sig-
nificantly increased, with an improvement of approxi-
mately 25 % in ejection fraction (EF) compared with
non-treated infarcted animals [27]. These results were
also confirmed in a rat MI model where the collagen
type I-treated group showed attenuated left ventricular
(LV) remodeling and increased angiogenesis, which pro-
moted the formation of new connective vasculature
between the scaffold and the host myocardium, pointing
out the importance of the collagen scaffold itself [28].

In addition, constructs combining different growth
factors, proteins, cells or other natural or biological
materials onto collagen scaffolds have been placed over
infarcted myocardium (Table 1). One study in rats deliv-
ered a collagen type I scaffold combined with MSCs and
interleukin-10 to the infarcted area of the heart [29].
When analyzed 28 days after treatment, the group that
received the scaffold combination exhibited higher EF
(mean recovery of 7 %), a 40 % increase in infarcted wall
thickness, a higher collagen III/I ratio, and less apoptosis
inside the implant compared with the group that received
the scaffold alone. Of interest, lower CD80+ macrophage
and higher regulatory CD163+ macrophage infiltration
was detected in the ischemic zone when the scaffold was
applied, suggesting less associated inflammatory response.
Nonetheless, these parameters were not significantly dif-
ferent when rats were treated with MSCs combined with
the collagen scaffold but without interleukin-10, lacking
the expected combinatory positive effect of cells plus
interleukin-10 [29]. Another study compared a non-
crosslinked collagen scaffold and crosslinked collagen
scaffolds (both collagen type I) with variable degrees of
crosslinking to modulate the material stiffness [30]. All
were seeded with ATDSCs and sutured into rats with car-
diac infarction. Only the non-crosslinked scaffold pre-
sented high biocompatibility and complete adhesion to
the heart; a mild inflammatory reaction was observed 7
and 30 days after implantation. Moreover, this scaffold
retained approximately 25 % of the seeded cells. However,
heart contractility, cardiac function, and cell growth and
survival were not assessed for all the scaffolds [30]. These
gaps in assessment were partially covered in a later study
which showed that, at 1 week and 1 month after
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Table 1 The principal in vivo studies using a collagen-based scaffold and the outcomes obtained

Scaffold material Cell lines and/or other Ml Main results References
components model
Collagen - Mouse  Negative ventricular remodeling prevented, deterioration [26]
of heart function prevented, lack of inflammatory
response, angiogenesis?, fibrosis|, cell death]
- Mouse  Patch attached, colonization of patch by native [27]
cells, EF1, FS1, LV internal diameter|, LV posterior
wall dimensiont, fibrosis|, dilatation of LV chamber],
angiogenesist, no immunological response
- Rat LV dilatation|, LV inner and outer diameters|, LV [28]
pressure-volume curve shift (to the left towards
control), angiogenesist
Rat MSCs+interleukin-10 Rat LV EF1, apoptosis|, infarcted wall average thicknesst, [29]
ratio collagen Ill/11, regulatory macrophage markers?t
Rat ATDSCs Rat Evaluation of inflammatory response to diverse [30]
collagen scaffolds (non-crosslinked or crosslinked),
presence of cells in the non-crosslinked scaffold
Rat ATDSCs Rat and Rat: cell engraftmentt, LV EF?, stiffer mechanical [31]
pig behavior, fibrosis|, revascularizationt. Pig: LV EF1,
fibrosis|, vascularizationt
Sheep adipose tissue MSCs Sheep LV end-diastolic dimension improvement, diastolic [32]
functiont, angiogenesist, fibrosis extension|
Rat bone marrow MSCs Rat LV wall thickness?, EF preservation, FSt, fractional [33]
area changet
Rat bone marrow MSCs Rat Infarcted segment perfusion?, infarct areal, [34]
contractility?, low inflammation, angiogenesis?,
ventricular wall thicknesst, LV dilatation]
Rat bone marrow MSCs Rat No inflammation, neovascularizationt, presence of cells  [35]
+glycosaminoglycans
Mouse Sca-1" cells (collagen ~ Mouse  Number of infiltrated cellst, capillary density?, cell [36]
conjugated with anti-Sca-1 densityt, myocardium regeneration?
antibody)
Human mononuclear Human  No mortality or related adverse effects, New York Heart [37, 38]
bone marrow stem cells Assodiation functional classt, LV end-diastolic volume],
LV filling deceleration time improvement, scar area
thicknesst, EFT
Collagen+chitosan Encapsulated thymosin 4 Rat Cardiac tissue loss|, vascularizationt [25]
Integrin-binding, angiopoietin- Rat Cardiac function?, scar thickness and scar area fraction [39]
1-derived peptide QHREDGS improved, presence of CMst, no inflammation
Collagen+oligo (acryloyl carbonate)- Rat bone marrow MSCs Rat Preserved EF, infarct size|, LV wall thickness?, vessel [41]

poly(ethylene glycol)-oligo(acryloyl
carbonate)

density?

ATDSC adipose tissue-derived stem cell, CM cardiomyocyte, EF ejection fraction, FS fractional shortening, LV left ventricle/left ventricular, Ml myocardial infarction,
MSC mesenchymal stem cell, Sca stem cell antigen

implantation, the non-crosslinked collagen scaffold seeded
with ATDSCs displayed more cell engraftment than
ATDSC administration alone [31]. In addition, in both rat
and pig chronic MI models, the groups that received both
collagen and cells had significant increases in heart func-
tion (approximately 16 %) and revascularization, and a sig-
nificant decrease in fibrotic area 4 months post-treatment
compared with untreated animals and animals treated
with either scaffold alone or cells alone. The reduction in
collagen content of treated animals could be explained by
the lower detected levels of procollagen C-proteinase and
lysyl oxidase, reducing collagen crosslinking [31]. Similar

results were obtained in a sheep MI model, in terms of
cardiac function recovery and revascularization [32], thus
indicating the suitability and promise of combined admin-
istration of collagen scaffold and ATDSCs. In addition,
bone marrow MSCs combined with a collagen type I plat-
form also preserved heart function after up to 6 weeks of
treatment, in contrast to infarcted groups that were not
treated or treated with cells only [33]. Further experiments
demonstrated that bone marrow MSCs in a collagen type
I scaffold had beneficial effects on contractility, wall thick-
ness, angiogenesis, and infarcted area perfusion, and curbed
ventricular dilatation and infarct zone expansion [34].
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Table 2 Main achievements in myocardial infarction recovery after the administration of a fibrin scaffold

Scaffold material Cell lines and/or other components MI model  Main results References
Fibrin Rat skeletal myoblasts Rat FS and infarct wall thickness preservation [52]
Rat skeletal myoblasts Rat Infarct scar size|, arteriole density?t [53]
Human cardiac and subcutaneous Mouse CM and EC differentiation, vessel density?, LV EF1, infarct [55]
ATDPCs size|
Rat bone marrow cells Rat Cell retentiont, LV perimeter|, stroke volume and [56]
contractility preservation, cardiac function?t
hESCs Mouse Cardiac function?, cell engraftment?t, angiogenesist, EFT, [57]
and pig infarct size|, LV hypertrophy/, systolic LV wall stress|, LV
systolic thickening fraction|
Rat adipose-derived MSCs Rat Preserved wall thickness, LV end-diastolic and systolic [58]
dimensions|, LV end-diastolic volume|, LV end-systolic
volume|, LV remodeling suppressed
hESC-derived cardiac progenitors Rat LV end-systolic volume], EFf, angiogenesist, absence of [59]
teratomas
Human iPSC-derived CMs, ECs, and Pig Cell survivalt, LV EF?, contractility?, infarct size|, regional wall [54]
smooth muscle cells stress|, energetic efficiency?, lack of arrhythmias, apoptosis|,
cellular expression of Nkx2.5%, angiogenesist, immune
response delayed, protective paracrine effects
Rat heart cells; native population or Rat EF and FS? (only for patch with native cell population), [60]
CM-depleted population wall thicknesst, infarct size|, cell migration,
vascularizationt, electrical coupling and alignment not
achieved
Human umbilical cord blood MSCs Mouse Infarct size|, vessel density? [61]
Human umbilical cord blood MSCs Mouse Microvasculature formationt, FS1, EFT [62]
Swine MSCs Pig LV thickness fraction?, neovascularization?, differentiation [63]
into myocyte-like cell lineage
Swine MSCs+thymosin 34 Rat Proliferationt, protection against hypoxia, LV EFT, LV FST, wall  [64]
thickening?, vasculogenesist, cell survivalt
Fibrin+PEG SDF-1a Mouse c-kit" cell recruitmentt, LV functionf [68]
Fibrin+decellularized Human mesenchymal progenitor Rat Angiogenesis?, cell migration?, LV diameter and area [70]

myocardial ECM cells (TGF-B-conditioned or not)

preservation, contractilityt

ATDPC adipose tissue-derived progenitor cell, CM cardiomyocyte, EC endothelial cell, ECM extracellular matrix, EF ejection fraction, FS fractional shortening,
hESC human embryonic stem cell, iPSC induced pluripotent stem cell, LV left ventricle/left ventricular, MI myocardial infarction, MSC mesenchymal stem cell,
PEG polyethylene glycol, SDF stromal cell-derived factor, TGF transforming growth factor

Moreover, when the collagen type I and bone marrow MSC
combination was supplemented with glycosaminoglycans,
the results demonstrated reduced inflammation, increased
neovascularization, and improved retention of cells, but no
LV function parameters were evaluated [35]. In another
study, collagen type I was conjugated with antibodies that
specifically recognized stem cell antigen-1 (Sca-1), a surface
marker for hematopoietic, cardiac, and muscle stem cells.
These antibodies enriched the scaffold by capturing
Sca-1" cells. When this scaffold combination was ap-
plied to the infarcted myocardium, it retained a high
number of cells, increased cardiac tissue regeneration,
and expanded capillary density compared with infarcted
hearts that did not receive the enriched scaffold. It is
important to emphasize that scaffolds with Sca-1
showed faster degradation of the collagen scaffold, and
fiber arrangement was better organized [36].

