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Abstract

Background: Bone marrow mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) are used to repair

hypoxic or ischemic tissue. However, the underlining mechanism of resistance in the hypoxic microenvironment and the
efficacy of migration to the injured tissue are still unknown. The current study aims to understand the hypoxia resistance
and migration ability of MSCs during differentiation toward endothelial lineages by biochemical and mechanical stimuli.

Method: MSCs were harvested from the bone marrow of 6-8-week-old Sprague-Dawley rats. The endothelial growth
medium (EGM) was added to MSCs for 3 days to initiate endothelial differentiation. Laminar shear stress was used as the
fluid mechanical stimulation.

Results: Application of EGM facilitated the early endothelial lineage cells (eELCs) to express EPC markers. When treating
the hypoxic mimetic desferrioxamine, both MSCs and eELCs showed resistance to hypoxia as compared with the
occurrence of apoptosis in rat fibroblasts. The eELCs under hypoxia increased the wound closure and C-X-C chemokine
receptor type 4 (CXCR4) gene expression. Although the shear stress promoted eELC maturation and aligned cells parallel

ability under a hypoxic microenvironment.

to the flow direction, their migration ability was not superior to that of eELCs either under normoxia or hypoxia. The
eELCs showed higher protein expressions of CXCR4, phosphorylated Akt (pAkt), and endogenous NFkB and IkBa than
MSCs under both normoxia and hypoxia conditions. The potential migratory signals were discovered by inhibiting either
Akt or NFkB using specific inhibitors and revealed decreases of wound closure and transmigration ability in eELCs.

Conclusion: The Akt and NFkB pathways are important to regulate the early endothelial differentiation and its migratory
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Background

Hypoxic or ischemic injury causes cell death by oxidative
stress and cellular signals to trigger tissue necrosis and
subsequently life-long dysfunctions [1-5]. The injured
tissues produce cytokines and chemokines to recruit
stem or progenitor cells for repairing the damaged sites.
However, the number of endogenous therapeutic cells is
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usually not sufficient to recover a large injury site. Stem
or progenitor cells have been applied to rescue ischemic
injury in clinical trials, such as myocardial infarction or
stroke [6, 7]. Bone marrow mesenchymal stem cells
(MSCs) have the characteristics of self-renewal and mul-
tipotency [8-10]. MSCs are potent therapeutic sources
to differentiate or transdifferentiate into other thera-
peutic lineages for neovascular genesis of new vessels to
repair damaged tissues [11-13].

Cell apoptosis under hypoxia is regulated by mitogen-
activated protein kinase (MAPK), nuclear factor-xB
(NF«B), phosphatidylinositol 3-kinase (PI3K)/Akt, or the
release of cytochrome C to activate the apoptotic
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cascades [14, 15]. Under hypoxia, reactive oxygen species
are produced to degrade the NF«kB inhibitor (IkB) into
RelA/p50 dimer for nuclear translocation. Hypoxia also
regulates hypoxia inducible factor-1 (HIF-1) activity via
PI3K/Akt or MAPK signaling in an oxygen-independent
manner. The interaction and crosstalk of HIF-1 and NF«B
signals are important for immune responses, inflamma-
tion, and anti-apoptosis [16].

In hypoxic tissue, stromal cell-derived factor-1 (SDF-1)
and C-X-C chemokine receptor type 4 (CXCR4) are im-
portant factors for cell migration. The damaged tissues
secrete SDF-1 to attract CXCR4-expressed cells, particu-
larly the therapeutic progenitors [17]. Conversely, MSCs
originate from the bone marrow microenvironmental
niche with exhibiting of low oxygen tension [18, 19]. In-
vitro culture of MSCs under hypoxic conditions (low
oxygen tension) showed benefits in maintaining cell self-
renewal, migration, vascular tube formation, and release
of paracrine factors for chemotactic and proangiogenic
properties [20-22]. Endothelial progenitor cells (EPCs)
are classified into early EPCs and late EPCs which can
be isolated from peripheral blood or bone marrow [23,
24]. Upon tissue damage, EPCs are mobilized from the
bone marrow and migrated into the hypoxic region to
regenerate the vascular structure and restore tissue func-
tion [25, 26]. EPCs participate in the reendothelialization
of angiogenesis as well as of vasculogenesis by differenti-
ating into mature endothelial cells (ECs) [27-29]. For
the injected EPCs, recruitment and incorporation into
the ischemic region is essential for achieving the benefi-
cial outcomes [30, 31]. However, the migration and func-
tional roles of therapeutic cells in MSCs as well as in
different stages of EPCs under a hypoxic microenviron-
ment are still not clear.

