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Abstract

Introduction: Dental follicle gives rise to one or several tissues of the periodontium including the periodontal
ligament, cementum and/or alveolar bone. Whether Wnt5a is expressed in the postnatal periodontium or regulates
dental follicle stem/progenitor cells is unknown.

Methods: Dental follicle stem/progenitor cells were isolated from postnatal day 1 (p1) to p11 from rat mandibular
first molars. Immunolocalization mapped Wnt5a expression in the alveolar bone, periodontal ligament, and the
developing ameloblast and odontoblast layers. Mononucleated and adherent cells were isolated from p7 dental
follicle. Wnt5a was overexpressed in dental follicle stem/progenitor cells to study their proliferation, osteogenic
differentiation and migration behavior, with subpopulations of native dental follicle stem/progenitor cells as
controls, using real-time PCR (Taqman), Lenti-viral transfection, Western blotting and immunofluorescence.

Results: Wnt5a was expressed consistently in p1 to p11 rat peridontium. Native, p7 dental follicle stem/progenitor
cells had modest ability to mineralize in the tested 14 days. Even in chemically defined osteogenesis medium,
dental follicle stem/progenitor cells only showed modest mineralization. Upon addition of 300 ng/mL Wnt5a
protein in osteogenesis medium, dental follicle stem/progenitor cells displayed mineralization that was still
unremarkable. Chemically induced or Wnt5a-induced mineralization of dental follicle cells only occurred sparsely.
Combination of Wnt5a with 100 ng/mL BMP2 finally prompted dental follicle stem/progenitor cells to produce
robust mineralization with elevated expression of Runx2, alkaline phosphatase, collagen 1α1 and osteocalcin. Thus,
native dental follicle stem/progenitor cells or some of their fractions may be somewhat modest in mineralization.
Strikingly, Wnt5a protein significantly augmented RANKL ligand, suggesting putative regulatory roles of dental
follicle stem/progenitor cells for the monocyte/osteoclast lineage and potential involvement in alveolar bone
remodeling and/or resorption. P-Jnk1/2 was activated in Wnt5a overexpressed dental follicle cells; conversely,
exposure to SP600125, a c-Jun N-terminal kinase (JNK) inhibitor attenuated Runx2, collagen 1α1 and osteocalcin
expression either in the presence or absence of Wnt5a. Wnt5a overexpression in dental follicle stem/progenitor cells
significantly reduced their proliferation rates, but robustly augmented their migration capacity.

Conclusions: These findings provide a glimpse of Wnt5a’s putative roles in dental follicle stem/progenitor cells and
the periodontium with implications in periodontal disease, tooth eruption, dental implant bone healing and
orthodontic tooth movement.
* Correspondence: jmao@columbia.edu; lingjq@mail.sysu.edu.cn
2Columbia University Medical Center, Center for Craniofacial Regeneration,
630 West 168 Street – PH7 East CDM, New York, NY 10032, USA
1Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen
University, Guangdong Key Research Laboratory, Guangzhou 510055, China

© 2014 Xiang et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.

mailto:jmao@columbia.edu
mailto:lingjq@mail.sysu.edu.cn
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Xiang et al. Stem Cell Research & Therapy 2014, 5:135 Page 2 of 9
http://stemcellres.com/content/5/6/135
Introduction
Dental follicle stem/progenitor cells (DFSCs) develop into
one or several components of the periodontium including
the periodontal ligament (PDL), cementum and/or alveo-
lar bone, all of which have potential implications in
periodontal disease, tooth eruption, orthodontic tooth
movement and dental implant bone healing. How DFSCs
differentiate into unmineralized PDL or mineralized alveo-
lar bone or cementum is poorly understood. Wnt signal-
ing has been shown recently to play significant roles in
tooth development, and yet in ways that are only fragmen-
tally understood [1,2]. Unlike classic canonical Wnt/β-ca-
tenin signaling, Wnt5a acts via the noncanonical Wnt
pathway and has only been sparsely investigated in tooth
development. Previous work has shown Wnt5a expression
in dental papilla and enamel knot in E14.5 and E16.5 tooth
germs [3,4], as well as primarily in dental papilla of 2-
month to 3-month embryonic human tooth germs [5].
Wnt5a mutant mice showed disturbed cusp formation,
and delayed eruption [4,6], suggesting Wnt5a's involvement
in tooth crown and root development. However, little is
known of Wnt5a expression in DFSCs that differentiate
into the periodontium or whether Wnt5a plays important
roles in postnatal dental follicle development.
Tooth eruption is inseparable from the growth and