In the Myocardial Assistance by Grafting a New bioarti-
ficial Upgraded Myocardium (MAGNUM) clinical trial,

the delivery, safety, and effectiveness of a collagen type I
scaffold loaded with autologous bone marrow MSCs was
tested in humans (Tables 1 and 6) [37]. In this study, a
total of 20 patients with myocardial ischemia that dis-
played indications for bypass surgery were included and
divided into two treatment groups: one group (n = 10) was
treated with cells only, and the other group (n=10)
received the collagen scaffold with cells. After completing
a 10-month follow-up, no adverse events or death
occurred. With both treatments, patients experienced
improvements in EF and the New York Heart Association
functional class. Compared with the group treated with
cells alone, the scaffold-plus-cells treatment group showed
enhanced LV end-diastolic volume, LV filling deceleration
time, and scar area thickness, which indicated LV function
improvement and limited adverse remodeling. Therefore,
the collagen scaffold with cells was demonstrated to be
both safe and effective for treating ischemia in humans
compared with administration of cells alone [38]. These
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Table 3 In vivo improvements achieved with scaffolds composed of the polysaccharides chitosan, alginate or hyaluronic acid

Cell lines and/or other
components

Scaffold material

MI model

Main results

References

Chitosan Rat brown ATDSCs

Mouse ESCs

Mouse nuclear-transferred ESCs or
fertilization-derived mouse ESC

bFGF

RoY peptide

Chitosan+alginate Rat MSCs

Alginate -

Rat fetal cardiac cells

Human ESCs or human embryonic

bodies
RGD peptide

RGD peptide+encapsulated MSCs
(microbeads)

Unmodified alginate; RGD or YIGSR

peptide-modified alginate; or RGE
peptide-modified alginate

IGF/HGF (microbeads)

Alginate+fibrin -

Neonatal rat cardiac cells with
SDF-1, IGF-1 and VEGF

Alginate+Matrigel
+omentum

Alginate+polypyrrole -

Rat

Rat

Rat

Rat

Rat

Rat
Rat

Rat

Dog

Pig

Rat
Rat
Rat

Rat

Rat

Rat

Human

Pig

Rat

Rat

Cell survival and retentiont, EF1, FST, LV end-diastolic
pressure|, LV pressure changet, infarct size|, fibrosis|,
ATDSC to cardiac lineage differentiationt, vessel density?,
endothelial and smooth muscle cell differentiation

Infarct zone cell retention?, ESC to cardiac differentiation,
heart function?, LV end-diastolic and end-systolic
diameters|, EFT, FS1, infarct size|, wall thicknesst,
complete chitosan degradation, microvessel densityt

For both cell types: infarcted area covered?, possible
differentiation into CMs, smooth muscle cells and ECs,
heart functiont, LV end-diastolic and end-systolic
diameters|, EFT, FS1, infarct size|, wall thicknesst,
complete chitosan degradation, neovascularizationt

LV EF1, LV FS?, arteriole density?, infarct size|, fibrosis
area

Angiogenesist, ventricular wall thicknesst, fibrosis|,
infarct size|, LV FST, LV EF?

EF?, LV functiont, angiogenesist

Angiogenesist, no inflammation exacerbation, apoptosis|,
presence of c-kit" cellst, proliferationt, wall thicknesst, LV
expansion|, LV EFf

Absence of arrhythmias or thrombus formation, scaffold
degraded, scar thicknesst, diastolic and systolic anterior
wall thicknesses?, LV end-diastolic and systolic
dimensions|, LV end-diastolic and systolic areas], cardiac
dysfunction]

End-systolic and end-diastolic wall thicknessest, LV end-
diastolic and systolic volumes|, end-systolic sphericity
indext, LV EF1, functional mitral regurgitation], LV
functiont

No arrhythmias or conduction blocks, no remote infarcts
in other organs, LV enlargement], LV function?, coronary
blood flow not affected, scar thickness?, anterior wall
thicknesst

Vascularizationt, formation of myofibers and gap junctions,
preservation of LV dimensions and FS

FS1, LV dilation, absence of inflammation, no
cardiomyogenic differentiation, no cell retention

FSt, LV dimension|, LV wall thicknesst, angiogenesist

LV functiont, wall thickness preservation, LV internal
dimensions preserved, infarct size|, angiogenesis?, high
cell retention

Unmodified-alginate: scar thicknesst, attenuated LV
systolic and diastolic dilatations, LV FS1, fractional area
changet, LV expansion index| (compared with all
peptide-modified alginates)

Scar thickness preservation, infarct expansion index|, scar
collagen accumulation|, vascularization?, apoptosis|

New York Heart Association functional classt, Kansas City
Cardiomyopathy Questionnaire score?t

LV posterior wall thickness?, infarct expansion],
extractable collagen]

Mechanical and electrical coupling, relative scar
thicknesst, angiogenesist, infarct expansion index|, FS
and fractional area change preserved, LV end-diastolic
and systolic dimensions|

No inflammation, angiogenesist, myofibroblast populationt

[81]

(99]

[100]

[102]

[103]

[105]

[106]

[107]

[110]

[111]

[115]

[117]

[118]
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Table 3 In vivo improvements achieved with scaffolds composed of the polysaccharides chitosan, alginate or hyaluronic acid

(Continued)

Hyaluronic acid Alone or with VEGF Rat
Rat BMMNCs Rat
Pig BMMNCs Pig

Rat bone marrow MSCs (esterified  Rat
hyaluronic acid)

Pig bone marrow MSCs (esterified ~ Pig
hyaluronic acid)

Hydroxyethyl methacrylate, Mouse
SDF-1a, mouse bone marrow cells
rTIMP-3 Pig
Gelin-S Rat
Methacrylic anhydride Sheep
Methacrylic anhydride or/and Sheep
hydroxyethylmethacrylate
Hyaluronic acid+gelatin -~ Human cardiosphere-derived cells  Mouse
Hyaluronic acid+silk Rat bone marrow MSCs Rat
fibroin
Hyaluronic acid+chitosan - Rat
+silk fibroin

Hyaluronic acid+butyric
and retinoic acids

Human placenta-derived MSCs Pig

Ventricle thickness?, infarct size|, apoptosis,
vascularizationt, heart functiont

[121]

Apoptosis|, inflammatory response|, EF1, ventricular [124]
dilatation], scar size|, collagen content|, angiogenesist,

cell differentiation into ECs

LV EF1, interventricular septum thickness?, LV end-diastolic
pressure and volume |, contractilityf, scar size and length,
fibrosis|, high cell retention, neovascularizationt

[125]

Construct integration, vascularization?, fibrosis| [126]

Inflammation |, fibrosis|, degeneration of cardiac cells| 27

Cell homing in the myocardium? [128]

LV end-diastolic dimension|, LV EF1, wall stress|, infarct
expansion|, wall thicknesst, LV end-diastolic volume
preserved, myofibroblast number?, collagen contentt

[130]

[131]
[132]

LV EF1, LV FS1, neovascularizationt, collagen deposition|

Regional wall thickness?, infarcted area] (only for highly
stiff scaffold)

Wall thicknesst, vascularizationt, inflammationt, LV end-
systolic volume| (only for highly stiff, stable scaffold)

[133]

Cardiac function?, LV remodeling and abnormal heart [134]
morphology], viable tissue?, wall thicknesst, cardiac and
endothelial cellular differentiation, cellular engraftmentf,

neovascularizationt, apoptosis]

LV inner diameter|, wall thickness?, FS, inflammation,
apoptosis|, vascularizationt, a-MHC expression?, paracrine
factor secretiont

[135]

LV inner diameter|, wall thickness?, LV FS1, angiogenesist,  [136]

paracrine factor expressiont

Scar size|, infarct core zone|, angiogenesist, fibrosis|,
end-systolic wall thickening and circumferential shorteningf,
high homology with healthy myocardium

[137]

ATDSC adipose tissue-derived stem cell, bFGF basic fibroblast growth factor, BMMNC bone marrow mononuclear cell, CM cardiomyocyte, EC endothelial cell, EF
ejection fraction, ESC embryonic stem cell, FS fractional shortening, HGF hepatocyte growth factor, IGF insulin growth factor, LV left ventricle/left ventricular, MHC
myosin heavy chain, Ml myocardial infarction, MSC mesenchymal stem cell, rTIMP recombinant tissue inhibitor of matrix metalloproteinases, SDF stromal cell-

derived factor, VEGF vascular endothelial growth factor

positive results should encourage further investigation fol-
lowing administration of combined collagen scaffold and
MSCs, recruiting more patients and extending the clinical
trial follow-up.

With regard to combinations of natural or biological ma-
terials, a mixture of chitosan, collagen type I, and encapsu-
lated thymosin 34 was used to treat a rat MI model, with
diverse results (Table 1). At 3 weeks after MI induction,
treated rats showed reduced tissue loss (only 13 % compared
with 58 % and 30 % for non-treated and thymosin p4-free
hydrogel-treated animals, respectively) and enhanced
vascularization compared with untreated animals or thymo-
sin P4-treated animals, but no functional benefits were
achieved [25]. When the integrin-binding, angiopoietin-1-
derived peptide QHREDGS was attached to the same col-
lagen and chitosan scaffold, infarcted animals displayed

abundant CMs, no inflammatory response, and, more im-
portantly, improved cardiac function [39].