The combination of biochemical and mechanical stimuli
promotes several adult stem cells, including placenta-
derived multipotent cells (PDMCs) [32] and adipose-
derived stem cells (ASCs) [33, 34], to switch their MSC
characteristics toward endothelial lineage cells (ELCs).
ELCs are defined as mixture cells for cell transplantation
without sorting of different endothelial populations after
endothelial differentiation [33]. The application of endothe-
lial growth medium (EGM) to these adult stem cells in-
duces expression of early EPC markers named early
ELCs (eELCs). After a subsequent mechanical stimula-
tion of laminar shear stress (LSS), ELCs showed mature
EC characteristics of forming vascular tube-like stuc-
ture and uptake of lipoproteins [32]. However, the dif-
ferentiation of MSCs using this approach and their
characteristics under hypoxia are still unknown. Desfer-
rioxamine (DFO), an iron chelator, is known to upregu-
late hypoxia signals by stabilizing the HIF-1 activity
[35] and to reduce free radical-mediated cell injury
[36]. In the current study, we are interested to know
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the anti-apoptosis and migration abilities of MSCs and
their differentiated ELCs under hypoxic microenviron-
ments. We hypothesize that MSCs and their ELCs can
resist hypoxia and able to migrate toward the injury site
via a specific signaling pathway for repairing the dam-
aged tissue. The understanding of cellular responses
and potential signals for hypoxia in MSCs and ELCs
may benefit the clinical preconditioning of these thera-
peutic cells for better repair outcomes.

Methods

Cell culture and differentiation

Bone marrow-derived MSCs were harvested from fem-
oral bone marrow of 8-week-old Sprague—Dawley (SD)
rats. Briefly, the cells were flushed from the femoral
bone and collected into Dulbecco’s modified Eagle
medium (DMEM; Invitrogen) supplemented with 10%
fetal bovine serum (FBS; Hyclone) and 1% penicillin—
streptomycin (Invitrogen), and seeded on a 100-mm
Petri dish. The detached cells were removed after culture
for 24 hr. The adhered cells were characterized and de-
fined as rat MSCs after confirmation of stem cell
markers and differentiation ability [32]. The MSCs were
used between passages 2 and 5 in the current study. The
NRK49F fibroblast cell line (ATCC) was cultured in
DMEM supplement with 10% FBS and 1% penicillin—
streptomycin to represent the rat stromal cells. To
induce endothelial differentiation, eELCs were induced
by culturing MSCs in medium 199 (M199; Invitrogen)
supplemented with 20% FBS, EGM (Lonza), and 1%
penicillin—streptomycin under a static condition for
3 days [32, 34]. The maturation of ELCs was induced by
subjecting the eELCs to LSS (12 dyn/cm?) for 24 hr
using the flow chamber system [32].

Cell treatments under in-vitro hypoxic microenvironments
The hypoxic mimetic DFO (Sigma-Aldrich) was used to
create an in-vitro hypoxic microenvironment with differ-
ent dosages (10, 20, 50 uM) [37]. The fibroblasts, MSCs,
and differentiated cells were rinsed with phosphate-
buffered saline (PBS) and then exchanged to fresh
DMEM containing 1% FBS and different dosages of
DFO. The hypoxic microenvironment was also created
by placing cells in a hypoxia incubator (Autoflow 4950;
NuAire Inc.) and reducing the oxygen concentration to
2%. Low oxygen tension hypoxia was created by mixing
5% CO, and replacing oxygen with N, in the hypoxia in-
cubator. Upon blockage of potential signaling pathways
using specific inhibitors, the CXCR4 signal was inhibited
by CXCR4 antagonist AMD3100 (Sigma-Aldrich). The
PI3K/Akt inhibitor LY294006 (10 uM; Sigma-Aldrich)
and the antioxidant pyrrolidinedithiocarbamate (PDTC,
10 pM; Sigma-Aldrich) were used to inhibit Akt phos-
phorylation and NFkB activity, respectively. To abolish
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the stimulation upon DFO application, cells were pre-
treated with specific inhibitors (LY294006, PDTC, or
AMD3100) for 30 min, and then DFO applied for the in-
dicated time.

