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Mesenchymal stem cells, not conditioned
medium, contribute to kidney repair after
ischemia-reperfusion injury
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Abstract

controversial.

at different time points.

Introduction: Studies have shown that stem cells exert their therapeutic effects on acute kidney injury (AKI)
through paracrine/endocrine actions. If the protective effect is mediated in an endocrine manner, the injection of
the factors that these cells secrete could be effective, but the effect of conditioned medium (CM) remains

Methods: In this study, we cultured mesenchymal stem cells (MSCs) and then transplanted them into an
ischemia-reperfusion (I/R) injury model. CM was also injected into mice, and the histological changes, level of
cell proliferation, loss of peritubular capillaries and anti-inflammatory and anti-apoptotic effects were examined

Results: The results showed that MSC infusion improved renal function and histological alterations, leading to
significantly reduced mortality. MSC administration also promoted kidney microvasculature repair, attenuated
kidney peritubular capillary loss, increased the proliferation of parenchymal cells and decreased CD68-positive
macrophage infiltration and apoptotic cells. Although we determined that CM contained proangiogenic factors,
including hepatocyte growth factor (HGF), vascular endothelial growth factor-A (VEGF-A) and insulin-like growth
factor-1 (IGF-1), no favorable effects were observed during the course of repair.

Conclusions: Our data show that MSC infusion promotes kidney repair in a variety of ways, including enhancement
of the repair of peritubular capillaries and tubular epithelial cells and anti-inflammatory and anti-apoptotic effects. MSCs
can secrete high levels of proangiogenic growth factors, but CM results in a nonsignificant improvement, indicating
that MSCs play a role in kidney repair through paracrine rather than endocrine mechanisms. These results indicate that
MSC infusion is a promising therapeutic strategy for promoting kidney repair after injury.

Introduction

Acute kidney injury (AKI) is one of the most important
causes of mortality and morbidity worldwide. In clinical
practice, kidney ischemia—reperfusion (I/R) is the most
common cause of AKI Limitations in the treatment
have led to a search for better therapeutic options. Mes-
enchymal stem cell (MSC)-based therapy holds great
promise for treating immune disorders and for regenera-
tive medicine, and promising results have been reported
for the application of different types of stem cells in the
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treatment of kidney failure [1-10]. Our previous studies
have shown that hematopoietic stem cells are recruited
to the kidney, attenuate peritubular capillary loss, pro-
mote tubular epithelial regeneration and prolong sur-
vival in diabetic mice [8].

Increasing studies have indicated that the beneficial ef-
fects of stem cells are primarily mediated via the para-
crine/endocrine action of mediators rather than the direct
differentiation and substitution of damaged cells [11-14],
and many studies have shown that MSCs can secrete a
wide range of growth factors and mediators that can sup-
press local immunologic reactions and inhibit fibrosis and
apoptosis [2,12,15,16]. According to these data, the direct
injection of the supernatant from cultured MSCs may
have beneficial effects on kidney repair.
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In the present study, we cultured MSCs and harvested
the supernatant as conditioned medium (CM). We then
investigated the therapeutic potential of MSCs and CM
administered 24 hours after kidney I/R injury. We ob-
served that MSCs but not CM contributed to vascular
regeneration, functional recovery, decreased macrophage
infiltration and apoptotic cells and promoted survival.

Materials and methods

Animals

Male BALB/C mice (Harbin Medical University 2nd
Affiliated Hospital Laboratories) were used at an age of
6 to 8 weeks and weighed between 20 and 25 g. All
procedures involving animals were approved by the
animal committee of Harbin Medical University.