Finally, collagen combined with synthetic materials would
retain the properties of collagen (that is, degradability and
compatibility) and could provide a means to recreate a nat-
ural, appropriate microenvironment, which could enhance
proliferation, survival, and cardiac differentiation [40]. An in-
jectable, hybrid hydrogel was created by combining collagen
type I with the copolymer oligo(acryloyl carbonate)-poly(-
ethylene glycol)-oligo(acryloyl carbonate); cultured bone
marrow MSCs were then added and the refilled scaffold
was tested in a rat MI model (Table 1). Infarcted rats
injected with this hybrid hydrogel plus MSCs exhibited an
approximately 26 % reduction of the infarct area, a sixfold
ventricular wall thickness enhancement, and increased
vessel density compared with untreated infarcted rats.
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Table 4 Outcomes in function recovery after myocardial infarction following gelatin and Matrigel scaffold delivery
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Scaffold material  Cell lines and/or other components Ml model Main results References
Gelatin Fetal rat ventricular cells Rat Scaffold adhered to tissue, presence of blood vessels, [140]
cell to cell linking and spontaneous contraction, no
cardiac function improvements
Erythropoietin Rabbit LV end-systolic and end-diastolic dimensions|, LV EF, [142]
FST, £dP/dtt, erythrocyte number?, hematocrit?, infarct
size|, fibrosis|, infarct border zone capillary density?t
bFGF Rat FS1, infarct size|, infarcted/non-infarcted wall thickness [143]
ratiof, LV expansion index|, capillary and arteriolar
densityt, CM apoptosis|
bFGF alone or with human bone Pig bFGF alone: arterial vesselst, myocardial perfusiont, LV [144]
marrow-derived MSCs or human EF1. With human cardiosphere-derived cells: LV EF1, infarct
cardiosphere-derived cells volume|, wall motiont, differentiation to CM1. With
human bone marrow-derived MSCs: LV EF1, infarct volume]
Human cardiac-derived stem Human No adverse side effectst, LV EF1, infarct size|, maximal [145],
cells+bFGF aerobic exercise capacity? NCT00981006
Matrigel - Rat Capillary densityt [147]
- Rat LV EF1, contractility?, infarct wall thicknesst, angiogenesist,  [148]
c-kit+and CD43+ stem cell myocardial homingt
Rat adipose-derived stromal cells Rat LV EF1, LV akinesis|, contractility?, infarcted area size| [149]
Mouse ESCs Mouse Connexin 43 expression, graft/infarct areat, FSt, LV wall [150]
thickness preservation
Mouse ESCs Rat FS1, myocardial wall thicknesst, LV dilatation prevention, [151]
connexin 43 and a-sarcomeric actin expression
Human ESC-derived CMs with Rat Cell engraftment?, LV end-diastolic and systolic [152]
prosurvival cocktail dimensions|, FS1, EF1, infarcted area wall thickening?
Mouse bone marrow-derived MSCs ~ Mouse No improvements in FS, EF, or LV diastolic end volume [153]
Matrigel+collagen  Rat H9c2 cardiomyoblasts alone, Rat Three groups: cell survivalf, LV wall thicknesst, LV EF?, [154]
with VEGF, or with bFGF FS?. No significant additional improvements were
observed with VEGF or bFGF
Rat myoblasts Rat Inflammatory response?, FSt, LV end-systolic diameter|, [155]
scaffold vascularized
Rat cardiac myocytes Rat No improvements in cardiac function or LV wall [156]
thickness, sarcomere integrity, vascularized and
innervated graft, contraction preserved, electrical and
mechanical coupling requires further evaluation
Rat neonatal ventricular CMs Rat CM sarcomeric structural integrity, FST, anterior wall [157]
thickness?, LV end-systolic diameter|
Rat neonatal heart cells Rat Non-delayed electrical coupling, dilatation|, systolic wall [158]

thickeningt, FS areat

bFGF basic fibroblast growth factor, CM cardiomyocyte; dP/dt change in pressure over time, EF ejection fraction, ESC embryonic stem cell, FS fractional shortening,
LV left ventricle/left ventricular, Ml myocardial infarction, MSC mesenchymal stem cell, VEGF vascular endothelial growth factor

Notably, EF values reached those measured prior to MI
induction, showing excellent heart function recovery for
treated rats [41].

It is important to point out that all the in vivo studies
which used collagen scaffolds were performed with type
I collagen; thus, the observed differences between the
different parameters can not be attributed to the colla-
gen type. It would be interesting to carry out future ani-
mal experimentation using other collagen types (that is,
collagen type III), evaluating the final outcomes and
comparing them with the extensive work done with type
I collagen scaffolds.

Fibrin

Fibrin, a truncated form of fibrinogen, attracts and re-
cruits leukocytes, principally macrophages, to participate
in blood clot formation and wound healing processes
[42-44], and also plays important roles in cell matrix in-
teractions, inflammatory responses, and neoplasia [42].
Fibrin can be obtained from patient blood, which
avoids the risk of adverse immunological responses, and
can be easily manipulated by readjusting fibrinogen con-
centrations and/or polymerization rates to modulate
matrix density, mechanical strength, and microstructure
[45—-49]. Moreover, fibrin scaffolds are good candidates for



Perea-Gil et al. Stem Cell Research & Therapy (2015) 6:248

Page 8 of 25

Table 5 Myocardial infarction animal models and the progress in infarction regeneration for decellularized extracellular matrix-based

scaffolds

Cell lines and/or other M
components model

Scaffold material

Main results

References

Decellularized myocardial ECM - Rat

- Rat

- Rat and
pig

Decellularized pericardium ECM  Rat bone marrow MSCs Rat

Rat bone marrow MSCs Rat

bFGF Rat
HGF fragment Rat
Decellularized pericardium ECM+ Porcine mediastinal Pig

RAD16-l peptidic hydrogel ATDPCs

SIS - Mouse

Rabbit MSCs Rabbit

bFGF Rat

UBM - Pig

- Dog

Human MSCs (spheroid or  Dog
non-manipulated)

LV EF1, LV bulging], infarct LV wall thicknesst, infarct
expansion index|

Viable myocardium islands inside infarcted zonet, no
arrhythmia induction, proliferative cell density (mainly
lymphocytes)t, EF preservation

Rat: ECM biodegradable and biocompatible with host

myocardium, absence of embolization or ischemia. Pig:
LV EF1, LV end diastolic and systolic volumes|, contractilityf,

[166]

[167]

e8]

global wall motion score?, proportion of endocardial musclet,

fibrosis|, presence of neovascularization, unaltered cardiac

rhythm or blood chemistry
LV cavity enlargement prevented, LV FS1, LV end

diastolic and systolic pressures improved, no apoptosis,
microvessel density?, differentiation to smooth muscle

cells or myofibroblasts, growth factor expression and
cytokine releaset

LV FS1, LV end diastolic and systolic pressure
improvements, LV dilatation|, absence of apoptosis,
blood vessel density?, differentiation into smooth
muscle cells or myofibroblasts

bFGF retentiont, arteriole density?, confirmation of
vessel functionality

LV remodeling prevention, fractional area changet,
arteriole densityt

Infarct size|, vascularizationt

LV end systolic area|, contractility?, infarct size],
capillary formation?

LV dimensions improved, anterior wall thicknesst,
contractility?, LV relaxationt, vascular densityt, no
immunological response, cardiac troponin T and a-
smooth muscle actin expression

EF1, LV end systolic and diastolic volumes|,
contractilityt

Smooth muscle cellst, myofibroblast recruitment,
inflammation|, thrombus extension|

Myocyte recruitment with normal morphology and
organization, myocyte proliferationt, regional stroke
work?, systolic contraction?

Regional stroke work?, systolic area contractionf,
organized sarcomeric structure

[176]

ATDPC adipose tissue-derived progenitor cell, bFGF basic fibroblast growth factor, ECM extracellular matrix, EF ejection fraction, FS fractional shortening,
HGF hepatocyte growth factor, LV left ventricle/left ventricular, Ml myocardial infarction, MSC mesenchymal stem cell, SIS small intestine submucosa, UBM urinary

bladder matrix

treating MIs due to their high biocompatibility, biodegrad-
ability, and capacity for incorporating different cell types.
In addition, fibrin scaffolds can be assembled with either
growth factors or other scaffold materials [49-51].

Due to its intrinsic properties, application of a fibrin
patch alone (without cells) over the infarcted myocar-
dium exerts beneficial effects (Table 2). In a rat MI
model, application of a fibrin glue, which formed a scaf-
fold, reduced the infarct size and increased microvessel
formation. Similar results were observed when rat

neonatal skeletal myoblasts were mixed with the fibrin
glue. However, vessel density was greatest in the fibrin-
alone group [52, 53]. Fibrin scaffolds have been most fre-
quently used as a cell platform to test delivery of adipose-
derived MSCs, bone marrow cells, ESC-derived cardiac
progenitors, human iPSC-derived ECs, smooth muscle
cells and CMs, a native cardiac cell population, umbilical
cord blood MSCs, ESCs, and MSCs in different in vivo MI
models (Table 2). Results have shown improved preserva-
tion of cardiac function post-MI, increased cell retention
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Table 6 Detailed data of clinical trials in progress or completed using different natural scaffolds

Scaffold Study Cell lines and/or State Follow-up Main results/objectives References/clinical
material name other components trial identifier
Collagen  MAGNUM Human mononuclear ~ Completed with 10 months ~ No adverse related events, 1 point [37, 38]

bone marrow stem 20 patients reduction of New York Heart

cells Association functional class, 26 %

reduction of LV end-diastolic volume,
22 % improvement of LV filling
deceleration time, 50 % increase of
scar thickness, 26 % enhancement of EF

Fibrin ESCORT hESC Recruiting - Study the number and nature of NCT02057900
patients adverse events (clinical/biological
abnormalities, arrhythmias and
cardiac or extracardiac tumors). Test
feasibility and efficacy of the scaffold
in cardiac function recovery

Alginate  AUGMENT- - Completed with 3 months Increase of Kansas City Cardiomyopathy ~ [111]
HF 6 patients Questionnaire from 394 to 74, number
of patients with New York Heart
Association class Ill/IV reduced from 6
to 1. No improves in EF and LV end-
diastolic and end-systolic volumes

Gelatin ALCADIA Human cardiac- Completed with 6 months 12 % increase in LV EF, 3.3 % decrease [145], NCT00981006
derived stem 6 patients of infarct size, maximal aerobic exercise
cells+bFGF capacity enhanced by 4.5 ml/kg/min
SIS - - Enrolling - Evaluate scaffold safety and beneficial NCT02139189
participants (by effects in heart function

invitation only)

bFGF basic fibroblast growth factor, EF ejection fraction, hESC human embryonic stem cell, LV left ventricle/left ventricular, SIS small intestine submucosa

Use of gelatin scaffold for Fibrin scaffold for First application of
the first time (140) cardiovascular Matrigel in myocardial
applications [45I1 recovery [.156]
l:Za.rhest a;.)prox.lmatlon to cardiac First description of Alginate-based scaffolds Combination of
tissue engineering: placement Of& Delivery of CMs vascularization inside the initial attempt for MI scaffold with growth
cardiac graft over wounded heart [%¢] within scaffold (1% implanted scaffold [140] restoration [102] factors and cells 201

2000

First use ofa nat}lral scaffold Generation of first contractile i —— First expe.riments
for specific cardiac purposes: cardiac-myocyte populated cardiac tissiie performed \Vlth[ 1<§t6)]l]agen
myotubes seede%g;;er a matrices mixing collagen with engineering: mechanical scaffolds I
collagen gel embryonic CMs [19) stretching for natural Svnthetic - natural scaffold
scaffolds 200] : ication (2021
: ey : Construction of hyaluronic Eirst decellularized S
First administration of id scaffold 205 cardiac-derived ECM
fibrin scaffold (2] Seicseio (pericardium) scaffold
| testing [176] .
Successful electrical MAGNUM clinical trial: First implantation iPSCs-derived cells
stimulation of myocytes | | firstimplantation of natural Heart decellularized of hyaluronic aﬁ‘ﬁi reseeding over natural
cultured on scaffolds [203] scaffold in } 67 and repopulated [16] based scaffold 1> scaffold [207]

2004 2005 2007 2008 2009 2010 2012 2013 2014

Cardiac differentiation Administration of Generation of First chitosan- Implantation of iPSCs-derived cardiac
of ESCs placed on cardiac-non- . based scaffold Ip! 4 B ntroduced
5 [151] derived ECM chitosan scaffold for delivery in MI decellularized OEARSs Use 1 “Cg‘]
1162) cardiac aims [206] 2 myocardial scaffold [167] in a natural scaffold
Improved scaffolds scaffold (162 model [$2 )
with gene-transferred
CMs 204

Fig. 1 Milestones in the history of natural scaffolds in cardiac tissue engineering for myocardial infarction treatment. Boxes with a grey outline refer to
natural scaffolds used in vitro. Boxes with a red outline indicate in vivo highlights related to natural scaffold application. CM cardiomyocyte, ECM
extracellular matrix, ESC embryonic stem cell, iPSC induced pluripotent stem cell, M/ myocardial infarction
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Fig. 2 (See legend on next page.)
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(See figure on previous page.)

