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Abstract

responsible for mesenchymal stem cell aging.

Adult stem cells are critical for organ-specific regeneration and self-renewal with advancing age. The prospect of
being able to reverse tissue-specific post-injury sequelae by harvesting, culturing and transplanting a patient’s own
stem and progenitor cells is exciting. Mesenchymal stem cells have emerged as a reliable stem cell source for this
treatment modality and are currently being tested in numerous ongoing clinical trials. Unfortunately, the fervor over
mesenchymal stem cells is mitigated by several lines of evidence suggesting that their efficacy is limited by natural
aging. This article discusses the mechanisms and manifestations of age-associated deficiencies in mesenchymal
stem cell efficacy. A consideration of recent experimental findings suggests that the ecological niche might be

Introduction

Experimentation with mesenchymal stem cells (MSCs)
has long moved beyond the pre-clinical phase. MSCs are
currently being tested in several ongoing clinical trials
for cardiac muscle repair, bone regeneration and joint
repair [1-8]. Stem cells are building and regenerative
tools; they are fundamental to the body’s ability to self-
renew with advancing age [9-15]. Exactly what criteria
define the immortality of stem cell lines is variable and
is dependent on the goals of individual investigators
[16]. The longevity of ex vivo MSCs can be preserved by
successively selecting for cell lines with the highest fidel-
ity [16], but the same cannot be done in the whole or-
ganism. Time introduces selective and environmental
constraints that diminish the fitness of adult stem cells
[10-16]. It is increasingly clear that stem cells are subject
to the same factors that introduce the genotypic and
phenotypic changes associated with “wear and tear” in
other somatic cells [10-12,16], but their robust ability to
detect and resist damage, and continuously produce pro-
geny with properties akin to parental cells sets them
apart [10,11]. Of importance is the distinction between
replicative and chronological aging [12,17-22]. Stem cells
are highly proliferative; adult stem cells in particular
have a finite replicative lifespan that is determined to a
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large degree by telomere attrition [11,19]. The growth
arrest and resultant cellular senescence displayed after a
specific number of population doublings alone [20] are
not sufficient to completely compromise stem cell func-
tionality in vivo. They do not correlate directly with the
lifespan of the whole organism [21-24]. Ex vivo adult
stem cells isolated from aged donors display characteris-
tic features of both chronological and replicative aging.
This is typified by the accumulation of damaged macro-
molecules, and cellular constituents crucial for efficient
DNA replication and repair. Other characteristic features
are stress-related genome instability, loss of function,
and changes in patterns of immunophenotype marker,
gene and protein expression [10-16,18-30].

Aging limits the therapeutic potential of
mesenchymal stem cells

Quantitative and qualitative measures of MSC potency
define the range of tissue-specific phenotypes into which
they can differentiate. Their self-renewing and regenera-
tive ability in vivo correlates directly with the extent of
ex vivo proliferative and clonogenic ability. Ex vivo com-
parison of MSCs isolated from young and aged animals
[27-30] and in vitro assessment of isolated MSCs over
several population doublings [31,32] are the most uti-
lized experimental aging models. These models are in-
structive in terms of delineating the extent to which
MSCs are subject to the effects of natural aging, but they
do not definitively reproduce events of natural aging
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in vivo [21-23]. Results from systems level analyses of
this sort force us to confront the reality that MSCs, like
other adult stem cells, do not escape the deleterious ef-
fects of natural aging. MSCs lose specific aspects of their
appeal with natural aging. A key advantage with MSCs is
their immediate availability in clinically relevant num-
bers for acute and long-term therapy. They can be iso-
lated and expanded in vitro in a matter of days
[8,27,29,33], but advanced donor age correlates directly
with a depleted MSC population [27-29]. This raises
questions about their prompt availability in large num-
bers for autologous transplantation.

The basic but oversimplified understanding of cell ther-
apy is that dead tissue can be repopulated by direct applica-
tion of exogenous cells. The approach has therefore been
two-pronged - direct administration of exogenous MSCs,
and reliance on their homing ability to further stimulate en-
dogenous repair. To create viable tissue, transplanted MSCs
must survive, engraft and communicate with endogenous
cells. Secondary to engraftment and electro-mechanical
coupling is transdifferentiation into functional host cells.
MSC:s lack the level of pluripotency associated with embry-
onic stem cells (ESCs) but maintain robust clonogenicity
and multipotency. They can give rise to adipocytes,
chondrocytes, osteoblasts, and cardiomyogenic, neurogenic,
and endothelial cells in vitro [8,33-35] (Figure 1). Further-
more, the ability of MSCs to seek out injured tissue is cyto-
kine mediated [29].