modeling of alveolar bone. Wnt5a plays crucial roles in
bone apposition and osteoclastogenesis [7,8]. Wnt5a acts
via a noncanonical Wnt pathway through tyrosine kinase-
like orphan receptor (Ror) proteins [9]. Osteoblast-lineage
cells express Wnt5a, while osteoclast precursors express
Ror2 [8]. The roles of Wnt5a in osteoclastogenesis are
potentially related to tooth eruption and alveolar bone
remodeling in periodontal diseases, although little experi-
mental evidence currently exists in support of these puta-
tive roles. Wnt-5a activates Nemo-like kinase, which in
turn phosphorylates a histone methyl transferase, leading
to a co-repressor complex that inactivates PPARγ func-
tion, suggesting PPARγ suppression in favor of osteo-
blastic differentiation from mesenchymal stem/stromal
cells via noncanonical Wnt signaling [10]. Despite the im-
proved understanding of Wnt5a involvement in bone de-
velopment and homeostasis, little is known about the
roles of Wnt5a in the periodontium, one of the presump-
tive derivatives of DFSCs that develop into not only the
PDL but also alveolar bone and cementum. The objective
of the present study was to investigate Wnt5a expression
in postnatal dental follicle and its roles in the proliferation,
migration and differentiation of DFSCs.

Methods
Samples and immunohistochemistry
Following animal ethics approval by Sun Yat-sen University
Medical Center, Sprague–Dawley rats were sacrificed on
postnatal days 1, 3, 5, 7, 9 and 11. The mandible was
resected en masse, immediately fixed in 4% paraformalde-
hyde at 4°C overnight and then transferred to ethylenedi-
amine tetraacetic acid at 4 °C for 5 days. Following graded
alcohol dehydration and paraffin embedding, the mandible
was cut sagittally into 5 μm thickness sections. Anti-
Wnt5a (1:50; Abcam, Cambridge, MA, USA) was used for
immunohistochemistry with streptavidin–biotin peroxidase
complex. The negative controls were incubated with
phosphate-buffered saline in the absence of primary
anti-Wnt5a antibody. Immunohistochemical methods
followed our prior work [11-13].

Isolation and culture of dental follicle stem/progenitor
cells
Dental follicles of 7-day-old Sprague–Dawley rats were
carefully isolated from the mandibular first molar tooth
germs under dissection microscope (Figure 1M,N,O,P)
as per our prior methods [11]. The rationale for isolation
of postnatal day 7 DFSCs is our observation of Wnt5a
expression in alveolar bone, ameloblasts and odonto-
blasts (Figure 1). Briefly, the dissected dental follicles
were digested with 0.1% collagenase type I and 10 U/ml
dispase (Sigma, St. Louis, MO, USA) for 1 hour at 37°C.
The isolated DFSCs (Figure 1Q) were transferred to a
T25 culture flask containing Dulbecco’s modified Eagle’s
medium (DMEM, low glucose; Gibco, Grand Island, NY,
USA) with 10% fetal bovine serum (Gibco) and 1% peni-
cillin/streptomycin (Gibco). Upon 70 to 80% confluence,
DFSCs were cultured to no more than four passages and
used in all experiments.

Wnt5a overexpression
pCDH-CMV-WNT5a-EF1-copGFP was constructed by
inserting Wnt5a cDNA into a lentiviral vector (pCDH-
CMV-MCS-EF1-copGFP; System Bioscience, Mountain
View, CA, USA) as per our prior methods [11]. The
cloned plasmid, psPAX and pMD2.G were transfected in
a 4:3:1 proportion for virus packaging [14]. Green fluor-
escent protein (GFP)-positive cells were selected by
fluorescence-activated cell sorting (FACS). Nontransfected
and transfected cells with ~90% confluence were digested
by trypsin, centrifuged (244 × g, 4 minutes) and resus-
pended with a density of 3.0 × 106/ml. A total of 100 μl
cell resuspension solution was added to each tube, centri-
fuged at 244 × g for 4 minutes and resuspended with
300 μl buffer before FACS (FACS Calibur; BD, Becton NJ,
USA). Transfection efficiency was confirmed by quantita-
tive RT-PCR (Taqman).