Fig. 2 Natural scaffolds for cardiac tissue engineering. Combined surgical procedure using CorCap ventricular constraint device and collagen
scaffold implantation in a sheep ischemic model for myocardial repair and ventricular chamber remodeling. a Introduction of the cell-seeded collagen
matrix between the heart and the CorCap polyester device (Shafy et al. [32]). b Autopsy at 3 months showing the CorCap mesh covering both ventricles
(arrow) (Shafy et al. [32]). c Left ventricular infarct scar (arrow) (Shafy et al. [32]). d Histology at 3 months of the ischemic/reperfused myocardium. Arrows
show the mixed configuration: patchy fibrosis (1) and subnormal myocardium (2) (Shafy et al. [32]). a-c Reproduced, with permission, from
[32]. e-g Three-dimensional engineered fibrin-cell patches implanted over infarcted myocardium wounds in mice. e Representative photograph of a
mouse heart excised from a post-myocardial infarction (M) animal at 4 weeks post-implantation of an adhesive fibrin-based patch composed of human
umbilical cord blood mesenchymal stem cells (UCBMSCs) (asterisk). Images of Masson'’s trichrome staining of cross-sections from the three
groups of post-infarcted animals. Scale bar=1 mm (Roura et al. [62]). Histograms represent the percentage of LV scar thickness (f) and volume
(g) (Roura et al. [62]). e-g Reproduced, with permission, from [62]. h Intraoperative injection of the fibrin—alginate composite was performed
using a 2 x 2 cm template with injection sites arrayed at 0.5 cm intervals within the region of MI. i At necropsy, the fibrin—alginate (Fib-Alg)
could be visualized as amorphous densities within the Ml region (LV left ventricle) (Mukherjee et al. [115]); reproduced, with permission, from
[115]. j, k Heterotopic heart transplant surgery and hyaluronan-based scaffold (HYAFF"11) implantation in the rat MI model. The heart-lung
block was carefully excised, the left lung removed, and the cardiac infarction induced by left descending coronary artery ligation on the bench
(Fiumana et al. [126]); reproduced, with permission from [126]. j The allograft was transplanted by end-to-side anastomosis of the aorta to the
abdominal aorta of the recipient. Scale bar=5 mm (Fiumana et al. [126)). k The bioengineered HYAFF 11 was introduced into a pouch made
in the thickness of the ventricular wall of the heterotopic heart at the level of the post-infarction scar. Scale bar=5 mm (Fiumana et al. [126]).
1, m Myocardial bioprosthesis implantation in porcine infarcted hearts; reproduced, with permission, from [174]. I A myocardial bioprosthesis,
composed by decellularized human pericardium embedded with RAD16-I and mediastinal adipose tissue-derived progenitor cells, was
implanted over the ischemic myocardium (Prat-Vidal et al. [174]). m Transversal heart section of a treated pig with the attached bioprosthesis

indicated (dotted yellow line) (Prat-Vidal et al. [174])

and, in some cases, reduced infarct size and enhanced
angiogenesis [54—63]. The study by Ye and colleagues
[54] used ECs, smooth muscle cells and CMs derived
from iPSCs—the first in vivo use of iPSC-derived cell-
s—and reported highly improved cardiac function (EF
approximately 52 %) and contractility (thickening frac-
tions of approximately 20 % and approximately 7 % at
the border and infarct zone, respectively) compared
with infarcted animals without treatment after 4 weeks
[54]. Alternatively, fibrin scaffolds were enhanced by
thymosin B4 encapsulation, which increased cell sur-
vival almost threefold, protected against hypoxic condi-
tions, and improved cardiac function and wall thickness
measured 28 days after MI [64].

Experiments in rat and non-human primate MI
models, where a fibrin patch was applied with human
ESC-derived cardiac progenitor cells, have produced
convincing data that have led to approval of a first-in-
human clinical trial (Tables 2 and 6) [65]. The study,
entitled ‘Transplantation of human embryonic stem-cell
derived progenitors in severe heart failure (ESCORT)’
(NCT02057900), is currently in phase 1 and recruiting
participants. Its objective is to investigate the feasibility
and safety of fibrin scaffolds combined with cells for
treating patients with ML

In order to increase the intrinsic low fibrin stiffness,
fibrin scaffolds can be used in combination with other
materials (Table 2) [47]. For example, when fibrin was
mixed with the synthetic material poly(ether)urethane-
polydimethylsiloxane or with poly (lactide-co-glycolide),
in vitro experiments showed that it formed a suitable
microenvironment which mimicked native myocardium,
enhanced cell proliferation, and contributed to proper
cell differentiation towards a cardiac lineage [66, 67].

Also, a hybrid polyethylene glycol/fibrin scaffold was
combined with stromal cell-derived factor (SDF)-la, a
key factor in injured myocardium cell mobilization, and
administered (without cells) into a mouse MI model
[68]. This treatment promoted c-kit" cell homing and
increased EF and fractional shortening (FS), measured at
28 days post-MI. Nevertheless, no angiogenic activity
was assessed and no significative reduction of infarct
area was observed [68].

In another approach, fibrin scaffold combined with
cardiac ECM provided acceptable cell viability, and its
administration was feasible [69]. This scaffold was tested
in vivo with mesenchymal progenitor cells injected into
a nude rat MI model (Table 2). At 28 days after scaffold
implantation in the infarcted myocardium, treated rats
showed increased angiogenesis and cell migration, and
preserved cardiac function compared with untreated
animals. Next, the same scaffold was enhanced by pre-
conditioning the MSCs with transforming growth factor
(TGF)-B [70]. This treatment induced greater cell
migration and vasculogenesis compared with MSCs not
preconditioned with TGF-f, but no additional improve-
ments in LV functionality were observed [70]. Therefore,
combining fibrin with other materials could adjust the
properties of fibrin itself and, to some extent, recreate the
local stiffness, composition and fiber network present in
the native myocardium, representing a good and plausible
possibility for regenerating infarcted myocardium.

Chitosan

Chitosan, a natural linear polymer obtained by chitin
deacetylation, has been widely used for tissue replace-
ment [71-76]. This natural material displays high bio-
compatibility and biodegradability and has the capacity
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to combine with conductive materials to improve elec-
trical signal transmission and/or with other biomaterials
[77, 78]. Additionally, chitosan was shown to be capable
of high growth factor retention and strong cellular
receptor adhesion due to its hydrophilicity [79, 80]; these
properties make chitosan a suitable scaffold material for
injured myocardial repair.

An in vivo study in a rat MI model also demonstrated
that brown ATDSCs differentiated into cardiac lineage
cells when applied into the infarcted area inside a chito-
san scaffold, as they increased cardiac troponin I and T
and connexin 43 expression (Table 3) [81]. This treat-
ment resulted in improved cardiac function and con-
tractility (better EE, FS and LV end-diastolic pressure),
reduced infarct size and fibrotic area, and a remarkable
increase in vessel density, measured 28 days after scaf-
fold implantation [81]. Interestingly, ATDSCs partially
contributed to this new vessel formation, showing von
Willebrand factor- and a-smooth muscle actin-positive
labeling. Altogether, chitosan plus ATDSCs appears to
be a valuable approach for myocardial restoration.

Thermo-sensitive chitosan hydrogel (which polymer-
izes at body temperature) has been widely used with
positive effects (Table 3). A rat MI model was treated
with a thermo-sensitive chitosan hydrogel, combined
with ESCs, nuclear transferred ESCs, or fertilization-
derived ESCs, and exhibited enhanced heart function,
increased vascularization in the damaged myocardium,
and reduced infarct areas, measured 4 weeks after
hydrogel transplantation. Importantly, implanted cells
seemed to slightly differentiate towards CMs, smooth
muscle cells and ECs [82, 83]. Temperature-sensitive
chitosan was also applied, enriched with basic fibroblast
growth factor (bFGF), in a rat MI model for 28 days
[84]. The results included improved cardiac function,
significant reductions in infarct size and fibrotic area
(9.27 % and 2291 %, respectively), and 2.7-fold more
blood vessels in treated animals compared with controls.
Another option is to modify the temperature-responsive
chitosan scaffold by adding RoY peptide, a factor in-
volved in cell proliferation, survival, and angiogenesis
under hypoxic conditions. This construct exhibited satis-
factory post-MI results, including infarct size reduction,
angiogenesis promotion, ventricular wall thickness and
cardiac function improvement [85].

When mixed with natural materials, chitosan scaffolds
acquire other properties that favor cell maturation, adhe-
sion, and scaffold coupling with the host myocardium
(Table 3). Several natural materials have been tested with
chitosan in cardiac tissue engineering, including myocar-
dial ECM [86], alginate [77, 87], gelatin [88], collagen
[89], and silk fibroin [90]. Chitosan mixed with alginate
with MSCs was tested in vivo in a rat MI model, where
it promoted improved cardiac function, new blood vessel
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formation, cellular survival, and cell proliferation [77].
Remarkably, the chitosan—alginate scaffold applied alone,
without cell incorporation, provided the same beneficial
effects in the damaged area after implantation. Of interest,
the analysis of biodegradability displayed a low scaffold
degradation rate, determined 8 weeks post-administration.
However, an alginate-only scaffold provided better results
in terms of wall thickness, LV expansion, and cardiac
function than the chitosan—alginate scaffold, reducing the
beneficial impact of the chitosan—alginate combination
[87]. Moreover, despite the variety of possibilities and
good results obtained with chitosan scaffolds, it is neces-
sary to evaluate their effects in a large animal MI model to
ensure that the described effects can be realized in a large
cardiovascular system, similar to human. Therefore, fur-
ther experimentation is mandatory to obtain satisfactory
results combining chitosan with other materials.

