
Introduction

Patients with systemic lupus erythematosus (SLE) remain 

at increased risk for premature death [1], particularly 

among young adults [2]. Up to 45% of cases present early 

end organ damage, related to persistent activity or kidney 

disease [3]. Renal involvement, which occurs in 40 to 50% 

of patients in most series, is associated with mortality 

rates approximately eight times higher than expected [2], 

and remains only partially responsive to the best available 

treatments. Indeed, therapy with cyclophosphamide has 

not improved patient survival compared with cortico-

steroids [4], and the largest controlled trial comparing 

mycophenolate mofetil with intravenous cyclophospha-

mide in lupus nephritis achieved complete remission in 

only 8.6% and 8.1% of patients, respectively [5]. 

Undoubtedly there is a need for safer and more eff ective 

treatments for SLE.

Mesenchymal stem cells

Mesenchymal stromal cells, originally described in the 

1960s as bone forming cells in the bone marrow [6], are 

now called multipotent mesenchymal stromal cells, or 

more commonly mesenchymal stem cells (MSCs) since 

they display adult stem cell multipotency. Th us, they 

diff erentiate into bone, cartilage and other connective 

tissues [7]. Unlike hematopoietic stem cells, which origi-

nate from bone marrow, MSCs can also be isolated from 

a variety of other tissues, such as umbilical cord or 

adipose tissue, and can be extensively expanded in vitro

by up to 50 cell doublings without diff erentiation [8].

While these properties initially put MSCs center stage of 

an alleged era of regenerative medicine, the unexpected 

fi ndings of Bartholomew and colleagues in 2002 [9] 

pointed to new features of these progenitor cells, the 

consequences of which are still being revealed in several 

areas of medicine. MSCs were found to escape T-cell 

recognition, suppress T-cell response to mitogens and 

also to prolong skin graft survival in baboons. In spite of 

a wide array of immunomodulatory eff ects that were 

subsequently proven to aff ect T and B lymphocytes, 

natural killer and antigen-presenting cells [10,11], MSCs 

remain hypoimmunogenic since they express low levels 

of major histocompatibility (MHC) class I molecules and 

do not express MHC class II or co-stimulatory (CD40, 

CD40L, CD80 or CD86) molecules [12]. Since the eff ects 

on immunocompetent cells are not MHC restricted, 

allogenic MSCs are widely used with no need to match 

them with host human leukocyte antigens (HLAs). Th e 

mechanisms underlying these eff ects are a subject of 

great scientifi c interest, as reviewed elsewhere in this 

issue, but apparently involve both cell contact and soluble 
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factors, including indoleamine 2,3-dioxygenase, prosta-

glandin E2, nitric oxide, transforming growth factor 

(TGF)-β1, IL-10, soluble HLA-G, and IL-1 receptor anta-

go nists [13,14]. Also, several growth factors, such as 

hepatocyte growth factor, vascular endothelial growth 

factor (VEGF), insulin-like growth factor, epidermal 

growth factor, basic fi broblast growth factor and stromal 

cell-derived factor-1, among others, have been implicated 

in the modulatory and reparative eff ects of MSCs [15].

Recently, several studies have identifi ed critical roles 

for microRNAs (miRNAs) involved in proliferation, 

migration and diff erentiation of MSCs, suggesting that 

they might play an important role in the acquisition of 

reparative MSC phenotypes [16].

Therapeutic use of MSCs in autoimmune and 

infl ammatory diseases

Given their vast proliferative potential, extensive immuno-

suppressive properties, and also the ease of access to 

proper tissue sources, therapies with autologous or 

allogenic MSCs have been tested in a variety of immune-

mediated disease models, including experimental allergic 

encephalomyelitis [17,18] - a model of multiple sclerosis - 

diabetic NOD/SCID mice [19], collagen-induced arthritis 

[20,21], and several lupus murine models [22-28]. Results 

have been mainly encouraging, but not altogether consis-

tent, particularly in the case of arthritis [29], and lupus 

mice [26,27].