Flow cytometry assessments
Flow cytometry was used to quantify the cell apoptosis
and CD surface markers. The early stage of cell apop-
tosis was further confirmed using flow cytometry and by
positive staining with annexin V and negative staining
with propidium iodide (PI) [38]. The fibroblasts, MSCs,
and eELCs treated with DFO were resuspended and in-
cubated with fluorescein isothiocyanate (FITC)-labeled
annexin V antibody and PI (Strong Biotech Corporation)
in the dark at 4 °C for 15 min. The labeled cells were
measured by flow cytometry (FACScan; BD Biosciences)
and analyzed by WinMDI software. Percentages of cells
with positive staining for annexin V and negative stain-
ing for PI were calculated to identify the apoptotic cells.
To quantify the MSC characteristics, the specific anti-
bodies against CD34 (1:40; Abcam), CD45 (1:100; BD
Pharmingen), and CD90 (1:50; BD Pharmingen) were
measured in MSCs, eELCs, and fibroblasts. Antibodies
for Flt (VEGFR1, 1:100; Abcam) and Flk (VEGFR2,
1:100; Abcam) were used as the positive markers for
early EPCs, whereas PECAM-1 (CD31, 1:40; BD Phar-
mingen) was labeled for the late EPCs or mature ECs. In
brief, the trypsinized cells were incubated with specific
antibodies in the dark at 4 °C for 30 min and then rinsed
with wash buffer (PBS with 0.2% BSA) by short centri-
fuge. The fluorescent intensities of labeled cells were
quantified by flow cytometry (FACS Calibur; BD Biosci-
ences), counting 10,000 cells in each sample. The
NRK49F fibroblast was defined as the negative stained
threshold to distinguish the positive cells in MSCs and
eELCs.

Measurement of gene and protein expressions

The reverse transcription polymerized chain reaction
(RT-PCR) and quantitative real-time PCR (qPCR) were
performed to measure the gene (mRNA) expressions ac-
cording to a previous study [32]. Briefly, the cells were
lysed by Trizol (Invitrogen) to isolate the mRNA and
then reverse transcripted into cDNA using Super Script
III (Invitrogen). The specific gene expressions were amp-
lified and detected by the Taq-PCR (GeneDirex) system
with specific primers [33]. For qPCR, the SYBR™ green
master mix (Thermo Fisher) was used to amplify the
specific genes with forward (F) and reverse (R) primer
sequences for Fit (F: GAAGAGTGGGTCGTCATTCC,
R: GTAGCC ATGCACCGAATAGC), Flk (F: CGGGA
AACTACACGGTCATC, R: GGGAGGGTT GGCATA
GACT), von Willebrand factor (vWF) (F: CAGGGCTC
TACCAGGATGAA, R: TTTGCTGCGGTG AGACAA),
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and GAPDH (F: TGCCACTCAGAAGACTGTGG, R
ACGGATACATTG GGGGTAGG). The relative gene
expressions were calculated using the 274" method
normalized to the housekeeping gene GAPDH. The
endothelial differentiation was further confirmed by the
expression levels of early EPC markers for Fit and Flk.
vWF and PECAM-1 were used to indicate the gene
expression of mature EC markers.