Alginate
Alginate is an anionic linear polysaccharide which can
form a hydrogel through ionic crosslinking with divalent
cations (mainly Ca?*) [91, 92]. This property also enables
incorporation and retention of cells and proteins inside
the hydrogel; thus, it can be used as a scaffold for tissue
regeneration [93, 94]. Interestingly, the implantation of
highly purified alginate, free of protein contaminants,
resulted in a complete absence of adverse host immune
response [95, 96]. Moreover, alginate mechanical behavior
is easily modifiable by different crosslinking or by chan-
ging the molecular weight distribution to match the
intrinsic stiffness of host myocardium [97].
Administration of alginate scaffolds alone resulted in
significant improvements in cardiac function and in-
creased scar thickness in various MI models, including
rat [98], dog [99], and swine [100] (Table 3). Remarkably,
alginate application was followed by the total absence of
arrhythmias or thrombus formation [98, 100] and the
replacement of the applied scaffold by connective tissue
and myofibroblasts [98]. Pig models have enabled cell-
filled scaffolds to be generated and tested in vivo with
promising outcomes, including significative decreases in
LV dilatation and LV mass, and a 53 % and 34 % increase
in scar thickness and wall thickness, respectively [100]. Al-
ginate scaffold hydrophilicity and porosity facilitate the in-
corporation and retention of cultured CMs on the scaffold
(>90 % retention). These retained cells exhibited spontan-
eous contraction, which indicated that alginate platforms
are suitable for cell seeding [101]. In a rat MI model, an al-
ginate scaffold seeded with rat fetal cardiac cells enhanced
neovascularization, preserved FS and end diastolic and
systolic internal diameters, and promoted the formation
of myofibers and cardiac gap junctions, measured 65 days
after scaffold implantation [102]. On the other hand, not-
so-positive results were obtained in vivo with human ESCs
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or embryonic bodies; neither new myocardium formation
nor cardiomyogenic differentiation was observed in the
implanted scaffold [103]. Additionally, treated animals de-
veloped LV dilatation and no ESCs were retained in the
scarred area 3 weeks after injection. Nonetheless, the al-
ginate composite did not trigger a deleterious immune re-
sponse and FS increased by 4 % [103]. So far, fetal cardiac
cells appear to be the most suitable cell source to continue
investigation with alginate scaffolds.

Alginate scaffolds are typically modified, through
integrin-mediated binding, with the addition of an
arginine-glycine-aspartate sequence (the RGD peptide)
derived from ECM proteins involved in cell adhesion, pro-
liferation, migration, survival, and differentiation [104].
Promising results have been obtained in vivo (Table 3). A
rat MI model showed remarkable enhancement of FS, LV
dimension, angiogenesis, and LV wall thickness measured
5 weeks post-administration of modified scaffolds [105].
The RGD-alginate scaffold also promoted angiogenesis
more effectively than the unmodified alginate scaffold in
the animal MI model (12.6 + 2.7 versus 9.3 + 4.2 arteriole/
mm?, respectively). Although not considered a scaffold,
similar effects were described for RGD—alginate microbe-
ads with encapsulated MSCs, evaluated 10 weeks after MI
[106]. Nevertheless, in a comparative study, the unmodi-
fied scaffolds promoted better LV FS, greater fractional
area changes, more attenuation of LV dilatation, a lower
LV expansion index, and greater scar thickness increases
compared with RGD-modified alginate scaffolds [107].
Thus, further experiments should be performed in vivo to
elucidate under what conditions RGD has beneficial
effects over unmodified alginate scaffolds and its effective-
ness in improving cardiac function in order to determine
the added value of RGD introduction.

For cardiac regeneration, alginate scaffolds have also been
supplemented with two growth factors, insulin growth fac-
tor (IGF)-1, with cytoprotective effects, and hepatocyte
growth factor (HGF), which is related to mainly anti-
fibrotic and pro-angiogenic processes [108, 109]. When
evaluated 4 weeks after MI, IGF/HGF plus alginate
microbeads injected into the infarcted myocardium
preserved scar thickness, reduced infarct expansion and
fibrosis, enhanced angiogenesis and reduced cell apop-
tosis (Table 3) [110]. It would be interesting to test dif-
ferent combinations of growth factors with alginate
scaffolds to determine whether they improve cardiac
recovery post-infarction, and to explore the possibility
of synergistic effects.

The ongoing AUGMENT-HF clinical trial (Tables 3
and 6), a first-in-human study, aims to evaluate the effects
of alginate injection (Algisyl-LVR) in patients with dilated
cardiomyopathy. An early follow-up at 3 months demon-
strated the feasibility and safety of the scaffold injection.
Cardiac evaluations demonstrated that patients who
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received treatment tended to show enhanced cardiac
function and LV size, but no statistical differences were
achieved compared with controls; in addition, treated pa-
tients showed significant improvements in quality of life
and clinical status [111]. Future measurements at longer
post-treatment times are expected to show significant
beneficial effects on LV function parameters.

Alginate has been mixed with other biomaterials,
including hyaluronic acid [112], gelatin [113], elastin
[114], chitosan [77], fibrin [115], synthetic polymers
[116], and omentum [117]. However, the effects of these
combinations in pre-clinical MI models have not been
fully defined in most cases (Table 3). One exception is
the alginate plus Matrigel patch, assembled with neo-
natal rat cardiac cells and a growth factor supplement
(IGF-1, vascular endothelial growth factor (VEGF), and
SDF-1) [117]. This patch was pre-cultured in rat omen-
tum for 1 week to induce pre-vascularization inside the
patch prior to its engraftment into the infarcted area of
a MI rat model. Then, 28 days after treatment with the
pre-vascularized alginate—Matrigel scaffold, rats showed
reduced LV dilatation, enhanced local angiogenesis,
mechanical and electrical coupling with the host myo-
cardium, limited LV dilatation, and improved cardiac
function, preserving FS and diminishing LV dimensions
[117]. In another study, a rat MI model was treated with
polypyrrole added to alginate, then evaluated 5 weeks after
the MI [118]. These rats exhibited increased angiogenesis
and enhanced myofibroblast population recruitment com-
pared with a control group treated with phosphate-buffered
saline, and the presence of polymer was confirmed in the
infarcted area with a non-associated inflammatory re-
sponse. However, no functional benefits were assessed, and
infarct size remained invariable after treatment, thus limit-
ing its clinical application [118].

Hyaluronic acid

Hyaluronic acid, a glycosaminoglycan component of the
ECM, plays key roles in cell behavior and attachment,
wound healing, inflammatory responses, tumor develop-
ment, and connective tissue joining [119]. In addition to
applications in damaged myocardium, hyaluronic acid-
based scaffolds have been successfully used for space filling
and wound repair, bone and cartilage restoration, nerve
and brain regeneration, cell and protein delivery, and soft
tissue and smooth muscle repair [120].

The molecular weight of the hyaluronic acid construct
highly impacts infarcted myocardium recovery and its
beneficial effects on cardiac function because the unit
size affects mechanical properties, angiogenic processess,
and other effects of the biomaterial itself [121, 122]
(Table 3). A comparative study of scaffolds that com-
prised 50 kDa, 130 kDa, and 170 kDa hyaluronic acid
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units demonstrated that scaffolds composed of 50 kDa
units showed the best effects, reducing apoptosis and
infarct size from 29.4 % to 3.72 % and increasing ven-
tricular wall thickness fourfold and heart function (LV
end-diastolic pressure and Tau-weiss parameter), as ana-
lyzed 28 days after therapy [121]. These results were
consistent with previous studies that described lower
apoptotic rates and higher angiogenic activities with
scaffolds composed of low molecular weight hyaluronic
acid [122, 123]. Additionally, this study also evaluated
the effects of the 50 kDa hyaluronic acid scaffold, alone
or loaded with VEGE, on cardiac regeneration in both
sub-acute and chronic MI animal models [121]. The
effects on myocardial recovery and angiogenesis were
similar between groups; therefore, VEGF addition did
not act synergistically to achieve a significantly different
outcome and hyaluronic acid is responsible for the
described cardiac benefits [121].

In some cases, hyaluronic acid scaffolds have been
seeded with cells of different lineages, mainly pluripotent
stem cells, committed to differentiating into endothelial
or cardiomyogenic phenotypes, which would reinforce
the proangiogenic and regenerative impact of the scaf-
fold. Taking advantage of hyaluronic acid scaffolds,
which promoted high adhesion and proliferation, low
apoptosis, paracrine factor gene expression, and regulated
cell differentiation [124], experiments were conducted to
assess the effectiveness of bone marrow mononuclear cells
(BMMNCs) [124, 125] and bone marrow MSCs [126] for
treating MI (Table 3). The combined action of the scaffold
seeded with rat BMMNCs was tested in a rat MI model
[124]. After 28 days, rats that received the scaffold plus
BMMNCs exhibited less apoptosis, improved EF and LV
internal dimensions, indicators of cardiac function, re-
duced macrophage and neutrophil infiltration and scar
size, and enhanced angiogenesis compared with un-
treated rats. Interestingly, the BMMNC-seeded hyalur-
onic acid scaffold also induced better CM survival and
cardiac output and smaller scars than an injection of
BMMNC:s alone or the hyaluronic acid scaffold alone.
Furthermore, the hyaluronic acid scaffold promoted
BMMNC differentiation towards ECs [124]. These out-
comes were confirmed with porcine BMMNCs seeded
in hyaluronic acid scaffolds and implanted into in-
farcted pigs; wall thickness, EF (increased 3.3 %), LV
pressures and volumes and angiogenesis were improved
while fibrotic area was reduced compared with un-
treated animals and animals treated with BMMNCs
alone or hyaluronic acid scaffolds alone [125]. Alterna-
tively, when harvested in an esterified hyaluronic acid
scaffold, rat bone marrow MSCs promoted an increase
in angiogenesis and a reduction in fibrosis in a rat MI
model [126]. MSCs of porcine origin were also tested in
swine [127]. In that study, the scaffold plus cell
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treatment induced a lower CD3 inflammatory response,
less fibrosis by reducing the total amount of collagen I
and III, and less cardiac cell degeneration compared
with no treatment or treatment with a similar level of
scaffold alone (except for inflammation attenuation)
[127]. When bone marrow cells and SDF-1a were used
to fill a methacrylated hyaluronic acid scaffold, bone
marrow cell homing into the myocardium was in-
creased approximately 8.5-fold, a higher value than that
exhibited with administration of cells alone [128].
Nevertheless, despite all the data collected for bone
marrow MSCs with hyaluronic acid scaffolds, function
and other cardiac function parameters were not evalu-
ated. Hence, the favorable results obtained with bone
marrow MSC in hyaluronic acid scaffolds need to be
corroborated in other studies to confirm these promis-
ing outcomes.