Multilineage differentiation, cytokine, paracrine, anti-
apoptotic and angiogenic capacity is fundamentally age
compromised in MSCs [27-30] (Figure 1). Asumda and
Chase [27] demonstrated that MSCs derived from aged
rats fail to express the adipocyte lipid-binding protein
FABP4, osteocalcin, and aggrecan following induction
with adipogenic, osteogenic and chondrogenic media,
respectively. In contrast, cells derived from young rats
display extensive differentiation capacity by forming adi-
pocytes, osteocytes, chondrocytes and cardiomyogenic
cells following induction with differentiation media [27]
(Figure 1). These specific differentiation and prolifera-
tion data from Asumda and Chase [27], further sub-
stantiated by Yu and colleagues [30], demonstrate a
fundamental loss of function that, by extension, means
MSCs lose the ability to respond effectively to injury
[16,35]. The issue of electro-mechanical coupling with
endogenous cells is further explored by Asumda and
Chase [27] under co-culture conditions. They showed
that, in comparison to young MSCs, old MSCs express
significantly low levels of the gap junction protein
connexin-43 [27]. Dye coupling and positive double
color staining experiments show that connexin-43 is re-
quired for cell-cell gap junctional communication and
for electro-mechanical coupling between cardiomyocytes
and MSCs [27,36-39]. Despite expressing low levels of
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connexin-43, old MSCs fused with adjacent ventricular
cardiomyocytes and expressed GATA 4, Nkx2.5, cTnl,
¢InT and myosin heavy chain [27]. The point must be
made here that these co-culture experiments [27] did
not investigate functional coupling between MSCs and
ventricular cardiomyocytes. Asumda and Chase [27] did
not conduct electrophysiological studies, and MSCs were
not uncoupled from ventricular myocytes for further de-
termination of the cardiac phenotype. It is not clear,
therefore, that aged MSCs acquire an increased differen-
tiation capacity following direct contact with cardiac
myocytes. In the absence of this type of assessment, we
cannot definitively distinguish stem cell plasticity in
terms of transdifferentiation on the part of co-cultured
old MSCs as opposed to cell fusion with cardiomyocytes
[39,40]. The expression of cardiac specific markers in
the co-cultured aged MSCs [27] is, in all probability, the
result of cell fusion that is the formation of hybrid cells
with simultaneous expression of donor and recipient cell
markers [39,40]. The implication here is that cells iso-
lated from older individuals for therapy might be far too
impaired to actively transdifferentiate into contractile
cardiac myocytes or organ-specific cells.

In comparison to other candidate stem cells, MSCs
possess superior genetic stability. The risk of their spon-
taneous transformation to cause oncologic issues follow-
ing transplantation is minimal [41-43]. It is important to
take into account the slight interspecies variations. Mur-
ine MSCs are fundamentally more genetically unstable
when compared to human MSCs [42,44-46] and are sig-
nificantly more likely to cause oncologic issues. Data
from non-human cells can therefore not be extrapolated
definitively to humans [46,47]. Age-associated genomic
instability is implicated in the spontaneous malignant
transformation of ex vivo MSCs [44-49]. So while the
evidence for malignant transformation of human MSCs
in clinical trials is fiercely questioned and is murky at
best [41-43,50-59], the deleterious effects of aging [50]
nonetheless present a serious risk factor for in vitro
transformation and ectopic tissue formation following
transplantation.

MSCs are immune privileged and immunosuppressive;
surface immune antigens are present at minimal levels
[8,59,60]. This unique immunophenotype gives them a se-
lective advantage and is fundamental to their appeal in the
clinical setting. T-lymphocyte proliferation is suppressed,
immunogenic MHC-Ia expression is marginal, and im-
munosuppressive MHC-Ib is upregulated [8,60-63]. The
effect of natural aging on MSC immunogenicity has not
been studied directly and extensively. It is not known,
therefore, if MSCs lose their immune privilege properties
with advancing age. A consideration of recent experimen-
tal findings suggests that MSCs are not intrinsically
immunoprivileged [63,64]; they are immunogenic in