The protein expressions for intracellular signaling were
assessed by western blotting. The cells were rinsed twice
with cold PBS and then lysed with RIPA buffer containing
protease inhibitors. Cell lysates were analyzed by sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) with 10% cross-linking gel, and then transferred
into nitrocellulose membranes (Bio-Rad). The membranes
were blocked by 5% dry milk in TBS with 0.5% Tween 20
for 90 min. For specific protein detection, membranes
were hybridized with specific primary antibodies overnight
at 4 °C. Bound primary antibodies were detected using ap-
propriate secondary antibodies coupled to horseradish
peroxidase (Sigma-Aldrich) and by an ECL detection sys-
tem (Millipore). The antibody against poly-ADP ribose
polymerase (PARP, 1:1000; Cell Signaling), a downstream
protein which is cleaved in apoptotic cell via caspase sig-
nals, was used to detect the cleaved PARP for indicating
cell apoptosis. The expression of CXCR4 was assessed by
specific CXCR4 antibody (1:1000; Abcam). The phosphor-
ylation levels of Akt signal were detected by the antibody
against the phospho-Akt (pAkt, 1:500; Cell Signaling) and
normalized to total form Akt (tAkt, 1:100; Santa Cruz)
protein. NFkB signaling was measured by NFxB p65
(1:500; Santa Cruz) and IxBa (1:500; Santa Cruz) antibody.
The fold changes of cleaved PARP, NFkB p65, and IkBa
were normalized to B-actin. The nuclear and cytoplasmic
fractions were extracted using a nuclear and cytoplasmic
extraction kit (G-Biosciences) to demonstrate the nuclear
translocation of NF«B in accordance with the user in-
structions. Lamin A/C antibody (1:500; Santa Cruz) was
used to indicate the successful isolation of nuclear protein
in western blotting.

Assessment of cell migration ability

The ability of stem cells to migrate into the lesion site is
important for tissue protection and regeneration. We
utilized wound closure and Boyden chamber assays to
assess the migration of MSCs and ELCs. For the wound
closure assay, the MSCs and differentiated ELCs were
cultured on a six-well plate until full confluence and
then created a “wound” by scratching a gap using a pip-
ette tip. After rinsing with PBS, cells were then incu-
bated in fresh DMEM with or without DFO for 24 hr.
For treatment with inhibitors, the inhibitors were
applied to the confluent cells for 30 min to create a
wound for cells to close under normoxia or hypoxia
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conditions. The phase images for wounds were re-
corded at 0 and 24 hr by Image] software (Image J).
The percentage of wound closure (%) was measured
by quantifying wound areas at 24 hr (A,,) and deductive
to the initial time points (A,) using the equation
(Ao — Aza) / Ao [39].

The Boyden chamber (48-Well Micro Chemotaxis
Chamber; Neuro Probe) was used to detect chemotaxis and
transmigration in MSCs and endothelial differentiated cells.
Cells were resuspended and counted for 4 x 10° cells/ml to
load into the upper compartment of the Boyden chamber.
The migration ability was measured by counting the cells
that migrated through 8-um pore membranes (Neuro
Probe) to the lower compartment after incubation for 6 hr
with medium with or without 50 uM of DFO. Specific in-
hibitors were pretreated to the cells for 30 min before
resuspending and loading into the Boyden chamber. The
transmigration was quantified after dissembling the cham-
ber, fixing cells with 4% paraformaldehyde for 5 min, and
then staining with Giemsa for 15 min. Images were taken
by microscope (CX31; Olympus) and quantified using
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Image] software (Image]) with normalizing to the transmi-
grated cell numbers under normoxia (without DFO).

Statistical analyses

For all experiments, at least three independent groups
were performed to demonstrate a consistent outcome.
All data were expressed as the mean + standard SEM.
Statistical analysis was performed using one-way analysis
of variance (ANOVA) and p<0.05 was considered
statistically significant using Origin statistical software
(version 8.5; OriginLab).

Results

MSCs and early differentiated ELCs resistant to hypoxia
than somatic cells

The MSC surface CD markers were observed by positive
staining of CD90 (98.41%) and negative staining of
CD34, CD45, Flt, Flk, and CD31 in MSCs (Fig. 1a). The
eELCs were differentiated by culturing the MSCs in
EGM for 3 days. The early EPC markers were increased
for both FIt (41.09%) and Flk (42.29%) in eELCs as
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Fig. 1 Surface CD markers were characterized by flow cytometry in fibroblasts (F), bone marrow mesenchymal stem cells (M), and early endothelial
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compared with the expression patterns in MSCs. The
eELCs also showed a partial increase of PECAM-1-
positive cells (19.54%). Although the CD90 intensity
slightly decreased in eELCs, the protein expression level
was still showed positive as compared with the negative
stained fibroblasts.