Osteogenic differentiation
DFSCs at a density of 1 × 105 cells per well (12-well
plate) were exposed to DMEM, 10% fetal bovine serum,
10 mmol/l β-glycerophosphate, 50 μm/l ascorbate-2-
phosphate and 0.1 μm/l dexamethasone (Sigma). Alizarin



Figure 1 Wnt5a expression in dental follicle and cell isolation. Wnt5a was immunolocalized in postnatal day 1 to 11 tooth germs (B, D, F,
H, J, L) with controls (no primary antibodies) (A, C, E, G, I, K) by immunohistochemistry. am, ameloblasts; od, odontoblasts; df, dental follicle;
ab, alveolar bone. (M, N, O, P) Isolation of dental follicle from 7-day-old rat tooth germ. M1, first molar; DF, dental follicle. (Q) Isolated dental
follicle cells plated.
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red was used to visualize mineral deposition. Cells were
cultured in 12-well plates and used for osteogenic differ-
entiation with a cell density of 1 × 105 per well. For ali-
zarin red staining, cells were fixed in 95% ethanol for
10 minutes, and exposed to 0.1% alizarin red for 30 mi-
nutes. Images were taken under the same camera parame-
ters and processed into Adobe Photoshop under the same
conditions (Adobe Systems Incorporated, San Jose, CA,
USA). The alizarin red staining area was selected with the
color range selection command using the same median
threshold. The alizarin red area ratio was calculated by
dividing the selected pixels over the total pixels area.
Wnt5a protein (300 ng/ml; R&D Systems, Minneapolis,
MN, USA) was added to osteogenesis medium or DMEM
for osteogenic induction.
Cell counting
GFP+ DFSCs or Wnt5a+/GFP+ DFSCs were seeded in
96-well plates at 1 × 104 cells per well. Following over-
night incubation, cells were treated with 10 μl Cell
Counting Kit 8 (Dojindo, Rockville, MD, USA) at 1, 2, 3,
4 or 5 days. Absorbance at 450 nm was measured in
triplicate with a microplate reader (Tecan, Mannedorf,
Switzerland) following 1-hour incubation.
Cell migration
The cells were first transfected with lentiviral GFP and
then selected by FACS to obtain a high yield of GFP+

cells. A total of 5 × 104 GFP+ DFSCs and Wnt5a+/GFP+

DFSCs in 100 μl DMEM were loaded into 8 μm pore
Transwells (Corning, Corning, NY, USA) in 24-well plates
as per our prior methods [15]. Following 12-hour incuba-
tion, migrated cells were trypsinized and counted, as per
our prior methods [11].
Western blot
GFP+ DFSCs or Wnt5a+/GFP+ DFSCs were plated at
1 × 106 cells per well in six-well plates. Total proteins were
extracted using RIPA buffer as per the manufacturer’s
protocol. Primary antibodies included anti-Wnt5a (1:500;
Abcam), anti-Runt-Related Transcription Factor 2 (Runx2,
1:500; Santa Cruz, Dallas, TX, USA), anti-osteocalcin
(Ocn, 1:500; Santa Cruz, NM, Dallas, TX, USA) and anti-
alkaline phosphatase antibody (ALP, 1:500; Abcam), with
anti-glyceraldehyde-3-phosphate dehydrogenase (1:3,000;
Abcam) as control. All assays were performed in triplicate.
Quantitative RT-PCR (Taqman)
Total RNA was extracted using Trizol (Invitrogen, Grand
Island, NY, USA) from GFP+ DFSCs and Wnt5a+/GFP+

