
Introduction

Model physiological systems that integrate diff erent 

human cell types, while maintaining normal physiological 

responses and month-long cell viability in defi ned, serum-

free media, are needed to facilitate the replace ment of 

animals in preclinical drug screens with in vitro 

platforms. Our team’s philosophy is to keep these systems 

as simple as possible to hold down cost and only add 

complexity to enable increased functionality, if needed 

for better evaluation capabilities. Design of our systems is 

guided by a computer model of the body (a physio-

logically based pharmacokinetic (PBPK) pharmaco-

dynamic model), referred to as a micro-cell culture 

analog (μCCA) or a ‘Body-on-a-Chip’. In an article 

entitled ‘Tissue Models: A Living System on a Chip’ [1], 

Shuler’s group is credited with conceiving of this 

approach, and with demonstrating its broad feasibility. 

Our in vitro system, unlike other in vitro methods, 

provides realistic dose dynamics and allows for meta bo-

lite exchange between compartments. Further more, the 

natural length scale of the model (10 to 100  μm) is 

consistent with physiological length scales.

Hickman’s group has developed a defi ned base media 

system that enables culture of a wide range of cell types 

for many months, and removes a major variable (serum) 

from the system. Hickman’s group published the fi rst 

serum-free, defi ned culture system for neurons in 1995 

[2] and has since then advanced this work from the use of 

rodent cells to human cells. In most cases, the cultured 

cells have been shown to maintain functionality for at 

least 2 to 3 months in this system. Th is common, defi ned 

media system utilization has been expanded to include 

human neurons [3,4], glia [5,6], muscle [3] and cardio-

myocytes [7] from adult, fetal and embryonic stem cell 

sources. Hickman’s group has progressed in the creation 

of a functional neuromuscular junction model for rat–rat 

[8] to rat–human [4] to human–human [3] using the 

same basic serum-free culture system.

Owing to space constraints, a complete overview of the 

design and validation of all current ‘Body-on-a-Chip’ 

technologies is beyond the scope of this article. For a more 

complete assessment of the fi eld, refer to the reviews in 

[9,10] and references cited therein. Th is paper will instead 

highlight the advances our group has made in developing a 

multiorgan ‘Body-on-a-Chip’ platform, as well as our 

achievements in developing functional assays of a variety 

of tissues for eventual integration into this model.

Abstract

A multiorgan, functional, human in vitro assay system 

or ‘Body-on-a-Chip’ would be of tremendous benefi t 

to the drug discovery and toxicology industries, as 

well as providing a more biologically accurate model 

for the study of disease as well as applied and basic 

biological research. Here, we describe the advances 

our team has made towards this goal, as well as the 

most pertinent issues facing further development 

of these systems. Description is given of individual 

organ models with appropriate cellular functionality, 

and our eff orts to produce human iterations of each 

using primary and stem cell sources for eventual 

incorporation into this system. Advancement of the 

‘Body-on-a-Chip’ fi eld is predicated on the availability 

of abundant sources of human cells, capable of full 

diff erentiation and maturation to adult phenotypes, for 

which researchers are largely dependent on stem cells. 

Although this level of maturation is not yet achievable 

in all cell types, the work of our group highlights 

the high level of functionality that can be achieved 

using current technology, for a wide variety of cell 

types. As availability of functional human cell types 

for in vitro culture increases, the potential to produce 

a multiorgan in vitro system capable of accurately 

reproducing acute and chronic human responses to 

chemical and pathological challenge in real time will 

also increase.

© 2010 BioMed Central Ltd

Microphysiological systems and low-cost 
microfl uidic platform with analytics
Alec ST Smith1, Christopher J Long1, Bonnie J Berry1, Christopher McAleer1, Maria Stancescu1, Peter Molnar2, 

Paula G Miller2, Mandy B Esch2, Jean-Matthieu Prot2, James J Hickman*1 and Michael L Shuler2

R E V I E W

*Correspondence: jhickman@mail.ucf.edu
1NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, 

USA

Full list of author information is available at the end of the article

Smith et al. Stem Cell Research & Therapy 2013, 4(Suppl 1):S9 
http://stemcellres.com/content/4/S1/S9

© 2013 BioMed Central Ltd



Design and validation of a multiorgan in vitro 

system

Th e fabrication of a microfl uidic device that used living 

cell tissue constructs, interconnected as they are in the 

body, was conceived by Shuler, Baxter and others (US 

Patent #7,288,405 2007). Th e concept for a ‘Body-on-a-

Chip’ microphysiological system comes from the desire 

to emulate a PBPK pharmacodynamic mathematical 

model using a physical model. By combining PBPK 

pharmacodynamic models with the experimental device, 

the quality of predictions and depth of understanding can 

be increased [11,12]. Shuler’s group has demonstrated 

such a device and its use in emulating key aspects of the 

human response to combination treatment of colon 

cancer, using tegafur and uracil [12].