Other factors and compounds have been combined
with hyaluronic acid scaffolds (Table 3). In one study, a
recombinant tissue inhibitor of matrix metalloprotein-
ases (rTIMP), which leads to adverse cardiac remodeling
and fibrosis when deleted [129], was attached to the acid
hyaluronic scaffold [130]. In infarcted pigs, the rTIMP
plus scaffold treatment resulted in higher EF and wall
thickness, less ventricular dilatation, reduced remodeling
due to metalloproteinase activity, and a 50 % smaller
infarcted area compared with untreated animals and
compared with animals treated with the scaffold alone
[130]. Thus, the addition of rTIMP seems to have had a
positive and extra effect on cardiac regeneration post-
ML In another study, Gelin-S, a compound that
enhances cell adhesion, was attached to the hyaluronic
acid scaffold [131]. When applied to infarcted rats, this
construct increased EF by 18.2 %, FS by 12.3 %, and neo-
vascularization and decreased collagen deposition by
approximately 50 %; however, this treatment was not
compared with hyaluronic acid scaffold alone [131].
Finally, methacrylated hyaluronic acid scaffolds with dif-
ferent biomaterial stiffness (7.7 and 43 kPa) were
injected into the infarcted myocardium to evaluate the
impact of different mechanical properties on cardiac
function and myocardial regeneration. Compared with
controls, only the 43 kPa scaffold increased ventricular
wall thickness and significantly decreased the infarct
area (by approximately 20 %), although cardiac output
and EF remained unchanged [132]. A similar study
investigated the same hyaluronic acid scaffolds (approxi-
mately 7 kPa and 35 to 40 kPa) but in the context of low
or high scaffold sensitivity to hydrolytic degradation
[133]. Eight weeks after treatment, all scaffolds increased
vascularization and inflammatory responses, but the
ventricular wall thickened with more stable scaffolds,
while LV systolic volume decreased with higher stiffness
scaffolds. Thus, the results suggested that prolonged
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material stabilization provided the best benefits for myo-
cardial restoration. The finding that optimal results were
achieved with stiff scaffolds emphasized the notion that
the mechanical properties of scaffolds play an important
role in cardiac regeneration [133].

For cardiac repair, several supplementary materials
have been combined with hyaluronic acid to improve
scaffold properties, including gelatin [134], silk fibroin
[135], chitosan plus silk fibroin [136], and butyric acid
plus retinoic acid [137] (Table 3). A gelatin plus hyalur-
onic acid scaffold seeded with cardiosphere-derived cells
was evaluated at 3 weeks after MI induction [134]. This
construct induced increases in EF (approximately 17 %),
viable tissue, wall thickness, and angiogenesis, enhanced
cell survival, and promoted the uncompromised differ-
entiation of cardiosphere-derived cells into endothelial
and cardiac lineages compared with untreated animals
and animals treated with cardiosphere-derived cells or
scaffold alone [134]. Similarly, when silk fibroin plus
hyaluronic acid scaffolds populated with bone marrow
MSCs were injected into animal MI models, they reduced
the LV inner diameter and inflammatory responses, and
enhanced FS compared with animals with MI and without
treatment [135]. Compared with untreated animals or ani-
mals treated with bone marrow MSCs alone, animals
receiving the scaffold plus cells also exhibited increases in
LV wall thickness, cell survival, alpha myosin heavy chain
expression (a cardiac contractility protein), and release of
VEGE, bFGE, and HGF paracrine factors. These results
indicated that combining scaffold and cells produced syn-
ergistic effects [135]. In another study, a rat MI model was
treated with chitosan plus silk fibroin plus hyaluronic acid
scaffolds without cells [136]. At 8 weeks post-treatment,
rats showed improved heart function parameters, increased
angiogenesis, and upregulated expression of VEGF, bFGEF,
and HGF paracrine factors. These results suggested that
the scaffold without cell seeding had positive effects on car-
diac function, being a suitable scaffold for different cell har-
vesting and for determining scaffold effects independently
of cellular ones [136]. Finally, infarcted pigs were treated
with a combination of human placenta-derived MSCs
placed in a hyaluronic acid scaffold that had been modified
with butyric and retinoic acids [137]. This treatment
resulted in increased FS, wall thickness, and blood vessel
density compared with phosphate-buffered saline or cell-
only treatment. Importantly, the collagen content was
reduced after treatment, and scar size and fibrotic area core
were reduced by 64 % and 44.6 %, respectively. Of interest,
this study performed a proteomic analysis of the LV border
zone; the group with the implanted scaffold displayed
higher proteomic homology (45 %) to the healthy myocar-
dium compared with the other groups, which corroborated
the regenerative effects and functional recovery provided
by scaffold delivery [137].
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Gelatin

Gelatin is a natural polymer that can be produced from
bone, skin, or tendon collagen by partial hydrolysis with
acid or alkaline solutions. Gelatin is highly biocompat-
ible and biodegradable, has low antigenicity and can be
produced and prepared at relatively low cost [138, 139].
These properties make gelatin ideal for use as a natural
scaffold in cardiac tissue engineering.

Despite the small number of in vivo studies that used
gelatin scaffolds alone or combined with other materials,
some promising results are likely to encourage their
future application (Table 4). For example, a gelatin mesh
seeded with fetal rat ventricular cells was evaluated
5 weeks after implantation into infarcted rat hearts
[140]. This construct showed good engraftment to the
host myocardium, and the presence of blood vessels in-
dicated vascularization of the cardiac graft. Furthermore,
the cells rearranged to form connections between them,
and exhibited spontaneous contractions. However, lack
of functional or structural cardiac improvements dis-
suades further application of this particular combination
[140]. The scaffold effects could be enhanced by adding
erythropoietin, a glycoprotein hormone used in the
treatment of anemia in patients with heart failure, which
reduces ventricular hypertrophy and increases EF [141].
In a rabbit MI model, gelatin plus erythropoietin scaf-
folds were applied 20 minutes after inducing the MI
[142]. At 14 days and 2 months after treatment, the
treated rabbits displayed reduced LV diastolic and sys-
tolic dimensions, infarct size, and fibrosis, and enhanced
EE, FS, and capillary density in the infarct border zone.
In another study, bFGF was added to gelatin scaffolds
for treating a rat MI model [143]. After 2 and 4 weeks of
treatment, these animals showed lower CM apoptotic
rates, higher arteriole densities, higher expansion indexes,
greater infarcted/non-infarcted wall thickness ratios, and
smaller infarct sizes in comparison with untreated animals
(except for infarct size, which was only reduced after
2 weeks). Compared with scaffold alone, the scaffold plus
bFGF treatment induced, at 2 weeks post-treatment,
smaller infarct areas, lower expansion indexes, lower
apoptotic rates, and higher arteriole numbers; at 4 weeks,
more arterioles and capillaries and less apoptosis were
observed [143]. In a pig MI model, bFGF was combined
with the gelatin scaffold, with or without either human
bone marrow-derived MSCs or human cardiosphere-
derived cells [144]. When the three groups were compared
(scaffold plus bFGE, scaffold plus bFGF plus human bone
marrow-derived MSCs, and scaffold plus bFGF plus
human cardiosphere-derived cells), optimal results were
achieved with the combination of scaffold plus bFGF plus
human cardiosphere-derived cells, which displayed the
highest EF increase (approximately 9 %) and infarct
volume reduction (approximately 3.7 %), the greatest wall
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motion index variation (approximately 13 %), and the
most differentiation into CMs. Thus, the results con-
firmed that bFGF and the cells had additive effects [144].

Collectively, the outstanding results obtained with bFGF
and MSCs in a gelatin scaffold have led to its
implementation in humans. In a phase I clinical trial,
ALCADIA (AutoLogous human CArdiac-Derived stem cell
to treat Ischemic cArdiomyopathy, NCT00981006), pa-
tients with MI were treated with a combination of gelatin
hydrogel embedded with human cardiac-derived stem cells
and bFGF (Tables 4 and 6). Of six treated patients, one was
excluded due to graft occlusion. Of the five remaining pa-
tients, only one experienced heart failure worsening. Evalu-
ation after 6 months revealed a 12 % increase in the LV EF,
an improvement in maximum aerobic exercise capacity,
and a 3.3 % decrease in infarct size [145]. Nevertheless, a
larger number of patients and a longer follow-up are re-
quired to evaluate treatment effectiveness.

Matrigel

Matrigel is a biomaterial derived from ECM secreted by
Engelbreth-Holm-Swarm mouse sarcoma cells [146]—whose
composition has not been fully defined—which resembles
and mimics myocardial ECM. Matrigel promoted angio-
genesis both in vitro with ECs and in vivo [147]; thus, it
appears to be a good candidate biomaterial for construct-
ing a scaffold for cellular support.

Matrigel (without cells) was administered to infarcted
myocardium to evaluate its effects on cardiac function
and tissue regeneration (Table 4). In a comparative
study, fibrin, collagen, or Matrigel was injected into a rat
MI model [147]. Matrigel enhanced capillary density but
did not improve cardiac function. On top of that, only
collagen significantly increased myofibroblast infiltration
compared with untreated animals [147]. Conversely,
another study injected Matrigel alone into infarcted rats
[148]. At 4 weeks after treatment, increases were
observed in LV EF (improvement of 22.7 %), contractility
(a 24.5 % enhancement of LV pressure decline), infarct
wall thickness, angiogenesis, and recruitment of c-kit"
and CD43" stem cells to the myocardium.