DFSCs, and treated with RNase-free DNase. A total of
2 μg RNA per sample was used for cDNA synthesis
primed with random hexamers. For PCR amplification,
initial amplification using gene-specific primers was per-
formed with denaturation at 95°C for 3 minutes, followed
by 39 cycles at 95°C for 10 seconds, primer annealing at
55°C for 10 seconds, and primer extension at 72°C for
30 seconds. Quantitative, real-time PCR (Taqman) was
used to determine fold mRNA differences relative to the
control, and normalized to glyceraldehyde-3-phosphate
dehydrogenase. Primer sequences were as follows (Invitro-
gen): Alp, ATGCCCTGAAACTCCAAA and CTCCA
GCCGTGTCTCCTC; OCN, AGCAGGAGGGCAGTAA
GG and TCCAGGGGATCTGGGTAG; collagen type 1
(Col1a1), ATTCACCTACAGCACGCTT and GGAGGTC
TTGGTGGTTTT; and Runx2, TAGAGGGGATGCCT
TAGTG and GAGGATGGAGGGAAACAA. Receptor
activators for nuclear factor-κB ligand (RANKL) and
osteoprotegerin (OPG) were purchased from Applied
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Biosystems, Inc. (catalogue number 4331182; Grand
Island, NY, USA).

Statistical analysis
Upon confirmation of normal data distribution, all quan-
titative datasets were subjected to Student t tests or
one-way analysis of variance with P <0.05 for statistical
significance.

Results
Immunohistochemistry showed Wnt5a expression in
postnatal tooth germ from 1 to 11 days. At day 1, Wnt5a
was primarily expressed in alveolar bone (Figure 1B) in
comparison with the control (Figure 1A). By day 3, Wnt5a
became robustly expressed but was still restricted to the
alveolar bone (Figure 1D) with little expression in either
ameloblasts or dental papilla relative to the control
(Figure 1C). Remarkably, Wnt5a showed robust expres-
sion in the odontoblast layer of the dental papilla by day 5,
while remaining expressed in alveolar bone (Figure 1F),
relative to the control (Figure 1E). By day 7, both amelo-
blasts and odontoblasts showed remarkable Wnt5a ex-
pression (Figure 1H) relative to the control (Figure 1G),
whereas it was still expressed in alveolar bone. Wnt5a
expression in ameloblasts and odontoblasts as well as the
alveolar bone persisted at days 9 and 11 (Figure 1J,L), rela-
tive to controls (Figure 1I,K). By day 11, Wnt5a expression
was mostly in ameloblasts and alveolar bone (Figure 1L),
relative to the control (Figure 1K). Strikingly, there was lit-
tle Wnt5a expression in dental pulp on the tested postna-
tal days 1 to 11 except for the odontoblast layer of
dental papilla at postnatal days 5, 7, 9 and 11 (Figure 1F,
H,J,L). We then isolated DFSCs from the first molar of
postnatal day 7 rat mandible, as shown on the buccal
(Figure 1M) or lingual (Figure 1N) side. The isolated
first molar with dental follicle is shown in Figure 1O.
Dental follicle was isolated from the first molar (Figure 1P).
The isolated DFSCs were plated and assumed typical
fibroblast-like morphology (Figure 1Q). Wnt5a protein
was expressed in the dental follicle (Figure 1D,H,J,L), al-
though it was not nearly as robust as in the adjacent al-
veolar bone.
Wnt5a was then overexpressed in postnatal day 7

DFSCs by GFP lentivirus (Figure 2A), and then GFP+

(Wnt5a+) cells were selected by FACS (Figure 2B). Wnt5a
expression in lentiviral GFP transfected cells was con-
firmed relative to vector control (Figure 2C). Wild-type
dental follicle cells proliferated in the observed 5 days in
culture (Figure 2D). However, a subpopulation of Wnt5a
overexpressed dental follicle cells showed significantly
attenuated proliferation at each of the observed 5 days
(Figure 2D). Migration of dental follicle cells is of interest
not only for their putative ability to constitute multiple tis-
sues of the periodontium, but also in their recruitment in
wound healing [12,13,16]. Accordingly, we performed a
Transwell assay to appreciate the migration capacity of
vector control and Wn5a-overexpressed DFSCs. Relative
to vector control (Figure 2E,F), Wnt5a-overexpressed
dental follicle cells showed robust migratory capacity
(Figure 2G,H). Significantly more Wnt5a transfected
dental follicle cells migrated than vector control (Figure 2I).
To begin to appreciate the roles of Wnt5a in differenti-
ation, we exposed native dental follicle cells to osteogenesis
induction medium for 7, 14, 21 and 28 days and found
consistently enhanced Wnt5a expression (Figure 2J).
We further explored whether Wnt5a was capable of