Th is eff ort is currently being expanded by exploring 

designs of devices with up to 13 tissue compartments. 

Figure  1 shows the design of a 10-compartment system 

currently in development. Measurements can be made 

using microscopy, integrated microelectrode arrays, bio-

microelectromechanical system (BioMEMS) devices and 

using con ditioned medium samples sent to micro-

analytical systems. Initial tests demonstrate that this 

system can maintain high cell viability (85 to 95%) in all 

compart ments using HepG2-C3A cells, over a 48-hour 

period, without medium replacement. Th e fl uid fl ow to 

each compartment is consistent with design values, and 

the overall blood surrogate recirculation time 

(approximately 6 minutes) is consistent with the expected 

physiological value.

Cardiac model

Th e Hickman group has developed an in vitro method for 

pharmacological cardiac side-eff ect testing, which uses 

surface-modifi ed commercially available multi-electrode 

arrays (MEAs). Th e surface of the multi-electrode array is 

patterned with a cytophobic polyethylene-glycol self-

assembled monolayer, and the cytophilic biopolymer 

fi bronectin [7]. Rat cardiac myocytes plated onto 

patterned multi-electrode arrays are stable in culture for 

at least 60 days, and have been used to test functional 

responses to two drugs: 1-heptanol, a gap junction 

blocker; and sparfl oxacin, a fl uoroquinone antibiotic. 

Integration of these systems with BioMEMS cantilever 

devices also allows for direct force measurement to be 

made.

Central/peripheral nervous system and skeletal 

muscle models

Th e culture parameters for the long-term maintenance 

and maturation of both embryonic and adult rat hippo-

campal neurons in serum-free conditions have been 

established by the Hickman group [13]. Such cells are 

amenable to interrogation with patch clamp elec trodes 

[13] and multi-electrode arrays [14], and display mature 

morphology as well as electrical function.

We have published extensively on the establishment of 

motoneuron [15,16] and muscle [17] cultures, utilizing 

cells from both human stem cell [3,4,15] and rodent 

[16,18] sources. Furthermore, our group has detailed the 

development of human stem-cell-derived co-cultures for 

analysis of neuromuscular junction formation in vitro [3]. 

Human motoneuron–muscle co-cultures, cultured using 

our protocols, have been shown to survive for 30+ days in 

vitro and to form synaptic connections responsive to 

stimulation with excitatory neurotransmitters (for exam-

ple, glutamate) and to be inhibited through treatment 

with acetylcholine receptor antagonists (for example, d-

tubocurarine) [3]. Muscle-only systems have been inte-

grated with BioMEMS cantilever chips to allow direct 

force readouts of muscle function [17,19,20].

Th e Hickman laboratory has also demonstrated the 

capacity to maintain co-cultures of rat intrafusal muscle 

fi bers with sensory neurons [21]. Recently, we published 

the fi rst in vitro culture model capable of diff erentiating 

and maintaining human, stem-cell-derived sensory 

neurons displaying full electrical functionality [22]. We 

are currently working on developing a model capable of 

replicating all aspects of the refl ex arc with human cells 

in vitro [23].

Lung model

Th e Hickman and Shuler groups have developed a micro-

fl uidic device that reproduces the microenvironment of 

the lung alveoli, to produce controlled gas concentrations 

in both the gas and liquid sides of the alveolus–capillary 

interface, and to measure changes in functional gas 

transfer through the epithelial–endothelial bilayer [24]. 

Th e alveolar microfl uidic device contains a number of 

chambers for microenvironment maintenance and moni-

tor ing. Th e primary chamber was designed to contain the 

cellular alveolus–capillary interface construct. An up-

stream conditioning chamber was incorporated to 

control the dissolved gas concentrations in the incoming 

liquid, acting as a blood analog, and downstream 

chambers were included to house dissolved gas sensors 

for monitoring output concentrations. Th is silicon-based 

device allows the control and maintenance of gas con-

centrations in both gas and liquid chambers. Changes to 

the health of the alveoli can be monitored under various 

conditions including restricted lung capacity, altered 

blood compositions, and disease states involving the 

alveolar–capillary interface.

Gastrointestinal tract/liver model

Absorbed drugs that have crossed the gastrointestinal 

tract mucosa and epithelium are transported directly to 

the liver via the portal vein. ‘Body-on-a-Chip’ constructs, 
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that contain both the gastrointestinal tract and the liver, 

can therefore simulate the uptake and fi rst-pass meta bo-

lism of drugs. Th e detection of metabolites of acetamino-

phen within such a system has recently confi rmed that 

this is possible with a two-organ in vitro model by Shuler 

and colleagues [25].