Animal model

The procedure for I/R injury of the kidney was modified
from a method described previously [17]. In brief, on
day 0 the kidneys of anesthetized male mice were exposed
through surgical incisions in the flank, and at a core
temperature of 36.8 to 37.3°C a nontraumatic microaneur-
ysm clamp was placed across the renal artery and vein of
either one or both kidneys. The kidneys were confirmed
to be dusky and were then placed back into the retroperi-
toneum for 30 minutes (unilateral model) or 28 minutes
(bilateral model). The clamps were removed and reperfu-
sion of the kidneys was confirmed visually, and then the
incision was closed. The CM was generated as follows:
2 x 10° MSCs were cultured with 2 ml serum-free Dulbec-
co’s modified Eagle’s medium (DMEM; HyClone, Logan,
UT, USA) for 48 hours, and the supernatant was subse-
quently separated from cells by filtering through a
0.22 pm filtration unit (Millipore, Bedford, MA, USA). To
test the effect of MSCs and CM, mice subjected to unilat-
eral I/R injury were divided into four groups. In the MSC
group (n=6/group) on day 1 after kidney injury, 200 pl
MSCs (10°/ml) labeled with 5-chloromethylfluorescein
diacetate (CMFDA) was infused intravenously through the
tail vein. A total volume of 200 pl CM, DMEM or
phosphate-buffered saline (PBS) was injected once per day
from day 1. To evaluate renal function, mice with bilateral
I/R kidney injury were randomly divided into four groups
(n =26/each group). These mice were injected with the
same amounts of MSCs, CM, DMEM and PBS as the
unilateral model. The plasma creatinine and blood urea
nitrogen (BUN) levels were analyzed using plasma sam-
ples taken from the tail vein on days 1, 2, 3, 5 and 7 after
injury.

Isolation and expansion of MSCs

MSCs were isolated and cultured from the bone marrow
of 6-week-old to 8-week-old male BALB/C mice using
the method of Peister and colleagues [18]. Briefly, MSCs
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were generated by flushing the femur and tibia of anes-
thetized mice with PBS. The cell pellets were plated in
culture dishes with high-glucose DMEM supplemented
with 10% fetal bovine serum (HyClone) and 1% penicillin—
streptomycin solution at 37°C and 5% carbon dioxide in
air. The nonadherent cells were removed by changing the
medium at 48 hours and every 72 hours thereafter. When
the cells reached near confluence, they were removed
from the dishes using 0.25% ethylenediamine tetraacetic
acid—trypsin and passaged at a low density for four expan-
sions. In this experiment, to track MSCs following sys-
temic administration, the MSCs were adjusted to 10°/ml
and labeled with 10 pM green fluorescent tracer CMFDA
(Invitrogen, San Diego, CA, USA) for 30 minutes at 37°C.
After further centrifugation, the cells were resuspended in
PBS and kept on ice until infusion.

Characterization of MSCs

MSCs were confirmed by the typical spindle-shaped ap-
pearance, by differentiation into osteocytes and adipocytes
with specific differentiation media, and by fluorescence-
activated cell sorting analysis using a BD FACS Calibur
flow cytometer (BD Biosciences, San Diego, CA, USA) to
assess the following markers: CD44, CD73, CD90, CD105,
CD45, CD34 and CD11b. All antibodies and their respect-
ive isotype controls were purchased from BD Biosciences.

Biochemical analysis and enzyme-linked immunosorbent
assay

Approximately 50 pl blood samples were taken from the
tail vein and centrifuged at 5,000 x ¢ for 10 minutes at
4°C. The creatinine and the urea levels were measured
using the kinetic Jaffe and enzymatic method. A total of
10° MSCs from the fourth passage were plated on cul-
ture dishes in DMEM supplemented with 10% fetal bo-
vine serum and 1% penicillin—streptomycin solution
and were cultured for 24, 48 or 72 hours in an incuba-
tor. The supernatant was then collected and aliquots of
100 pl media were assayed for hepatocyte growth factor
(HGF), vascular endothelial growth factor-A (VEGF-A)
and insulin-like growth factor-1 (IGF-1) using an
enzyme-linked immunosorbent assay according to the
supplied protocols (Blue Gene, Shanghai, China). Con-
trol medium (DMEM plus 10% fetal bovine serum not
cultured with MSCs) was also tested.