inducing dental follicle cell differentiation. Interestingly,
native dental follicle cells failed to undergo spontaneous
mineralization during the tested 14-day culture in
DMEM (Figure 3A,B). Even in chemically defined, osteo-
genesis induction medium, native dental follicle cells only
showed modest mineralization (Figure 3C,D). Upon ex-
posure to 300 ng/ml Wnt5a protein in osteogenesis induc-
tion medium, mineralization by dental follicle cells was
somewhat more pronounced, but remained unimpressive
(Figure 3E,F). Quantitatively, Wnt5a protein addition in
osteogenic medium yielded significantly larger alizarin red
area than osteogenic medium alone, which in turn was
significantly larger than native dental follicle cells without
any osteogenic stimulation (Figure 3G). However, ~40%
alizarin red area (Figure 3G) is far from overwhelming
mineralization. Wnt5a-treated cells showed significantly
higher expression of alkaline phosphatase, Ocn, Runx2
and Col1a1 (Figure 3H,I), again suggesting that native
dental follicle cells may have moderate ability towards bio-
mineralization. Chemically induced or Wnt5a-induced
mineralization occurred sparsely in culture, with the ma-
jority of culture-plate remained unmineralized (Figure 3C,
D,E,F), suggesting that large fractions of DFSCs may not
readily mineralize even in the presence of chemically de-
fined, osteogenesis medium or Wnt5a protein addition.
Given this finding, we tested OPG and RANKL expression
and found that, in contrast to a lack of significant
differences in OPG expression between native and
Wnt5a-treated cells (Figure 3J), RANKL expression was
significantly augmented (~10-fold) in Wnt5a-treated
cells (Figure 3K), suggesting putative regulatory roles of
the monocyte/osteoclast lineage and potential involve-
ment in alveolar bone remodeling by dental follicle cells.
We then probed Wnt5a signaling pathways in DFSCs.

Wnt5a transfected cells showed robust phosphorylation-
Jun N-terminal kinase (P-Jnk) 1/2 expression in com-
parison with vector control in 3 days (Figure 4A). Upon
exposure to SP600125 for 3 days, a Jnk inhibitor, Col1a1,
Runx2 and Ocn mRNAs were attenuated in Wnt5a trans-
fected DFSCs (Figure 4B). In the presence of 100 ng/ml
bone morphogenetic protein (BMP) 2, Wnt5a prompted
dental follicle cells to upregulated Ocn (Figure 4D), Runx2



Figure 2 Wnt5a overexpression and dental follicle stem/progenitor cell proliferation and migration. (A) Transfection of lentiviral green
fluorescence protein (GFP)-Wnt5a in dental follicle stem/progenitor cells. (B) GFP+ (Wnt5a+) cells were sorted by fluorescence-activated cell sorting
(FACS), yielding >96% cells with positive GFP signal. (C) Real-time quantitative PCR (Taqman) showing Wnt5a overexpression (n = 3; P <0.001).
(D) Cell Counting Kit 8 assay was applied to evaluate the influence of Wnt5a on cell proliferation. Proliferation rates of dental follicle stem/
progenitor cells were attenuated upon Wnt5a overexpression (n = 3; *P <0.05). (E, F) Wnt5a-free, vector control dental follicle cells migrated through
Transwell pores. (G, H) Wnt5a-overexpressed dental follicle cells showing robust migration through Transwell pores. (I) Quantitatively, ~3× more
Wnt5a-overexpressed cells migrated than the control (n = 3; **P <0.01). (J) Native dental follicle cells with enhanced Wnt5a expression when exposed
to osteogenesis induction medium (OM) for 7, 14, 21 and 28 days by western blot. GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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(Figure 4E) and Col1a1 (Figure 4F), in comparison with
Wnt5a overexpression (Figure 4D,E,F) or Wnt5a alone
(Figure 3H,I). However, ALP activity showed a significant
decrease upon combined Wnt5a and BMP2 treatment
(Figure 4C).