To understand the effect of hypoxia in MSCs and their
derived cells, DFO (50 pM) was treated for 48 hr and
significant cellular morphological changes were not ob-
served in MSCs and eELCs as compared with the rat
fibroblasts (Fig. 1b). However, membrane blebbing and
shrinkage of the cell body were observed in fibroblasts,
suggesting that DFO might cause cell damage or apop-
tosis in somatic cells. The annexin V/PI double staining
flow cytometry was used to assess the cell apoptosis and
death under DFO treatment (Fig. 1c). In regular culture
condition (normoxia), the fibroblasts, MSCs, and eELCs
have more than 90% living cells (annexin V/PI double-
negative). The living fibroblasts were significantly de-
creased after hypoxia (DFO) for 48 hr and switched to
the early apoptotic cells (annexin V-positive/PI-negative)
and dead cells (PI-positive) (Fig. 1c). On the contrary, no
significant difference of MSCs and eELCs occurred after
treatment with DFO. Cleaved PARP was observed and
confirmed the hypoxia-induced cell apoptosis in fibro-
blasts, but not in either MSCs or eELCs (Fig. 1d). These
results suggest that MSCs are resisted to the hypoxic
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microenvironments and the early differentiation of ELCs
also endures in DFO treatment.

Hypoxic microenvironment enhanced migration of eELCs

Treatment of DFO for 24 hr in eELCs further enhanced
endothelial gene expressions, especially in the mature
EC marker vWF (Fig. 2a). The qPCR results showed that
the increase of Flt gene expression in eELCs was inhib-
ited after DFO treatment, but Flk gene expression was
relatively increased in both MSCs and eELCs. We were
further interested to know the beneficial effects of hyp-
oxia in eELCs. Cell migration was measured by wound
closure assay in both MSCs and eELCs with different
dosages of DFO (0, 10, 20, 50 uM). The MSCs and
eELCs showed similar proliferation potential as indicated
by BrdU and Ki67 staining (Additional file 1: Figure S1).
Under normoxia (without DFO), the eELCs already
showed a better wound closure rate than MSCs at 24 hr
after wounding (Fig. 2b). The MSCs showed about 37% of
closure by migrating into the empty wound area, whereas
the eELCs presented around 63% of wound closure migra-
tion. With DFO treatment at 20 and 50 uM, eELC migra-
tion to close the wound increased to about 80% and
showed a dose-dependent manner. DFO treatment also in-
creased minor cell migration in MSCs, but not as obvious
as that in eELCs. Because SDF-1/CXCR4 chemotaxis plays
a critical role in stem/progenitor cell migration, we further
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assessed the gene expression of SDF-1 and CXCR4 with
different dosages of DFO. The chemoattractant SDF-1
level showed no difference, but its receptor CXCR4 was
upregulated in responding to the DFO dosage (Fig. 2¢).

Shear stress promoted ELC maturation, but decreased cell
migration ability

Because shear stress may provide the synergistic effect
in endothelial differentiation for other adult stem cells
[32, 33], we assessed the interaction of DFO and LSS
(12 dyn/cm?) in both MSCs and eELCs. Either DFO or
LSS treatment increased the VEGFA mRNA expressions
in MSCs, but their combination did not show further
enhancement of VEGFA (Fig. 3a). VEGFA also increased
in eELCs after treatment with DFO or LSS. On the con-
trary, the combination of DFO and LSS increased the
mature EC marker, PECAM-1, in MSCs. LSS alone in-
duced PECAM-1 expression which suggests that shear
stress can promote the maturation of eELCs. After ap-
plying LSS for 24 hr, the phase-contrast cell images
showed a parallel orientation of elongated eELCs to indi-
cate their responses to the flow as mature endothelium
(Fig. 3b). The occurrence of DFO during LSS stimulation
did not alter eELC morphology. Although LSS promoted
eELC maturation, these mature cells showed decreases
of transmigration abilities (stained cells) regardless of
DFO treatment in the Boyden chamber assay (Fig. 3c).
These results suggest that mature ECs do not enhance
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their migration ability as compared with the early ELCs
under either the normoxia or hypoxia condition.