Asumda Stem Cell Research & Therapy 2013, 4:47
http://stemcellres.com/content/4/3/47

immunocompromised animals [64,65]. This suggests that
MSCs require a supportive microenvironment - one with
a set and minimal number of factors - to effectively exert
their immunoregulatory effects on immune cells [63].
Whether natural aging exacerbates MSC immunogenicity
is an open-ended question. It is presumed here that the
deleterious effect of aging on the micro-environment will
have dire consequences for MSC immune regulation
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following transplantation. In line with this thinking, the
distinction should be made between presumptively
compromised allogeneic ex vivo MSCs isolated from
aged donors that are inherently immunogenic prior to
transplantation, and ex vivo MSCs that either fail to sup-
press immune cells, and/or elicit an immune response
following transplantation due to an age-compromised host
microenvironment.
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Figure 1 Representative micrographs depicting morphological change after 21 days of exposure to differentiation media.
Representative micrographs show anti-FABP4, anti-osteocalcin, anti-aggrecan and anti-cardiac myosin heavy chain staining in differentiating bone
marrow-derived mesenchymal stem cells (BM-MSCs). BM-MSCs derived from aged rats fail to undergo adipogenic, chondrogenic, osteogenic and
cardiomyogenic differentiation. BM-MSCs derived from young rats transform into fat-forming adipocytes, cartilage-forming chondrocytes, bone-
forming osteocytes and cardiomyogenic cells. BM-MSCs were isolated from ‘aged’ and 'young’ Sprague Dawley rats (15 months and 4 months).

Aged MSCs
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Figure 2 Diagrammatic illustration of potential factors that feed into the bone marrow-derived mesenchymal stem cell (BM-MSC)
niche. Diminished BM-MSC function associated with natural aging may be due to deleterious changes at the niche level. Different factors that
regulate and maintain the local BM-MSC microenvironment are depicted. Within the niche, BM-MSCs are responsive to metabolic factors and
their products, such as oxidative stress and reactive oxygen species (ROS). Paracrine and signaling factors such as Notch, transforming growth
factor (TGF)-, mitogen-activated protein kinase (MAPK), Wnt and NF-kB are known to be age dysregulated in the stem cell niche. Physical and
environmental factors such as space constraints, and cell-cell interactions between BM-MSCs and other stem and non-stem cells resident in the
bone marrow, and between BM-MSCs and the local extracellular matrix may undergo age-associated changes. In response to these changes, BM-
MSCs are likely to undergo molecular level changes, such as increased levels of pro-aging factors, DNA damage, telomerase attrition and
transcription factor changes. The direct consequence of these changes is diminished BM-MSC function, self-renewal and differentiation capacity.
ECM, extracellular matrix; HSC, hematopoietic stem cell.

Despite the lack of data in direct support of age-
associated intrinsically immunogenic MSCs, the idea is
not entirely anecdotal. Li and colleagues [66] recently
demonstrated that extensively passaged MSCs, in addition
to displaying characteristic senescence-associated aberra-
tions, lose their immunosuppressive effect on T-cell prolif-
eration. Additionally, MSCs express and rely on toll-like
receptors (TLRs) along with Notch signaling to exert T-
cell immunomodulatory effects [67]. TLR function [57]
and Notch expression [68] are diminished in aged
humans. Furthermore, the dysregulation of Notch signal-
ing is associated with the aging phenotype in stem cells
[69]. The ultimate test for MSCs in the clinical setting will

be their ability to improve quality of life and extend the life
of patients; however, for the foreseeable future, the fact
that MSCs do not escape the adverse effects of natural
aging will be a major limitation for their use in cell
therapy.