Discussion
These findings provide the first glimpse of Wnt5a ex-
pression and putative functions in DFSCs in postnatal
periodontium. Given robust Wnt5a expression in the al-
veolar bone on the observed postnatal days 1 to 11, we
initially assumed that the isolated postnatal day 7 DFSCs
would undergo robust mineralization. Contrarily, native
DFSCs show somewhat modest mineralization even in
osteogenesis induction medium or when exposed to
Wnt5a protein. This is consistent with recent data show-
ing a lack of enhanced bone formation or mineralization
in a transgenic mouse model with Wnt5a overexpression
[17]. Strikingly, our finding of ~10-fold enhanced RANKL
expression in Wnt5a-treated DFSCs suggests that dental
follicle may exert regulatory roles for monocyte/osteoclast
lineages and potentially is involved in alveolar bone re-
modeling. Wnt5a appears to mediate DFSCs to undergo
limited mineralization, perhaps consistent with their mul-
tipotency towards differentiation into not only PDL cells
that do not mineralize in homeostasis, but also cemen-
toblasts and/or alveolar bone osteoblasts that readily
mineralize. The present findings suggest that Wnt5a
plays putative roles in the fate of DFSCs towards differ-
entiation into unmineralizing PDL cells or mineralized
cementoblasts and/or alveolar bone osteoblasts.
Wnt5a expression in postnatal periodontium is robust

in the alveolar bone as well as in ameloblast and odonto-
blast layers. In the embryonic tooth germ, Wnt5a ex-
pression is primarily confined to dental mesenchyme [3].
By embryonic day 14.5, however, Wnt5a is expressed in
the enamel knot [3]. Therefore, our observed postnatal
Wnt5a expression in the developing ameloblasts and
odontoblasts appears to be a continuation of the presence
of Wnt5a in prenatal tooth germ. The Wnt5a expression



Figure 3 Dental follicle stem/progenitor cell differentiation upon Wnt5a protein exposure. (A, B) Dental follicle stem/progenitor cells
showed virtually no alizarin red area upon exposure to Dulbecco’s modified Eagle’s medium (DMEM) without osteogenic supplements for the
tested 14 days. (C, D) Dental follicle stem/progenitor cells exposed to osteogenic medium (OM) yielded a moderate alizarin red area. (E, F)
Dental follicle stem/progenitor cells upon exposure to both Wnt5a protein (300 ng/ml) and osteogenic medium generated some alizarin red
area. (G) Quantitatively, dental follicle stem/progenitor cells upon exposure to Wnt5a protein and osteogenic medium showed significantly
greater alizarin red (AR) area than Wnt5a exposure alone, which in turn was more significant than wild-type dental follicle cells (DFC; n = 3;
**P <0.01). (H) Real-time quantitative PCR (Taqman) revealed alkaline phosphatase (ALP), osteocalcin (Ocn), Runx2 and Col1a1 mRNA expression
upon Wnt5a protein exposure for 7 days (n = 3; **P <0.01). (I) ALP, Ocn and Runx2 protein expression as treated with Wnt5a protein for 7 days.
(J, K) Osteoprotegerin (OPG) and receptor activator for nuclear factor-κB ligand (RANKL) mRNA expression when dental follicle stem/progenitor
cells were exposed to Wnt5a protein for 3 and 7 days. GAPDH, glyceraldehyde-3-phosphate dehydrogenase; NS, not significant; ***(P <0.01).
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in alveolar bone is remarkable. Accordingly, we isolated
DFSCs and found that they are somewhat modest in their
innate ability to differentiate into osteoblasts, in compari-
son with postnatal bone marrow stromal cells that readily
differentiate into osteoblasts ex vivo under permissive
conditions [6]. A cautionary note is that in vitro assays
of osteogenesis including alizarin red and von Kossa
depend on culture medium conditions [18]. Stronger
Wnt5a expression when native DFSCs are exposed to
osteogenesis induction medium suggests its involvement
in mineralization, perhaps towards cementoblasts and/or
alveolar osteoblasts. In balance, however, osteogenesis-
related genes including Ocn, Runx2 and collagen1a1 are
upregulated only in the presence of both Wnt5a and
BMP2, consistent with in prenatal dental follicle cells [19].
Our ongoing work explores the crosstalk between Wnt5a
and BMP signaling in DFSCs. Our finding of RANKL ex-
pression upon Wnt5a treatment in DFSCs was motivated