Involvement of Akt and NFkB signals in eELC migration

To understand potential signaling for the enhancement
of migration in eELCs, total proteins were isolated from
MSCs and eELCs with or without DFO treatment. The
eELCs showed higher CXCR4 protein expression than
MSCs under both normoxia and hypoxia conditions
(Fig. 4a). The potential intracellular pathways were
assessed by observing the Akt, NFkB p65, and IkBa sig-
nals in MSCs and eELCs (Fig. 4b). In MSCs, phospho-
Akt (pAkt) was increased under DFO treatment for
24 hr. The eELCs showed higher protein expression
levels in pAkt, NFkB p65, and IkBa than MSCs. How-
ever, the application of DFO did not alter these protein
expressions in eELCs. We further used LY294002 (LY)
to inhibit PI3K/Akt signals and the PDTC to block the
NF«B pathway with or without the presence of DFO
(Fig. 5a). Both the LY and PDTC treatments did not in-
crease cleaved PARP in eELCs under either the nor-
moxia or hypoxia condition. CXCR4 protein expression
was decreased with LY or PDTC treatment, showing that
pAkt and NFkB signals might regulate CXCR4. The in-
hibition of PI3K/Akt or NFkB signals in eELCs inhibited
the nuclear translocation of NFkB p65 (Fig. 5b). The
promotion of the wound closure ability in eELCs under
DFO treatment was inhibited by LY (significant deferent
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(@) and cellular alignment in responding to the flow direction (b) were increased under LSS. However, the Boydon chamber assay demonstrated
decreases of cell transmigration after LSS stimulation (c). Scale bar: (b) 200 um; (c) 400 um. #Significant from static eELC under hypoxia (DFO,
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to hypoxia) and totally abolished by PDTC (significant
different to both normoxia and hypoxia) (Fig. 5c). The
transmigration of eELCs also diminished under both
PDTC and LY treatments (Fig. 5d). We also tested the
CXCR4 antagonist AMD3100 (AMD) in hypoxic eELCs,
but did not observe significant inhibition of wound clos-
ure or transmigration ability. Taken together, these
results indicated the involvement of Akt and NFxB
signaling to regulate CXCR4 protein expression for the
migration ability of eELCs.

Discussion

Hypoxic—ischemic injury in stroke and myocardial in-
farction is well known with many stem cell treatments.
Nowadays, combinations with different gene manipula-
tions or drug preconditions in stem/progenitor cells are
mostly used to study the therapeutic effect on in-vivo
ischemic injury [40—42]. However, the concern of gene
manipulation and its safety for transplanting cells are
always raised in clinical trials. Hence, the current study
prefers to induce MSCs toward the endothelial lineage
via the culture medium that contains endothelial growth
factors.

Ischemia, including hypoxia, serum deprivation, and
glucose deprivation, is usually involved in injured tissues.
HIF-1 is a critical transcription factor in the hypoxic
environment. The HIF-1 « subunit (HIF-1a) has a very
short half-life in a normoxic environment which can be
degraded by oxygen-dependent prolyl hydroxylase do-
main enzymes through the ubiquitin—proteasome path-
way [43]. DFO and cobalt chloride (CoCl,) can stabilize
HIF-1 protein for mimic hypoxia conditions in vitro.
Other in-vitro hypoxia models were generated by redu-
cing the oxygen content from 10 to 1% [44, 45] or
deprivation of serum to damage stem/progenitor cells
[21]. However, the hypoxia model using serum
deprivation induced MSCs to undergo apoptosis and
might not represent a physiological condition because
serum is present in our body composition [46]. In this
study, we use DFO to mimic an in-vitro hypoxic condi-
tion which aligned with the data from our previous
study [37]. Our data suggested that hypoxia created by
DFO increased cell migration, especially in eELCs. We
also incubated the MSCs and eELCs in a low-oxygen
hypoxia chamber and obtained similar results (Add-
itional file 2: Figure S2). The hypoxic microenviron-
ments enhanced the 3D encapsulated MSCs to promote
the outgrowth of tube-like structures in PEGylated fibrin
and to secrete VEGF and MMP2 [47]. In current study,
the MSC response under hypoxia was consistent with
these published works.