The ecological niche and mesenchymal stem cell
aging

From a clinical and translational stand point, the aging
issue raises a number of questions. The key question is if
MSCs from elderly donors fundamentally provide the
same healing effect as their younger counterparts? At
present, no clinical trial has explicitly tested this
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hypothesis so the answer is not straightforward. A look
at past and ongoing phase I to III clinical trials testing
the efficacy of MSCs shows an upper age limit up to
90 years [9]. Ex vivo MSCs must be expanded over
several population doublings prior to treatment. Exten-
sive passaging diminishes cytoskeleton turnover, and
compromises mitochondrial morphology. It also impairs
antioxidant capacity, and increases susceptibility to-
wards senescence [70,71]. GeifSler and colleagues [70]
established that serial in vitro passaging of both young
and old MSCs produces molecular alterations independ-
ent of chronological in vivo aging. Their data demon-
strate that, in addition to the fundamental loss of
differentiation capacity, MSC morphology, migration po-
tential, and mitochondrial and cytoskeletal function is
impaired over several population doublings [70]. This
raises questions about the quality and potency of exten-
sively passaged old MSCs as a therapeutic agent. The
issue of donor age can be overcome with allogeneic cells
but it presents a potential limitation for autologous ther-
apy [35]. The underlying mechanistic question is if
MSCs age intrinsically irrespective of the microenviron-
ment or if the microenvironment is responsible for the
aging phenotype? An extension of that question is
whether MSCs are genetically programmed [16] like
other somatic cells to wilt with time? Or are the ob-
served alterations [27] simply a reaction of the cells to
deleterious conditions that arise in their immediate
microenvironment [16]?

For the purposes of simplicity, the bone marrow (BM)
stem cell niche is examined in this review. Primary ex-
plant MSCs isolated from an aged BM compartment at
low passage display defects [27] consistent with both
replicative and chronological aging; this implicates the
niche environment (Figure 2). Specific evidence for this
line of thinking is sourced in part from Assmus and col-
leagues [72]. Their data show that significant changes
occur in the BM stem cell niche following acute myocar-
dial infarction that directly affect BM mononuclear cell
function [72]. Cells resident in the BM compartment are
sensitive and responsive to changes in their niche
[72-76]. The niche is in turn responsive to changes in
the global systemic milieu [16,77-79]. It is therefore
understood that ecological interactions of the BM niche
are critical to resident stem cell function [80]. By the
same token, the aged tissue microenvironment to which
exogenous stem cells are transplanted presents an in-
hibitory effect [81,82]. So while aged ex vivo MSCs
might function in a cell autonomous fashion in culture,
their interactions with the niche and the microenviron-
ment that they encounter post-transplantation is bi-
directional. Alterations in the niche as a consequence of
natural aging will, in all probability, affect the survival
and integration of transplanted cells.
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The dynamic nature of MSC interactions with healthy
and injured host cells in the aging microenvironment
will, for example, influence their mitotic and differenti-
ation ability. What is unclear at this stage is the degree
to which intrinsic factors drive the aging process in
MSCs independent of a changing microenvironment. No
one single factor has been shown to be responsible for
global MSC aging. All the evidence points to the MSC
niche environment and the effect that alterations within
that micro-milieu has on the cells. This might explain
why ex vivo cells from aged donors are compromised at
primary isolation [27]; the key seems to lie in prevention.
Presumably, the solution is to recreate a microenviron-
ment that is identical to that of young patients. What re-
mains to be determined is factor(s) that can be
manipulated to alter the MSC-specific stem cell niche.
Perhaps we can learn from studies conducted on non-
MSC stem cells. Using the Drosophila testis stem cell
niche, Toledano and colleagues [83] demonstrated that
increased expression of let-7 accelerates the aging of
stem cells by decreasing Imp levels in Drosophila niche
cells. Imp regulates upd, which encodes a self-renewal
factor; Upd promotes the stemness of adjacent Drosoph-
ila niche cells via activation of JAK-STAT signaling [84].
RNA interference-mediated inhibition of Imp in the
niche results in reduced Upd levels [83]. The down-
stream effect of low Upd levels is a diminished number
of germ line stem cells in the niche. By specifically
targeting Imp expression, Toledano and colleagues [83]
were able to rescue the age-associated loss of germ line
stem cells. The implication of these results for MSC
aging is clear - it suggests that the niche does in fact lose
its supportive role with advancing age irrespective of the
specific stem cell type. The take-home message here is
that we might be able to rescue the age-associated loss
in plasticity, and decrease in MSC population. This can
be achieved either by preventing the expression of spe-
cific factor(s) or blocking the destruction of others [83].