Shuler’s group and others have expanded simple 

Caco-2 cell culture models to two-cell-type and three-

cell-type cultures that consist of Caco-2 cells, mucus-

producing HT-29 cells, and M-cells [26,27]. Using this 

system Shuler and colleagues have recently simulated the 

oral uptake of 50 and 200 nm polystyrene particles, and 

have found that M-cells are needed to simulate the 

uptake of the larger particles [27]. Th e group has also 

developed microfl uidic models that contained this three-

cell-type gastrointestinal tract tissue and simulated the 

uptake of acetaminophen and its subsequent actions in 

the liver [25]. PBPK simulations of these devices indi-

cated that after 24 hours the acetaminophen dose in the 

device was ~90% of that expected in humans after 

24  hours. Th ey have begun to culture Caco-2 cells on 

three-dimensional surfaces that allow the cells to form 

macro-villi, thereby enabling drug transport studies 

across a three-dimensional tissue interface [28,29].

Sung and Shuler have developed a micro-device that 

uses Matrigel and confers a three-dimensional environ-

ment which facilitates the expression of CYP450 enzymes 

by cultured hepatocytes [30]. Th e current work concen-

trates on the integration of primary hepatocytes with 

non-parenchymal cells, cultivated in a three-dimensional 

scaff old [31], to better mimic the physiological situation. 

Initial experiments using non-parenchymal cells and a 

HepG2/C3A liver model, cultivated in our gravity-driven 

fl ow device, have shown sustained biological activity for 

28 days in vitro, including inducible CYP450 activity 

(CYP1A1 and CYP3A4) and albumin synthesis.

Barrier tissues model

Shuler’s approach to modeling the blood–brain barrier is 

to utilize microfabricated membranes, which are manu-

fac tured as integral parts of microfl uidic chambers 

[28,32], to culture brain endothelial cells and astrocytes 

within microfl uidic chambers. Th ese will enable the 

testing of hypotheses related to the need for physical 

Figure 1. Overview of a 10-chamber in vitro model. Overview of our 10-chamber in vitro model based on a simplifi ed three-chamber system 

using gravity-driven fl ow [12]. (A) Prototype unit on a rocker platform. (B) Close-up inverted view of the prototype unit after a dye distribution 

study. (C) Exploded schematic showing the compartmentalization design for a 10-chamber system within this single unit. Barrier tissues 

(for example, gastrointestinal (GI) tract, skin, and so forth) are made by plating cells and allowing them to grow into a layer on a pretreated 

polycarbonate membrane (0.4 μm pore size) that was sandwiched between a chamber gasket and another gasket or a polycarbonate channel 

plate creating chambers for the cells. The design provides an apical and a basolateral side for each chamber, allowing passage of chemicals across 

the barrier. Nonbarrier tissues are three-dimensional constructs made by resuspending cells in hydrogels or plating them on a polymeric scaff old. 

The three-dimensional tissue constructs are placed directly onto a polycarbonate membrane that is again sandwiched between a chamber gasket 

and another gasket or polycarbonate channel plate creating the chambers for the cells.
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contact between endothelial cells and astrocytes. Recent 

work by Lippmann and colleagues [33] and by Shayan 

and colleagues [34] has shown that brain endothelial cells 

respond to the presence of astrocytes in culture, acquir-

ing substantial barrier properties, as indicated by high 

transendothelial electrical resistance measurements.

Shuler’s work in developing an in vitro model of the 

capillary network has focused on characterizing endo-

thelial cell (human umbilical vein endothelial cell) growth 

in small microfl uidic vessels (50 μm×50 μm). In vessels of 

this size, the sidewalls become signifi cant surfaces. 

Characterization with confocal microscopy has shown 

that human umbilical vein endothelial cells grown in 

small microfl uidic channels exhibit barrier function (as 

indicated by immunostained vascular endothelial 

cadherin) throughout the vessels and even on the 

sidewalls when the cells are cultured under suffi  cient 

shear stress [35].

Fat model

Since ‘Body-on-a-Chip’ models must include the com-

plete set of organs either implicitly or explicitly, the fat 

compartment is often included implicitly. However, 

modeling the fat compartment explicitly may have 

advantages. In experiments with environmental toxins 

(naph tha lene) Shuler has found that the presence of a fat 

com partment, represented by diff erentiated 3T3-L1 

adipo cytes, modulates the response of the system (in 

particular, lung cells) to the toxin. Adipocytes presumably 

ameliorate damage to co-cultured cells through absorp-

tion of toxins and damaging compounds, such as 

hydrogen peroxide, and prevention of glutathione 

depletion [36].

Conclusions

Our groups have focused on developing increasingly 

authentic functional tissue constructs to incorporate into 

a multi-tissue platform based on a PBPK model. While 

there are signifi cant challenges in constructing an 

integrated 10-organ, all-human system, the advances so 

far made by our team lead us to believe we have a good 

basis to construct a functional human model. Issues such 

as availability, cost, and ability to display adult cell 

physio logy and phenotype will soon be solved, to allow 

greater incorporation of stem cells into these modules 

and ultimately more authentic tissue constructs and 

improved modules in this microphysiological system.
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