CXCR4 is a seven-transmembrane G protein-coupled
receptor that the binds to SDF-1. SDF-1, also known as
CXCL12, is a small secreted chemokine protein
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belonging to the CXC chemokine family. Several signal-
ing cascades are activated after SDF-1 and CXCR4 form
ligand—receptor complexes. The PI3K/Akt/eNOS signal
pathway is involved in the SDF-1-induced EPC migra-
tion and MSC survival [48, 49]. Our data showed that
DFO promotes Akt phosphorylation in MSCs (Fig. 4b)
and the higher expression of pAkt for cell migration in
ELCs was blocked by Akt inhibitor (Fig. 5). NF«B is a
critical transcription factor involved in biological re-
sponses which includes immune responses, cell survival,
stress responses, and maturation of various cell types.
Five subunits of NFkB (RelA (p65), RelB (p100), cRel,
p50, and p52) generate different dimeric complexes, and
control cellular function through canonical or nonca-
nonical pathways [50]. IkB phosphorylates and inacti-
vates the NFkB signal for inflammatory and survival
gene transcriptions. Under hypoxia, HIF-1a was corre-
lated with NFxB due to the inhibition of oxygen-
dependent hydroxylases for activation of both the HIF-1
and NFkB pathways [16, 51]. Although our results
showed that NFkB and IkB were not altered by DFO
treatment in both MSCs and eELCs (Fig. 4b), the DFO-
mediated cell migration was abolished by inhibiting the
NEkB signaling using PDTC (Fig. 5). The results of de-
creasing the NFkB nuclear translation under both Akt
and NFkB inhibitor treatments confirmed the essential
role of Akt/NF«B signaling in eELC migration.

Besides the migration ability for therapeutic cell hom-
ing to the damaged tissue, the angiogenesis process is
also very important for repairing injury. The reendotheli-
alization capacity was improved by recruiting EPCs via
CXCR4 [52] and PI3K/Akt [53] signaling. Overexpres-
sion of CXCR4 in MSCs facilitated the treatment of
acute lung injury in rats [54]. The angiogenic function of
EPCs also associated with PI3K/Akt when treating the
conditioned medium isolated from multipotent stromal
cells [15]. We demonstrated an increase of CXCR4 and
pAkt protein expressions in eELCs (Fig. 4) which might
benefit the angiogenesis in vivo. Shear stress can also re-
cruit PI3K and induces NFxB translocation and tran-
scriptional activity via the integrins/FAK/actin network
[55, 56]. The importance of mechanical factors on MSC
differentiation was summarized in a recent review [57].
LSS, a mechanical force on the straight part of vascular
endothelium, has vasoprotective function, suppresses in-
flammatory response [58], and promotes differentiation
and tube formation on EPCs [59]. However, the angio-
genic potential and functions in early and late EPCs are
divergent [60]. Early EPCs secrete plentiful cytokines, in-
cluding VEGE, interleukin-8, hepatocyte growth factor,
and granulocyte-colony stimulating factor [60, 61], while
late ELCs have a better ability in proliferation and endo-
thelial incorporation [60]. In the current study, eELCs
showed characteristics similar to early EPCs, whereas
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LSS facilitated these cells toward late EPCs or mature
ECs. Although LSS benefits endothelial maturation
(Fig. 3), the decrease of transmigration ability after sub-
jecting eELCs to LSS suggested that these endothelial
therapeutic cells in a distinct differentiation phase may
have a unique role in protecting the vascular structure.

Conclusion

In this study, we demonstrated that MSCs can differentiate
into endothelial lineage and promote migration ability in
responding to a hypoxic microenvironment, which might
benefit cell therapy and tissue regeneration. DFO is on the
List of Essential Medicines as announced by the World
Health Organization to demonstrate its safety and import-
ance in medications, especially for treating acute iron
poisoning in small children. eELC induction and then pre-
conditioning to DFO can provide a novel and convenient-
to-clinics therapeutic strategy to increase the function of
MSCs. In summary, we conclude the eELCs derived from
MSCs may serve as a better source for cell-based therapy
regarding hypoxia resistance and migration ability.
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