Histology and immunostaining

Mice were perfused with ice-cold PBS, and the kidney
tissues were fixed in periodate—lysine—paraformaldehyde
fixative for 2 hours followed by 18% sucrose overnight.
These tissues were then preserved in optimum cutting
temperature compound (—80°C). The tissue used for light
microscopy was fixed in 10% neutral-buffered formalin for
12 hours, transferred to 70% ethanol, processed to produce
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paraffin sections (3 um) and stained with hematoxylin and
eosin. Immunofluorescence labeling was performed on
4 um cryosections. Mouse vasculature was labeled with
rat-anti-mouse CD31 (1:100; eBioscience, San Diego, CA,
USA). Cell proliferation was assessed using KI67 antigen
labeling (1:100; Thermo, Ely, UK) and macrophage infil-
tration labeled with anti-CD68 (1:200; Abcam, Cambridge,
UK). Terminal deoxynucleotidyl transferase-mediated
dUTP nick end labeling (TUNEL) was carried out using
an in situ cell death detection kit (Roche, Indianapolis, IN,
USA) according to the manufacturer’s instructions. The
number of these cells in the left kidney was counted from
10 different fields for each sample and averaged. Histological
and immunofluorescent images were primarily from the
cortical and outer medullary regions of the kidney. Peri-
tubular capillary loss and tubular injury were evaluated by
assessing anti-CD31-IgG TRITC-labeled kidney sections
and hematoxylin and eosin-stained paraffin-embedded
sections, respectively, using a blinded scoring method as
previously reported [8]. In brief, images were captured by
digital imaging (x200 magnification) sequentially over the
entire sagittal section incorporating the cortex and outer
medulla (10 images). Each image was divided into 252
squares by a grid. To calculate peritubular capillary loss,
each square without a peritubular capillary resulted in a
positive score, with the final score presented as a percent
positive score. To assess tubular injury, each square with
the presence of tubule injury (tubule flattening, necrosis,
apoptosis or presence of casts) resulted in a positive score.
The final score was the percentage of squares with a posi-
tive score, which was averaged for all images from the in-
dividual kidney. Confocal images were generated using an
OLYMPUS FLUOVIEW FV1000 (Tokyo, Japan) confocal
microscope.

Statistical analysis

All data were presented as the mean + standard deviation.
The Kaplan—Meier test was used to analyze survival. The ¢
test was used for group comparisons. Analyses were per-
formed with SPSS software version 17 (SPSS Inc, Chicago,
USA). P < 0.05 was considered significant in all statistical tests.

Results

Mesenchymal stem cell phenotype

MSCs were generated according to standard procedures,
and the nonadherent cells were removed by a medium
change. MSCs were confirmed using light microscopy to
verify the typical spindle-shaped morphology (Figure 1A).
The identity of these cells was determined by differentiation
to osteocyte and adipocyte lineages and surface marker ana-
lysis, which showed that the cells were positive for CD44,
CD73, CD90 and CD105 and were negative for CD45,
CD11b and CD34 (Figure 1B,C,D,E). Only MSCs that met
these criteria were used in subsequent experiments.
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Conditioned medium contains the growth factors HGF,
VEGF-A and IGF-1

First, we examined the number of MSCs cultured with
serum-free DMEM for 24, 48 and 72 hours. We found
by light microscopy that there were no significant differ-
ences at different time points (see Figure S1A,B,C,D in
Additional file 1). Also, no significant differences of cell
viability and cell death rates at different time points were
found by MTT and trypan blue staining (see Figure S1E,
F in Additional file 1). Second, to investigate the mecha-
nisms by which MSCs repair AKI, we determined whether
the growth factors HGE, VEGF-A and IGF-1 were present
in CM. We found that the MSCs produced high levels of
the proangiogenic growth factors and that there were no
significant differences at different time points, but that re-
sults were significantly higher than with control medium
(Figure 1F). Based on these data, we hypothesized that
CM, when used alone, may promote kidney repair after
I/R injury.