Taking advantage of the described regenerative effects
of Matrigel, several studies have mixed Matrigel with dif-
ferent cell types (Table 4). In one study, Matrigel was
combined with adipose-derived stromal cells and
injected into a rat MI model [149]. At 4 weeks after the
MI, treated rats showed increased normalized EF, less
LV akinesis, increased heart contractility, and a smaller
infarct area. ESCs have also been used extensively. In
one study, a mixture of mouse ESC plus Matrigel scaf-
fold improved FS, preserved LV wall thickness, and
increased expression of the cardiac gap junction marker
connexin 43 in comparison with untreated animals and
animals treated with Matrigel alone [150]. Consistent
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with this study, a Matrigel plus mouse ESC combination
was administered to infarcted rats and evaluated 2 weeks
post-treatment [151]. Treated rats exhibited increased
FS and LV wall thickness and reduced LV dilatation
compared with untreated rats. In addition, introduced
cells expressed the cardiac markers connexin 43 and o-
sarcomeric actin. In spite of these results, a comparison
between Matrigel alone and Matrigel with cells showed
non-significant differences in terms of FS, LV wall thick-
ness, and prevention of LV dilatation, outlining the rle of
Matrigel in myocardial restoration [151]. Human ESC-
derived CMs seeded onto a Matrigel scaffold and supple-
mented with a prosurvival cocktail were evaluated in a
rat MI model [152]. Treated rats showed significantly
enhanced cell engraftment in the scarred area compared
with Matrigel plus cells alone. Additionally, at 4 weeks
after treatment, the prosurvival cocktail complementation
also revealed better results with regard to ventricular dila-
tation, FS, EF, and infarct zone wall thickness [152]. Con-
versely, when bone marrow-derived MSCs were mixed
with Matrigel, only modest results were observed; there
was no improvement in FS, EF, or other cardiac function
parameters, hampering future research with these cells
[153]. To sum up, extensive good results obtained with
ESCs could lead next to in vivo testing in a porcine MI
model, prior to clinical trials.

In most cases, Matrigel was combined with collagen,
the primary structural protein of the ECM (Table 4).
When these two compounds were combined with rat
cardiomyoblasts, significant improvements were ob-
served regarding cell survival, cardiac function, and LV
wall thickness compared with controls and collagen-
matrix treated animals [154]. When a growth factor,
either VEGF or bFGF, was added to the Matrigel plus
collagen scaffold, no other positive cardiac effects were
obtained compared with Matrigel plus collagen alone
[154]. Nevertheless, modest results were obtained in a
similar study that also employed a Matrigel plus collagen
cellular scaffold, but filled with myoblasts [155]. In this
study, only a significant FS improvement was detected
in infarcted rats after 4 weeks of treatment compared
with pre-treatment (42 % versus 33 %); no significant
effects were observed in other cardiac parameters. More-
over, the group that received the Matrigel plus collagen
scaffold displayed a larger adverse immunological
response than untreated rats or rats treated with fibrin
[155]. In another study, cardiac myocytes were harvested
and incorporated into a Matrigel plus collagen scaffold
for treating a rat MI model [156]. This treatment did
not provide any benefit in terms of heart function or LV
wall thickness. Nonetheless, the generated scaffold was
able to couple with the host myocardium, preserved
contraction and sarcomere integrity, and presented high
levels of neovascularization and innervation after
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engraftment. It is important to point out that although
connexin 43 and cadherin expression were demon-
strated, further investigation is necessary to show
complete electrical and mechanical coupling [156]. The
addition of CMs to a Matrigel plus collagen scaffold pro-
moted FS and increased anterior wall thickness [157].
Also, at 4 weeks after MI induction, rats that received
this treatment maintained sarcomere integrity and struc-
ture and exhibited decreased LV end-systolic volume in
comparison with untreated infarcted rats or animals
treated with either cells or scaffold alone [157]. Adminis-
tration of neonatal rat heart cells supported by the
Matrigel plus collagen scaffold also led to electrical
assembly with the myocardium, diminished ventricular
dilatation, enhanced ventricular wall thickening, and in-
creased FS area [158]. Data collected suggest that a
Matrigel—collagen scaffold combined with cardiomyo-
blasts or CMs should have a high impact in future
investigations.

Decellularized extracellular matrix
ECM consists of a dynamic blend of structural and func-
tional molecules that are secreted by cells, with a slightly
different composition depending on tissue source [159].
This physiological cellular support platform gives cells a
suitable microenvironment; it guides cellular prolifera-
tion, attachment, differentiation, migration, and viability
by providing different signals or cues [160, 161]. Hence,
the isolation of an intact ECM would supply cellular
support that best matched the native or physiological
extracellular environment [18]. For ECM extraction, it is
necessary to remove all cellular and nuclear content, in
a process called decellularization, and the acellular ECM
must maintain its integrity and architecture [3, 162].
Successful tissue decellularization requires the careful
selection of physical, chemical, and enzymatic agents
that can remove cellular material without disrupting the
ECM. Decellularizing agents have variable effects on
ECM structure and composition; any negative distortion
of the matrix organization or integrity may affect its
ability to support cells [163, 164]. Therefore, maximal
cell removal and ECM property retention are mandatory
for obtaining optimal ECM for use as a cellular scaffold.
Among the essential properties to maintain, correct
three-dimensional organization of the ECM helps in
proper cell adhesion, differentiation, survival, and inte-
gration [18, 160, 164]. Closely related to this, mechanical
properties are tightly associated with fiber arrangement
and three-dimensional architecture, which in turn affects
ECM scaffold coupling with the host myocardium and
its synchronous contraction.

To date, many organs and tissues have been completely
decellularized, including heart valves, myocardium, peri-
cardium, lung, pancreas, kidney, liver, mammary gland,
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and nerve [163, 164]. For cardiac tissue engineering, myo-
cardial ECM possesses the best properties; it can exactly
recreate the microenvironment of the native myocardium.
Thus, it favors coupling with host cardiac tissue when
engrafted in the infarcted zone. The first heart decellulari-
zation was performed in 2008 by antegrade coronary per-
fusion with sodium dodecyl sulfate. The generated
acellular organ preserved the primary matrix proteins,
vascular architecture, valves, and chambers; when it was
seeded with CMs and ECs, the recellularized heart exhib-
ited contraction [165].

Several studies have been performed in vivo using
decellularized myocardium ECM scaffolds (Table 5).
Local administration of decellularized myocardial ECM
was used to treat the infarcted area in a rat MI model
[166]. Six weeks after ECM injection, heart function was
enhanced through an 8 % elevation in LV EF, a 1.2-fold
increase in LV wall thickness, and a 1.3-fold reduction in
the infarct expansion index [166]. In another study, simi-
lar improvements were achieved with decellularized
myocardial ECM application in a rat MI model; the EF
was preserved, a higher proportion of viable myocar-
dium was achieved (1.7-fold higher compared with con-
trols), and arrhythmias were completely absent [167].
These results were corroborated when the decellularized
myocardial matrix was administered to a porcine MI
model [168]. In that case, EF and contractility were
enhanced, LV volumes and fibrotic areas were reduced,
and the proportion of endothelial muscle was increased.
In addition, adverse side effects (ischemia, embolization,
and altered heartbeat) were not detected in either pig or
rat infarct models. These results ensured that scaffold
delivery was a safe procedure; they also demonstrated
that the ECM was highly degradable and biocompatible
[168]. These promising results may open the door to
repopulate decellularized myocardium with cells. A first
attempt showed encouraging outcomes for future pre-
clinical applications, even though they used a combin-
ation of decellularized myocardial ECM plus fibrin
embedded with mesenchymal progenitor cells, and not
the matrix alone plus cells [70]. Recently, our group has
implanted a combination of decellularized porcine myo-
cardial ECM (previously characterized and successfully
recellularized in vitro) refilled with hydrogel and adipose
tissue-derived progenitor cells (ATDPCs) in an infarcted
porcine MI model [169] (Fig. 3). The scaffold remained
in the damaged area 28 days after animals were sacri-
ficed (Fig. 3f). Thus, this alternative scaffold is feasible
and may provide new promising results using an acellu-
lar myocardial scaffold.

ECM derived from decellularized pericardium has also
been widely used as a supportive scaffold for MI regen-
eration (Table 5). Pericardium ECM is a porous material
that facilitates cellular retention and vascularization. It is
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Fig. 3 Engraftment of a decellularized myocardial ECM scaffold embedded with cells in a swine myocardial infarction model. a Lyophilized and
gamma ultraviolet sterilized decellularized myocardial ECM scaffold. b, ¢ Decellularized scaffold after the addition of peptide hydrogel (b) and
porcine adipose tissue-derived progenitor cells (c). Scale bars=1 cm. d Image of the myocardial infarction site, induced by double ligation in the
first marginal branch of the circumflex artery (indicated with white arrow). e Reseeded decellularized scaffold placed over the injured myocardium.
Scaffold is indicated with yellow dotted lines. f Presence of the implanted scaffold on the infarcted area in explanted hearts 28 days after sacrifice.

The remaining scaffold is highlighted with yellow dotted lines

easy to perform pericardium resection during surgery
and subsequently extract the ECM; moreover, there are
no negative consequences [170, 171]. Pericardium prop-
erties are comparable among human individuals, and
these similar characteristics permit low variability among
samples [172]. In vitro results have demonstrated that
pericardial ECM seems to resemble myocardial ECM in
structure and microenvironment, retain infiltrated cells,
and support cardiac differentiation [170, 173-175].