Figure 4 Wnt5a signaling in dental follicle stem/progenitor cells. (A) Western blot was used to detect phosphorylation-Jun N-terminal kinase
(P-Jnk) 1/2 expression of Wnt5a transfected cells and vector control; higher expression of P-Jnk1/2 was observed in Wnt5a transfected cells. (B)
Exposure to SP600125 for 3 days, a Jnk inhibitor, attenuated Col1a1, Runx2 and osteocalcin (Ocn) in Wnt5a transfected dental follicle cells relative
to vector controls as demonstrated by western blot. (C, D, E, F) Real-time quantitative PCR (Taqman) revealed synergistic effects of Wnt5a when
exposed to 100 ng/ml BMP2 for 3 days by upregulating Ocn, Runx2 and Col1a1 mRNA, but not alkaline phosphatase (ALP) activity (n = 3;
**P <0.01; ***P <0.001). GAPDH, glyceraldehyde-3-phosphate dehydrogenase; NS, not significant.
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by their unimpressive osteogenesis, consistent with recent
data showing that Wnt5a overexpression in a transgenic
mouse model presented a lack of enhanced bone forma-
tion or mineralization [20]. RANKL upregulation by
Wnt5a overexpression in DFSCs, but not OPG, is con-
sistent with previous results that noncanonical signaling
receptor Ror2 is expressed in osteoclast precursor cells
and, by binding to Wnt5a, activates osteoclastogenesis
[8,21,22]. Wnt5a plays putative roles in bone metabol-
ism and bone remodeling – perhaps as a moderate
osteogenesis enhancer, yet it may mediate osteoclasto-
genesis by RANKL – in ways that are important for
maintaining the unmineralized PDL and mineralized ce-
mentum/alveolar bone. This speculation obviously re-
quires additional investigations to prove or disapprove.
Wnt5a mediates noncanonical Wnt signaling and reg-
ulates cell proliferation, migration and polarization [23].
C-Jun N-terminal kinase (JNK) is a member of the
mitogen-activated protein kinase family. When tyrosine
and threonine are phosphorylated, JNK is activated [24].
Our finding of Wnt5a activation of the p-Jnk1/2 path-
way, and conversely inhibition of p-Jnk1/2 by SP600125,
indicates that noncanonical signaling is activated in
DFSCs, similar to Wnt5a activation of intracellular c-Jun
signaling in dental papilla cells [25] and bone marrow
stromal cells [26]. JNK signaling is involved in cell
polarization [27], migration [25] and osteogenic differenti-
ation. Attenuation of Runx2, Ocn and Col1a1 expression
upon application of JNK inhibitor SP600125 to dental
follicle cells suggests that Wnt5a-mediated osteogenesis,
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counteracted by JNK inhibitors, is important for
mineralization of dental follicle cells. Wnt5a overex-
pression attenuates the proliferation of DFSCs, and
probably predisposes them for differentiation, consist-
ent with previous reports of Wnt5a effects in other cell
types [28]. Another fundamental cell behavior is migra-
tion, which is important for both development and tissue
regeneration [12,13,15,29]. Wnt5a clearly enhances the
migration of DFSCs as we discovered here, consistent with
Wnt5a promotion of tumor cell migration [30-32].

Conclusions
Wnt5a appears to play important roles in the fate of
DFSCs in development, homeostasis and perhaps regen-
eration of the periodontium, with potential implications
in tooth eruption, orthodontic tooth movement, dental
implant bone healing and periodontal disease.
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