Chloromethylfluorescein diacetate-labeled MSCs are
recruited to the kidney during repair after I/R injury

To track MSCs following systemic administration, cells
were labeled with the green fluorescent tracer CMFDA.
To study the effects of MSCs on kidney repair, we ini-
tially determined whether they could be recruited to the
injured kidneys. We infused CMFDA-labeled MSCs via
the tail vein on day 1 after unilateral I/R injury and ex-
amined the kidneys on days 3, 5 and 7 after I/R injury
by confocal microscopy. We observed that MSCs were
recruited to the kidneys, most of them localized to the
cortical and medullary tubular tissue of injured kidneys,
especially in the outer medulla where the proximal tu-
bules are located (Figure 2D), although a few were found
in contralateral kidneys, indicating that MSC recruit-
ment to the injured kidneys was the result of a specific
process and that the number of recruited MSCs decreased
over time (Figure 2E). Enlarged views showed that every
CMEFDA-labeled MSC presented a nucleus counterstained
with 4',6-diamidino-2-phenylindole (Figure 2A,B,C). We
found that many MSCs could be observed in the lungs
and spleen, but no cells were found in the heart (data not
shown), consistent with our previous study [8].

Mesenchymal stem cells, not conditioned medium,
improve renal function and enhance survival

We subjected the mice to bilateral I/R injury for 28 mi-
nutes (day 0), followed by intravenous infusion of CM or
MSCs on day 1. As shown in Figure 3A,B, the renal func-
tion level was assessed in sham surgery mice on day O
(creatinine, 0.19 + 0.049 mg/dl; BUN, 22.54 + 0.68 mg/dl).
Bilateral kidney I/R injury resulted in significant increases
in creatinine and BUN levels on day 1 (creatinine, 1.16 +
0.05 mg/dl; BUN, 106.87 + 2.33 mg/dl), and these levels
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Figure 1 Mesenchymal stem cell phenotype and levels of the growth factors HGF, VEGF-A and IGF-1 in conditioned medium at 24, 48
and 72 hours. (A) Light microscopy revealed that the mesenchymal stem cells (MSCs) were spindle-shaped. (B) Oil Red O staining determined
differentiation to adipocytes. (C) Alizarin Red S was used to show differentiation to osteocytes. (D) Alkaline phosphatase staining also confirmed
differentiation to osteocytes. Magnification, x100. (E) Representative flow cytometry graphs of surface markers. The cells were positive for CD44,
CD73, CD90 and CD105 and were negative for CD45, CD34 and CD11b. Red areas, tested antibodies; white areas, isotype controls. (F) Hepatocyte
growth factor (HGF), vascular endothelial growth factor-A (VEGF-A) and insulin-like growth factor-1 (IGF-1) levels in conditioned medium and
control medium (n = 8). IGF-1 and VEGF-A shown on the left and HGF on the right of the y axis. Data presented as mean + standard deviation.

P <0.01 versus control medium.

peaked on day 2 (creatinine, 1.54+0.083 mg/dl; BUN,
15441 £ 6.14 mg/dl) and declined on day 3 but did not re-
turn to normal levels by day 7. There were marked de-
creases in creatinine and BUN levels on days 2 and 3 in
the MSC group compared with the vehicle group. How-
ever, CM and DMEM did not result in any improvement
in renal function, and there were no significant differences
between the vehicle group and either the CM group or
the DMEM group. To evaluate the survival rate, the mice
were subjected to bilateral I/R injury and treated with
MSCs, vehicle, CM or DMEM. Only 50% of the mice sur-
vived to day 7 in the vehicle group, whereas 85% of the