The argument for targeting the micro-milieu is further
strengthened by data from Conboy and colleagues [82]
and Boyle and colleagues [84]. By exposing satellite cells
from old mice to young serum containing specific fac-
tors, Conboy and colleagues [82] were able to rescue
Notch expression and enhance proliferation in vitro. A
translation of these findings to MSCs will suggest that
we can reverse the age-associated changes by manipulat-
ing the systematic milieu to either increase the presence
of anti-aging factors associated with young serum or de-
crease the levels of deleterious factors associated with
aged serum. The details are still being worked out for
MSCs and the BM stem cell niche. We do not have a
clear picture of definitive MSC-specific anti- or pro-
aging factors to enable the level of mechanistic studies
described for muscle and Drosophila stem cells. The
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good news is that most of the signaling factors and path-
ways already studied in other stem cell types overlap be-
tween cells. What we do know is that the BM stem cell
niche [72-76] functions as a nest environment. It but-
tresses MSC viability, stemness, activation, migration,
and overall function and protects against cumulative
genetic damage [72-76]. The available data suggest that
it undergoes fundamental deleterious changes with nat-
ural aging that work to diminish MSC function and self-
renewal (Figure 2).

Another recent report by Conboy and colleagues [85]
put forward data that demonstrate that ESCs secrete
pro-regenerative anti-aging factors that counter the dele-
terious effects of the aged niche. This piece of informa-
tion is significant for MSCs because Oct-4+, SSEA-1+,
Sca-1+, Lin-CD45- very small embryonic-like stem cells
(VSELs) within the BM are age depleted [86,87]. The
specific role of VSELs in aging is not well studied; it is
presumed here that age-associated changes in VSEL
function are consequential for the BM stem cell niche.
Their developmental origin [86-89], and the fact that a
supportive BM microenvironment is required for their
continued fidelity [89], suggests that VSELs are a key
contributory component of the BM-derived MSC niche.
It has been suggested that VSELs associate with, and
play a contributory role to, MSC plasticity [88,89]. MSCs
are a heterogeneous cell population; their expression of
embryonic and pluripotency-associated markers is sug-
gestive of prior contamination by VSELs during primary
isolation [88]. Hence, the age-associated collective loss
of pluripotency-associated genes by MSCs and other
BM stem cells, such as VSELs, multipotent adult pro-
genitor cells and marrow isolated multilineage inducible
(MIAMI) cells [88], is suggestive of molecular level sen-
sitivity to aberrant changes in the niche. This line of
thinking is consistent with observations made by
Asumda and Chase [27] and substantiated by Yew and
colleagues [32]. Data from both studies show that
ex vivo MSCs from aged rodents [27] and humans [32]
show alterations in their expression of stemness and
pluripotency-associated genes.

Modifying and targeting specific factors in the
niche

In thinking about what specific anti- or pro-aging factors
to target within the BM stem cell niche, the studies by
Asumda and Chase [27] and Yew and colleagues [32]
are a starting point. The expression of stemness and
pluripotency genes is critical for ESC and adult stem
self-renewal [75,90,91]. OCT4, SOX2, Rex-1, leukemia
inhibitory factor, and fibroblast growth factor are impli-
cated in the maintenance of MSC stemness [75,92].
These are also anti-aging factors that promote MSC
function but are age diminished in MSCs [27,32]. The
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connection between changing conditions within the BM
micro-milieu and the inhibition of these factors is not
clear. Polycomb complex proteins are known regulators
of OCT4, SOX2, and NANOG [75,93,94]. It has been
suggested that Polycomb proteins might be involved in
the activation and maintenance of OCT4, SOX2, Rex-1
and NANOG in MSCs [75]. Mechanistic studies to de-
termine the association between self-renewal and
stemness genes, the BM aging micro-milieu and the
aging phenotype in MSCs are justified. Recent data from
Han and colleagues [95], for example, show that age-
associated loss of cardiomyogenic differentiation and
proliferation ability in MSCs is reversible via forced ex-
pression of NANOG alone. They also demonstrate that
forced expression of Nanog alone restores transforming
growth factor (TGF)-p and p53/p21 signaling in ex vivo
aged MSCs [95].