In one in vivo study, rat infarcted myocardium was
patched with decellularized pericardium and bone marrow
MSCs and evaluated 12 weeks after treatment. The results
revealed improvements in LV FS and LV pressures, infarct
area vasculogenesis, cardioprotective growth factor and
cytokine secretion, and cell differentiation into smooth
muscle cells or myofibroblasts [176]. Nearly the same
improvements were described when a decellularized peri-
cardium sandwiched between multilayered sheets of bone
marrow MSCs was applied to a rat MI model, highlighting
functional enhancements in FS and LV pressures [177].
The three-dimensional organization apparently showed
correct porosity and pore size, facilitating interconnectivity.
Both studies confirm the suitability of MSCs with decellu-
larized pericardial ECM, enabling us to move forward to
large animal model experiments. Another study evaluated

the synergistic effects of bFGF combined with decellular-
ized pericardium, which displayed well-organized matrix
fibers, for treating a rat MI model [178]. After injection, this
combination resulted in higher bFGF retention and a 112 %
higher number of functional blood vessels in treated rats
compared with animals that did not receive bFGF and rats
that received collagen alone, decellularized pericardium
alone, bFGF alone, or bFGF combined with collagen. An
increase in inflammation was observed, but this was attrib-
uted to bFGE not to the decellularized pericardium,
because injection of the latter alone did not show signifi-
cant inflammation compared with saline-injected control
groups [178]. When HGF was mixed with decellularized
pericardium, treated rats showed significant prevention of
LV remodeling, enhanced cardiac function (only fractional
area change), and increased arteriole density [179]. Thus, it
is imperative to continue investigating the use of growth
factors to determine their effectiveness in heart function
and structure recovery. Finally, when decellularized pericar-
dium was assembled with RAD-16 peptidic hydrogel and
ATDPCs in a swine MI model, infarct size was 36 %
reduced and vascularization inside the scaffold was
increased. Of note, the scaffold displayed non-disrupted
fiber organization and a high in vitro biodegradability,
losing about 70 % of the initial weight after 24 hours [174].
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Other, unrelated cardiac ECMs have been used for car-
diac restoration (Table 5). One of these is the acellular
ECM derived from porcine small intestinal submucosa
(SIS), which is highly biocompatible and mechanically
modifiable. Injection of SIS alone in a mouse MI model
provided good results: it maintained better LV geometry,
reduced the infarcted area, and enhanced contractility
and blood vessel density after treatment [180]. In a
mouse MI model, treatment with SIS seeded with MSCs
improved heart function (EF and LV diastolic and sys-
tolic dimensions), contractility, and angiogenesis, and
attenuated wall thinning, LV enlargement and adverse
immunological responses [181]. Notably, the SIS patch
was partially degraded and the cells seeded on it seemed to
differentiate into cardiac lineages because they expressed
cardiac troponin T and a-smooth muscle actin; however,
no connexin 43 expression was detected. This combination
was more effective than SIS administration without cells
[181]. When SIS was enhanced with bFGF, treated rats dis-
played higher EF (55.3 % versus 35.1 %), greater preven-
tion of LV remodeling by reducing LV end-diastolic
volumes, and improved heart contraction compared with
the untreated group. Of interest, non-enhanced SIS only
improved cardiac contractility compared with controls
[182]. Currently, a clinical trial (NCT02139189) has begun
to recruit participants to test the feasibility and safety of
an SIS matrix (also called CorMatrix) for treating dam-
aged myocardium (Tables 5 and 6).

Another non-cardiac-derived ECM widely used is the
acellular urinary bladder matrix (UBM; Table 5).
Extracted from urinary bladder, it is basically composed
of type IV collagen, laminin, and entactin [183]. As a scaf-
fold for cardiac repair, a UBM patch was used to repair an
excised portion of the myocardium in a dog model [184].
This treatment enhanced ventricular function compared
with a synthetic matrix patch composed of Dacron; add-
itionally, CMs were detected in the UBM patch area,
which was not observed with Dacron. In another study in
a pig MI model, administration of a UBM patch without
cells increased myofibroblast recruitment and the pres-
ence of smooth muscle cells, reduced the inflammatory
response, and limited thrombus expansion compared with
treatment with an expanded polytetrafluoroethylene syn-
thetic biomaterial [162]. Moreover, UBM scaffold was not
distinguished from the myocardium. Nevertheless, no im-
provements in cardiac function, LV dilatation, or contract-
ility were achieved [162]. In a similar study performed in
dogs, UBM enhanced regional stroke work and systolic
contraction by 3.7 % and 4.4 %, respectively [185]. Myo-
cyte recruitment and proliferation, measured 8 weeks after
treatment, were also increased. Interestingly, myocyte
arrangement in the UBM scaffold was similar to that in
the neighboring myocardium [185]. Finally, a comparative
study was conducted on UBM patches embedded with
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either spheroid-derived MSCs or unmanipulated MSCs in
a dog MI model [186]. The results revealed that spheroid-
derived cells provided better heart function and improved
contractility, as assessed by regional stroke work, in com-
parison with unmanipulated MSCs. Myocytes present in
the scaffold were correctly rearranged and showed an
organized sarcomeric structure [186].

Considerations and future perspectives

With all the collected data provided by the different
studies, it is clear that engrafted scaffolds in the injured
heart exert a beneficial effect over myocardium. In spite
of not being the main point of this review, it is not fully
understood how scaffolds promote the described regen-
erative effects and which mechanisms follow them. It
has been described that a scaffold itself is capable of
inducing new blood vessel and nerve fiber formation in
swine myocardium, thus facilitating revascularization and
reoxygenation of the hypoxic area and electrical coupling
[187]. Probably, the local hypoxic environment in the
infarcted area induces expression of vascular endothelial
and platelet-derived growth factors, SDF-1qa, and macro-
phage chemotactic protein, promoting recruitment of
circulating cells to vascularize the affected myocardium in
a more favorable microenvironment provided by the scaf-
fold [187, 188]. The addition of cells helps to reinforce this
effect by secreting paracrine factors and synthesizing new
endogenous ECM, which in turns mobilizes more cells,
favoring myocardial regeneration.

Hence, scaffold biodegradability is a key parameter, as
scaffolds should not be degraded quickly after engraftment
so they can continue to supply a suitable platform for ini-
tial cell administration. However, scaffolds should be easily
degradable to allow them to be replaced by the new
endogenous matrix synthesized by the administered cells.
Moreover, components and molecules derived from deg-
radation have to be non-toxic and absorbable by the body.
In the specific case of the natural scaffolds reviewed here,
elements derived from degradation are biocompatible and
naturally absorbable. In most studies, however, the bio-
degradability parameter has not been determined. In
the work reviewed here, only a few have shown de-
tailed information about scaffold degradation rates,
with non-exact quantifications and without clear
criteria for determining the degradation rate of the
scaffolds [36, 87, 168, 174, 181]. Therefore, further in-
vestigation seems to be necessary for discerning the
optimal scaffold degradability to accomplish a balance
between enough time for enabling initial cell nesting
and complete scaffold degradation to allow its proper
substitution by newly synthesized cell matrix.

Tightly related to degradability, it is also of particular
importance to assess changes in the preserved scaffold
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matrix (if not degraded), or in the new endogenous
matrix secreted by implanted cells, which replaces the
scaffold. None of the reviewed studies performed an
analysis of scaffold elements post-engraftment, which is
hard to do as the lack of scaffold or its total integration
into the host tissue makes its isolation difficult. Scaffold
composition analysis should help us to understand how
these changes can affect myocardial regeneration, and
how variations in scaffolds can regulate and direct the
mechanisms behind these, which could also explain the
mechanism by which scaffolds promote cardiac recovery.

Despite the promising results obtained in most pre-
clinical studies, some issues and questions remain
unresolved regarding cardiac tissue engineering and
the use of natural scaffolds. First, few clinical trials have
tested scaffolds with or without cells [37, 38, 111, 145]
(NCT00981006, NCT02139189, and NCT02057900;
Table 6), which limits the ability to translate procedures
from pre-clinical studies to humans. In addition, few stud-
ies have been performed in large animal MI models. These
animal models could provide more realistic expectations
of possible effects in humans, because their cardiovascular
systems are more closely related to the human system. It
is very important to determine influences on LV function,
adverse remodeling, and contractility in a similar cardio-
vascular system. It is also crucial to investigate inflamma-
tory responses after scaffold injection or engraftment.
Because scaffold materials are typically xenogeneic or allo-
geneic, they might trigger inflammation and macrophage
infiltration and this effect must be assessed prior to testing
in humans. It is not meaningful to assess inflammatory
responses in small animals because they lack human-like
inflammatory responses [16]. Additionally, the absence of
experimentation in large animal MI models becomes
more relevant in applications where the scaffold incorpo-
rates cells, because the effects caused by cells may vary
among different species. Special caution should be taken
with ESCs or iPSCs because they tend to form teratomas;
therefore, detailed follow-up should be conducted in large
animal MI models before these treatments can be trans-
lated to clinical applications [189].

Second, long-term effects must also be evaluated to
ensure maintenance of the positive effects provided by
the scaffold. A study performed with synthetic scaffolds
and myoblasts indicated that heart failure progression
could be prevented and high numbers of cells were
present after 9 months, but both effects were lost after
12 months [190]. The transitory nature of these effects,
albeit using synthetic materials, should motivate new,
longer studies to include several time points for evaluat-
ing scaffold properties, cell states, and cardiac function.

Finally, although several types of scaffolds and combi-
nations of scaffolds with different cell types have been
studied—and in most cases shown promising results—it
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remains unclear what combination of materials, cells,
and growth factors or other supplements might be opti-
mal. Ideally, a scaffold should exactly match the cardiac
matrix microenvironment and three-dimensional archi-
tecture, which would favor cell attachment, proliferation,
and differentiation into cardiomyogenic lineages [17].
Nevertheless, it is highly difficult to achieve this because
native cardiac ECM is composed of a mixture of differ-
ent proteins, glycosaminoglycans, proteoglycans, and
growth factors in discrete proportions, which are dis-
persed in a well-organized structure with a unique
three-dimensional architecture [191, 192]. Moreover, the
scaffold must mechanically couple with the host myocar-
dium and beat synchronously [17]. Decellularized myo-
cardial ECM could probably best accomplish these
conditions, but procuring it requires a decellularization
process that might alter its intrinsic properties [164].
The newly emerging technology of bioprinting may fa-
cilitate the resolution of these problems. This technique
employs a three-dimensional bioprinter to generate a
scaffold with a predefined pattern and a well-organized,
specified structure. It mixes the selected materials in the
chosen proportions and provides control over many
parameters, such as porosity [193, 194]. For instance, a
three-dimensional bioprinter was used to create small
blood vessels from a pre-determined ratio of human
adult aortic smooth cells, ECs, and dermal fibroblasts.
These vessels were functional and sustained mechanical
integrity for up to 28 days [195]. New insights gained over
the next few years about ECM structure and composition
will inform improvements in bioprinting technology to
enable precise selections of elements and distributions
based on the native myocardial pattern. This emergent
technique may provide a means to achieve the goal of re-
creating the myocardial ECM.

Conclusion

Collectively, most recent advances in cardiac tissue
engineering using natural scaffolds have shown promising
results in myocardial regeneration after MI. These findings
should facilitate the development of next-generation scaf-
folds with enhanced properties, either by adjusting scaffold
microenvironments or by delimiting cell choices, thus
enabling clinical translation of these newly developed scaf-
folds. Therefore, natural scaffolds are on the way to be fi-
nally implemented as a feasible and alternative MI therapy.
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