mice that received MSCs survived (P = 0.02). As shown in
Figure 3C, there were no significant improvements in the
CM or DMEM groups (P =0.748 and P =0.493, respect-
ively) compared with the vehicle group. In this experi-
ment, we also assessed the body weight of the mice in the
four groups. There was a marked and significant decrease
at 24 hours after bilateral I/R injury, and in the MSC
group there was a slight and persistent enhancement on
day 2. These mice almost reached their presurgery body
weight by the end of the study period, but in the other
three groups the body weight remained lower than that
pre surgery, although there were no differences among the
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Figure 2 Mesenchymal stem cells are recruited to the injured kidney. 5-Chloromethylfluorescein diacetate (CMFDA)-labeled mesenchymal
stem cells (MSCs) with (A) the individual CMFDA, (B) 4’,6-diamidino-2-phenylindole (DAPI), and (C) merged channels on day 3 after injury.
(D) CMFDA-labeled MSCs were present in the injured kidney (arrowheads) on day 3 post ischemia-reperfusion (I/R) injury. (E) Number of
MSCs observed in injured and control kidneys over time after I/R injury (n = 6). Data presented as mean + standard deviation. *P < 0.01 versus
the control kidney (bars, 50 um). LK, left kidney; RK; right kidney.
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Figure 3 Administration of mesenchymal stem cells, not conditioned medium, improves renal function and reduces mortality.

(A) Creatinine and (B) blood urea nitrogen (BUN) levels at each time point for bilateral ischemia-reperfusion (I/R) model mice treated with phosphate-
buffered saline, mesenchymal stem cells (MSCs), conditioned medium (CM) or Dulbecco’s modified Eagle’s medium (DMEM) (n = 26/each group). Data
presented as mean =+ standard deviation. (C) Survival curves at each time point for mice subjected to bilateral I/R injury followed by intravenous
injection with MSCs, vehicle, DMEM or CM (n = 20/each group, P=0.02 MSC group vs. vehicle group). (D) Body weight curves during the study period
for the MSC group, DMEM group, CM group and vehicle group. *P < 0.05 versus vehicle group.
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the vehicle group (bars, 250 pum).

Figure 4 Mesenchymal stem cell administration prevents tubular injury and attenuates kidney peritubular capillary loss, but
conditioned medium has no effect. (a) Representative light microscopy images of hematoxylin and eosin-stained kidney sections on day 3 in
the mesenchymal stem cell (MSC) group, vehicle group, conditioned medium (CM) group or Dulbecco’s modified Eagle’s medium (DMEM) group.
White arrow, cell nuclei defluxion; black arrow, cell nuclei dissolution and absorption; yellow arrow, tubular atrophy; green arrow, cellular debris
and proteinuria cast. (A) Tubular injury index on days 3, 5 and 7 for different groups. (b) Immunofluorescent images of CD31-labeled peritubular
capillaries on day 7 after ischemia—reperfusion injury in mice that received MSCs, vehicle, CM or DMEM. (A) Peritubular capillary loss index for
mice in the four groups at different time points. Data presented as mean + standard deviation. *P < 0.05 versus the vehicle group, *P < 0.01 versus

four groups (Figure 3D). These findings indicate that
MSCs can promote renal function, enhance survival and
increase body weight. However, no significant differences
were observed between the vehicle group and either the
CM group or the DMEM group.

Mesenchymal stem cell administration ameliorates
histological alterations and attenuates kidney peritubular
capillary loss, but conditioned medium has no beneficial
effects

Tubular injury was examined on days 3, 5 and 7 after I/R
injury, and the sections were stained with hematoxylin
and eosin. The light microscopy findings showed that
MSC administration significantly attenuated tubular in-
jury compared with vehicle administration. We did not
observe any significant difference between the CM and
DMEM groups. The tubular injury index of each for the
four groups during the repair phase of this model was
evaluated (Figure 4a).

Because peritubular capillaries play a central role in
kidney function, we also analyzed kidney sections for
the loss of peritubular capillaries during repair. The analysis
of mCD31-labeled peritubular capillaries by morphometry
revealed that MSC treatment prevented peritubular capil-
lary loss during the repair phase through day 7 after I/R
injury, and the results were significant on days 5 and 7. In
contrast, with CM and DMEM treatment we did not ob-
serve any beneficial effect on vasculature repair during the
repair phase of AKI. The percentage of peritubular capil-
lary loss in each of the four groups on days 3, 5 and 7 was
scored (Figure 4b).