MSCs residing in the BM stem cell niche interact with
stem and non-stem cells. They are responsive to the
local extracellular matrix and to a host of paracrine
and trophic factors [13,75,80] secreted in the local
milieu. Notch, TGF-f, mitogen-activated protein kinase
(MAPK) [73,75] and Wnt [63,71,84] signaling are impli-
cated in stem cell aging and specifically in the BM
stem cell niche [15,73,75,76]. Wnt3a promotes MSC
self-renewal by increasing the pool of mesenchymal pro-
genitors, enhancing proliferation and maintaining the
undifferentiated state [96]. The drawback to Wnts is that
their effect is pleiotropic - in the presence of Wnt3a,
MSC osteogenesis is suppressed but Wnt5a promotes al-
kaline phosphatase expression in MSCs undergoing
osteogenesis [96]. The complexity of Wnt protein signal-
ing precludes an outright identification of a single mech-
anism that links alterations in the BM niche with Wnt
and MSC aging. Boland and colleagues [96] postulate
that specific spatial or temporal regulation of Wnt sig-
naling and crosstalk with other pathways might boost
the progenitor cell pool within which MSCs reside. In
their model, canonical Wnts (Wnt3a and Wnt9a) func-
tion to maintain the undifferentiated proliferating pool
of progenitor BM mononuclear cells [96]. On the other
hand, non-canonical Wnts (Wnt5a and Wntl1), which
are implicated in MSC osteogenesis and chondrogenesis,
will presumably enhance MSC plasticity [96]. This pro-
posed model of in vivo MSC maintenance and differenti-
ation by Wnts has implications for the BM stem cell
niche and MSC aging. Zhang and colleagues [97] dem-
onstrated that exposure of MSCs to old rat serum
increases reactive oxygen species production and expres-
sion of growth inhibitory and pro-aging factors such as
pl6INK4a, p53/p21 and y-H2A.X via the activation of
Wnt/B-catenin signaling. Zhang and colleagues [98]
again showed that Wnt/B-catenin signaling directly in-
duces MSC aging by activating reactive oxygen species
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generation in MSCs. It is presumed here that such spe-
cific age-associated alterations as a consequence of
changes in the ecological niche environment will have
consequences [27] (Figure 2) for MSC function and self-
renewal.

Notch-1 expression is diminished in ex vivo MSCs iso-
lated from aged patients [99]. Direct inhibition of
Notch-1 results in decreased bone formation [99]; this is
suggestive of an age-associated loss in responsiveness to
Notch-1 inducers [69]. Cell-cell interactions are crucial
for MSC function in the BM stem cell niche [73-76].
Notch receptors are expressed on MSCs, along with
their ligands [100]. Notch signaling is highly conserved
and controls diverse cellular processes [100]. The link
between faulty Notch signaling and aging in stem cells is
well established [10,68,69,82,85]. Proximity between
MSCs and stem, and non-stem cells within the three-
dimensional BM micro-milieu affect MSC function and
self-renewal. The Notch receptor is activated primarily
via direct cell-cell contact and is critical for cell-cell
communication [100]. Phenotypic and developmental
changes in cell proliferation, differentiation and apop-
tosis are communicated between neighboring cells via
Notch signaling. Presumably, age-associated changes
in the niche environment will have consequences for
Notch signaling and subsequent MSC activity. Studies
conducted by Conboy and colleagues [101] show that
forced activation of Notch rescues the loss in regenera-
tive potential seen in old muscle. MSCs express all three
Notch ligand receptors [100]; it is therefore a legitimate
target for reversing age-associated changes in MSC
efficacy.

The DNA damage model of aging postulates that aging
is a direct result of long-term accumulation of deleteri-
ous alterations in DNA structure. The link between
DNA damage and aging is well established; MSCs are
not exempt in terms of deficient DNA repair. Asumda
and Chase [27] demonstrated high levels of the phos-
phorylated histone H2A variant y-H2A.X in ex vivo aged
MSCs. DNA damage accelerates the aging process in
rare conditions such as progerias [102-106]. The DNA
damage model suggests that deleterious changes in the
BM stem cell niche and genetic determinants of MSC
aging are not mutually exclusive events. The response to
aberrant environmental changes at the molecular level is
genetically determined via an array of signaling networks
[107]. For example, impaired DNA damage repair leads
to defective replication, transcription and translation
events, which result in apoptosis, senescence, and dys-
function [107]. NF-xB is a known central mediator of
the cellular response to stress, inflammation and
genotoxic insult; with aging, NF-kB activity is increased
[107-109]. The Rel family of transcription factors that
constitute NF-xB regulate a plethora of signaling
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components and are activated by an array of stimuli. It
regulates pro-growth factors involved in promoting the
aging phenotype as well as longevity factors [107]. NF-
kB is activated in disease models of accelerated aging,
but genetic and pharmacologic inhibition of NF-xB de-
lays the progeroid phenotype, reduces oxidative stress,
and retards in vivo and in vitro senescence [110]. Ex vivo
MSCs derived from aged mice express high levels of
phosphorylated NF-kB [111]. The expression profile of
NF-«B differs between old and young MSCs; there are
significantly higher levels in the cytoplasm of old MSCs
[111]. The NF-kB pathway might be an ideal modulatory
and therapeutic factor. By further examining its role in
MSC aging, we might be able to tease out and under-
stand the relationship between deleterious changes in
the BM micro-milieu, DNA damage and MSC aging.