Mesenchymal stem cells, not conditioned medium,
promote the proliferation of parenchymal cells and
significantly decrease CD68-positive macrophage
infiltration and apoptotic cells

In this study we investigated whether MSCs and CM pro-
moted cell proliferation. The cell cycle marker KI67 was
used to evaluate proliferation. Our studies revealed that
MSC infusion led to a marked increase in the number of
parenchymal cells in the cell cycle after injury. However,
we did not observe any significant difference between the
vehicle group and the CM group or the DMEM group.

The quantification of KI67" cells at different time points
in four groups is shown in Figure 5a.

I/R animals exhibited prominent infiltration of CD68-
positive macrophages in the tubulointerstitial compart-
ment of the renal cortex and outer medulla in kidneys at
3 days post AKI (Figure 5b), consistent with the acute
inflammatory response following I/R injury. MSC infusion
dramatically reduced macrophage infiltration into the post-
ischemic kidney, especially on day 5. In contrast, there was
no significant decrease in the CM group or the DMEM
group compared with the vehicle group.

Apoptosis is a critical pathophysiological event in AKL
We therefore evaluated TUNEL staining of the kidneys
after I/R. As shown in Figure 5c, there were many TUNEL-
positive cells in renal tubular at 3 days post I/R injury.
The number of TUNEL-positive cells was significantly de-
creased with time, and MSC administration significantly
decreased the number of TUNEL-positive cells on day 3,
especially on day 5, but CM and DMEM administration
did not significantly reduce tubular cell apoptosis. Light
and immunofluorescence images from animals with a sham
surgery on days 3, 5 and 7 are shown in Additional file 2.

No effective results were observed after administration of
a high dose of conditioned medium to mice

Considering that most of the mediators in CM would
probably have a short half-life and be present at low
concentrations, we wondered whether consecutive and
high-dose injections of CM are necessary for protection
against kidney injury. Hence, we performed the latter ex-
periment by daily administration of 500 pul CM (1 =6)
for 7 days starting from day 1 after I/R injury, where the
mice were killed on days 3, 5, and 7. Similar to our previous
result, there were no significant differences in the examined
parameters in mice receiving CM (see Additional file 3).
This experiment therefore revealed that even consecutive
and high-dose administration of CM was not effective in
ameliorating I/R injury.

Discussion

AKI continues to result in high morbidity and mortality,
particularly in patients admitted to the ICU [5,19-21]. In
addition, emerging evidence indicates that AKI in humans
is closely associated with chronic kidney disease if the
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Figure 5 Mesenchymal stem cell treatment promotes the proliferation of parenchymal cells and attenuates CD68" cell infiltration and
TUNEL-positive cells, but conditioned medium administration has no beneficial effect. (a) Images of the immunofluorescent staining of
Ki67* cells (yellow arrows) in the injured kidneys of mice on day 3 after ischemia-reperfusion (I/R) injury in the mesenchymal stem cell (MSC)
group, vehicle group, conditioned medium (CM) group and Dulbecco’s modified Eagle’'s medium (DMEM) group. (A) Number of KI67™ cells in the
four groups on days 3, 5 and 7 after I/R injury. (b) Representative confocal images of the immunofluorescent staining of CD68" cells (yellow
arrow) in the injured kidneys of mice on day 3 after I/R injury in the MSC group, vehicle group, CM group and DMEM group. (A) Number of
CD68* cells in the four groups on days 3, 5 and 7 after I/R injury. (c) Effect of different treatments on I/R-induced tubular apoptosis on day 3 after
injury. Kidneys from mice treated with MSCs, vehicle, CM and DMEM were stained using the terminal deoxynucleotidyl transferase-mediated dUTP
nick end labeling (TUNEL) assay. (A) Number of TUNEL" cells in the four groups at different time points. Data presented as mean + standard
deviation. *P < 0.05 versus the vehicle group, *P < 0.01 versus the vehicle group (bars, 250 um).

repair process is maladaptive [22,23]. However, the thera-
peutic options are limited.

Bone marrow stem cells are an attractive therapy to
promote renal tissue regeneration due to their pluripo-
tency and ease of isolation. Using these cells also avoids
the ethical ambiguities of using embryonic stem cells
[4,15,24,25]. Our previous studies also demonstrated
that hematopoietic stem cells recruited to injured kid-
neys generate high levels of proangiogenic cytokines, in-
cluding VEGF-A [8]. This result increased our interest
in determining whether CM had beneficial effects on
kidney repair.

In the present study, we obtained MSCs using typical
methods and cultured these cells for four passages be-
fore use in our experiments. Light microscopy showed
that these cells had typical spindle-shaped morphology
and were well labeled with CMFDA. Additionally, we
demonstrated that MSCs that were systemically infused
24 hours after kidney injury were selectively recruited to
injured kidneys. This recruitment was associated with
enhanced repair of the microvasculature and tubules,
improved kidney function, increased survival, promoted
the proliferation of parenchymal cells, and decreased
CD68-positive macrophage infiltration and apoptotic
cells. In contrast, systemic CM treatment did not have
any significantly beneficial effects, even though the CM
contained high levels of proangiogenic cytokines, includ-
ing HGE, VEGF-A and IGF-1.

Acute ischemic injury in the kidneys primarily results
in proximal tubular damage [6,26,27]. However, data de-
rived from several severe AKI models and the long-term
effects of ischemic injury demonstrate that capillary loss
typically precedes the development of prominent renal
fibrosis, the loss of capillary density and blood flow may
result in poor delivery of oxygen and nutrients to the
damaged area, and neoangiogenesis may be a central
process in the preservation of the vascular structure and
the restoration of organ function [28-31]. In this study, we
demonstrated that there was a marked loss of peritubular
capillaries in the injured kidneys, and that the intravenous
infusion of MSCs attenuated the loss of peritubular capil-
laries and tubular injury and promoted cell proliferation

in the kidney. These effects were associated with both the
rapid recovery of kidney function and the enhanced sur-
vival of the mice.

The critical property of stem cells is that they are able
to generate many or all differentiated cell types [32,33].
Initial studies reported that bone-marrow derived stem
cells can differentiate into endothelial and mesangial cells
in animal models [34-36], but the number of differentiated
cells was small. Recently, it was found that MSCs can pro-
duce many growth factors, suggesting that a paracrine/
endocrine effect might contribute to renal protection
[2,4,12]. Gharaibeh and colleagues have shown that the
terminal differentiation capacity of implanted stem cells
is not the major determinant of the cells’ regenerative
potential and that the paracrine effect imparted by the
transplanted cells plays a greater role in the regener-
ation process [37]. Zarjou and colleagues have further
shown that heme oxygenase-1 enhances secretion of stro-
mal cell-derived factor-1, VEGF-A and HGF by MSCs
[38]. Many findings support a protective effect mediated
in an endocrine manner, which, if true, would mean that
injection of the cells themselves would not be required,
and the factors that these cells secrete could be effective.
The effect of CM, however, remains controversial for the
moment [12,39]. In this study we also determined the
levels of HGF, VEGF-A and IGF-1, and the data showed
that CM contained these factors, which have renoprotec-
tive effects after AKL Based on these results, we hypothe-
sized that administering the CM would protect against
kidney failure, making it unnecessary to transplant stem
cells and thus avoiding the risks of tumorigenesis and im-
munologic reactions. However, we did not observe any
favorable effects in the CM group on renal function, histo-
logical alterations or cell proliferation and anti-inflammatory
and anti-apoptotic effects, even though we increased the
dose and repeated consecutive administration of CM.
There are several possible explanations for these findings.
First, the AKI injury models were induced by different
methods, and we believe that the outcomes should be
compared within a unique and identical model and cannot
be meaningfully transposed from one model to another.
Second, the microenvironment has very important effects
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on the production of growth factors by MSCs. Different
microenvironments can stimulate stem cells to release dif-
ferent types and concentrations of cytokines. MSCs might
secrete another set of mediators in the culture system
[12]. If we want stem cells to have the same effects in vitro
and in vivo, we must mimic the injury microenvironment
in the culture system. In the I/R model, the loss of blood
flow results in hypoxia in the tissue, and the bone marrow
is also hypoxic [40,41]. We therefore believe that the
MSCs should be exposed to hypoxic conditions to mimic
the in vivo environment. Some authors have performed these
types of experiments [42-44]. Third, the timing of therapeutic
cell delivery may be critical. Cellular populations within
wounds change depending on the phases of the repair
process. This change means that therapeutic cells will en-
counter different microenvironments at each stage of the
repair process [45].