Conclusion

Within the context of cell therapy, distinguishing be-
tween intrinsic irreversible changes and those that are
reversible is vital. Asumda and Chase [27] demonstrated
increased DNA damage and lowered telomerase activity
as well as altered expression of stemness markers in old
MSCs [27]. A similar set of observations were made by
Yew and colleagues [32]. BM from older animals was
slow to yield plastic-adherent MSC colonies. The result-
ant old MSCs had a spread out, flat, enlarged morph-
ology with nuclei that appear larger than normal [27].
This phenotype is reminiscent of extensively passaged
MSCs [27]; Yu and colleagues [30] made similar obser-
vations. The former set of observations (DNA damage,
stemness genes, telomerase activity) is an aspect of in-
trinsic aging. This is otherwise unavoidable in non-stem
tissue cells due to increasing, and cumulative use of spe-
cific signaling pathways over time [82]. The latter set of
observations (morphology) is characteristic of physical
and molecular level deterioration in response to adverse
external changes. Asumda and Chase [27] assessed
MSCs at low passage immediately following primary iso-
lation. When taken together, these data indicate that
specific age-associated cell-extrinsic changes occur in
the BM compartment that directly influence component
cells by altering cell-intrinsic factors [16] (Figure 2). Pre-
sumably, deleterious changes that occur in the stem cell
milieu under pathological conditions should accelerate
the aging process in chronologically young individuals so
that the same defects observed in cells derived from
aged donors are evident in cells derived from young but
diseased donors [103,104]. For example, the differenti-
ation capacity and efficacy of MSCs derived from donors
suffering from Hutchinson-Gilford progeria syndrome (a
premature aging disease in which uncharacteristically ac-
celerated aging is observed in children) is significantly
compromised [105,106]. We do not have to directly test
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in humans if age-compromised MSCs elicit healing ef-
fects akin to cells from younger donors. It is possible to
deduce an answer based on the responsiveness of
Hutchinson-Gifford progeria patients to autologous
therapy [106].

The decline in MSC function is typified by an inability
to repair injury, and proliferate or differentiate into mul-
tiple lineages. If the observed defects [27] are a conse-
quence of deleterious changes in the microenvironment,
then the problem might be easily fixable - by exposure
to a young unperturbed microenvironment [82]. It can
also be fixed by modulating specific pro- and anti-aging
factors in the BM micro-milieu. This will involve
identification of the specific supportive factors within
the BM stem cell microenvironment that are lost or
compromised with age and making adjustments. It may
also involve transplantation and introduction of niche
components into host tissue along with transplanted
cells. Conversely, if the defects are solely cell autono-
mous and intrinsic, development of countermeasures
will require a more detailed understanding of underlying
mechanisms. This will be followed by pharmacologic
and molecular level manipulation of aged ex vivo MSCs
in an in vitro system [32,95]. This can be done prior to
transplantation for cases where autologous cells are pre-
ferred and absolutely necessary. Alternatively, the in vivo
BM niche environment can be experimentally targeted
to understand how and why aging compromises the effi-
cacy of MSCs. Interactions within the in vivo BM stem
cell niche can also be reproduced outside the body to
quantify the specific age-associated changes. The ultim-
ate goal will be to manipulate it in the whole organism
and halt the age-associated loss of function in MSCs.
The report by Asumda and Chase [27] along with a
number other recent reports [28,29] demonstrate a de-
finitive association between donor age and defective
MSC function. Their specific data set the stage for more
mechanistic studies [97,98] detailing a causal role for the
niche environment along with counter measures [89] to
reverse the loss of function. Clearly, MSCs lose their re-
generative potential as a result of natural aging. The per-
spective presented here is that the aging niche and
consequent deleterious changes that occur in this micro-
environment might be the main culprit in MSC aging.
The key therefore to overcoming the aging issue in
MSC-mediated cell therapy is unlocking and furthering
the current understanding of the specific microenviron-
mental factors that compromise MSCs over time.
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