In contrast with our data, Bi and colleagues reported
that administration of MSC CM was very potent in ameli-
orating cisplatin-induced kidney failure [12]. Comparing
these two studies, there are some differences. First, the
medium was harvested after 96 hours as CM but in our
study was harvested after 48 hours. Second, Bi and col-
leagues infused 1000 ul CM twice per day for 6 days by in-
traperitoneal injection, and we injected 200 pl or 500 pl
CM intravenously through the tail vein once per day for
7 days. Third, they gave an intraperitoneal injection of cis-
platin to induce acute tubular injury, but we placed a non-
traumatic microaneurysm clamp across the renal artery
and vein to induce kidney I/R injury. Fourth, different
mouse strains were used in these two studies (C57BI/6
compared with BALB/C). We consider that these differ-
ences account for the discrepancies in the findings at least
in part. We believe the that therapeutic strategy for treat-
ment of kidney disease with CM remains an open ques-
tion, and further studies with different designs, animal
models and evaluation methods are certainly required.

Conclusions

We demonstrate that systematically administered MSCs
promote rapid kidney repair and reduce mortality. Our
data supporting the fact that the beneficial effect seen
with MSCs is probably due to the stem cells’ multipotent
capacity include increased secretion of paracrine factors,
improved angiogenic and anti-inflammatory activities
and anti-apoptotic effects. The results of this study indi-
cate that the MSC infusion is a promising therapeutic
strategy for AKL In the present study, we do not detect
any beneficial role of CM in our animal model, indicating
that MSCs play central roles in kidney repair through
paracrine rather than endocrine mechanisms. We believe
that considerable work with different designs and animals
is still required.
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Additional files

Additional file 1: is Figure S1 showing light microscopy images of
MSCs at 0, 24, 48 and 72 hours of culture with fetal bovine serum
(FBS)-free DMEM, examined by MTT and trypan blue staining. (A to
D) Light microscopy of MSCs at 0, 24, 48 and 72 hours of culture with
FBS-free DMEM. Graph showing MTT cell viability assay (E) and trypan
blue staining (F) cultured with FBS-free DMEM at different time points,
#P <001 versus the control medium (DMEM not cultured with MSCs).

Additional file 2: is Figure S2 showing images from animals for
histological and immunofluorescent assessments on days 3, 5 and 7
after sham surgery. There were no significant differences between
different time points for histological evaluation (a), peritubular capillary
loss (b), KI67* cells (c), CD68* macrophages (d) and apoptotic cells (e).

Additional file 3: is Figure S3 showing that no effective results
were observed after administration of 500 pul CM to mice. There
were no significant differences between the CM and vehicle groups
when examined for histological alterations (a), capillary density (b),
proliferation of parenchymal cells (c), macrophage infiltration (d) and
TUNEL apoptotic cells (e).
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AKI: acute kidney injury; BUN: blood urea nitrogen; CM: conditioned medium;
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IGF-1: insulin-like growth factor-1; MSC: mesenchymal stem cell;
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