At the time of writing this review, 141 registered 

human trials on MSCs were found at the National Insti-

tutes of Health ClinicalTrials.gov website [30], including 

13 for graft versus host disease (GVHD), 10 for diabetes, 

7 for Crohn’s disease or ulcerative colitis, 5 for multiple 

sclerosis, 2 for amyotrophic lateral sclerosis, one each for 

Sjögren syndrome and systemic sclerosis and two for 

SLE. Some of these trials point to non-immune-mediated 

conditions that are associated with tissue injury, such as 

hepatic cirrhosis, myocardial infarction or congestive 

heart failure. In several instances it has become apparent 

that MSCs are not necessarily replacing diseased tissues 

or diff erentiating into separate cell lineages, but seem to 

exert a complex pattern of trophic, regenerative and anti-

infl ammatory eff ects [31,32].

In humans, the most studied application for MSCs is 

GVHD, a complication of hematopoietic stem cell trans-

plan tation in which donor T cells attack an immuno-

compromised and genetically disparate recipient [33]. In 

2004, Le Blanc and colleagues [34] treated a 9-year-old 

boy with severe treatment-resistant acute GVHD of the 

gut and liver with third party haplo-identical mother-

derived MSCs. Clinical response was striking, with 

improvement of liver and intestinal function. Th e most 

recent placebo controlled trials confi rmed the signifi cant 

improvement in liver and gastrointestinal GVHD, but did 

not reach signifi cance for durable complete responses or 

other primary endpoints [35].

Mesenchymal stem cells in systemic lupus 

erythematosus

Perhaps the most remarkable results for human MSC 

therapy are now emerging from the latest clinical trials in 

severe, treatment-refractory SLE [36,37]. While these are 

still small, uncontrolled and non-multicentric studies, the 

recent reports of successful MSC treatment in other 

infl ammatory and scarring conditions that are typical of 

the SLE spectrum [38,39] lend support to these 

notoriously favorable outcomes. Th ese trials also 

highlight the need to advance the clinical science of stem 

cell therapy and underscore the challenge of identifying 

specifi c mechanisms of action, given the multi-tiered 

eff ects of cellular therapies in vivo [40].

While in the past the connective tissue was assigned a 

low rank among organized tissues, nowadays it seems to 

harbor far reaching properties. Undoubtedly, when Dr 

Paul Klemperer suggested that the histopathological 

connective tissue changes found in SLE were common to 

the ‘obscure maladies that collectively are called diseases 

of the connective tissue or collagen diseases’ [41], little 

did he know that a cure for such diseases might also be 

found within connective tissues!

Animal models of disease

While the MSCs derived from SLE patients and diseased 

mice are still immunosupressive in vitro [42], they are 

abnormal in terms of phenotype, proliferation and diff er-

entiation [43-45]. Sun and colleagues have forwarded the 

hypothesis that an impaired bone marrow MSC niche 

contributes to disease development in human [43] and 

murine SLE [23]. Th ey describe in Fas-defi cient MLR/lpr 

mice a signifi cant osteoporosis phenotype with osteoclast 

activity and T cell over-activation that does not respond 

to cyclophosphamide treatment, but is corrected by MSC 

transplant [23]. Even if this assumed MSC defi ciency is 

only a consequence of immune activation in SLE, this 

rationale has supported the use of allo- or xenogeneic - 

instead of autologous - MSCs for the treatment of SLE 

[23]. For example, in MRL/lpr mice, allogenic mouse or 

human MSCs derived from bone marrow (BM-MSCs), 

umbilical cord (UC-MSCs) or exfoliated deciduous teeth 

have all been highly eff ective in reducing or even 

normalizing serum autoantibodies, proteinuria, renal 

pathology and survival of diseased animals [22-25]. In 

contrast, the NZB/W F1 strain,  considered the murine 

model that most closely resembles human SLE, has 

shown diverging results. For example, human UC-MSCs 

delayed disease and alleviated lupus nephritis [27], while 

allogenic murine BM-MSCs (from C57BL/6J mice) did 

not aff ect proteinuria or double-stranded DNA (dsDNA) 
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levels, but still improved renal function [28]. Surprisingly, 

BM-MSCs from another strain (BALB/c mice) had 

opposite eff ects, enhancing anti-dsDNA antibody pro duc-

tion and worsening disease and kidney pathology [26].

Human systemic lupus erythematosus

Prompted by the positive results in the Fas-defi cient 

MRL/lpr mice treated with human MSCs from healthy 

individuals [22], Sun and colleagues [23] treated four 

patients with active disease and lupus nephritis (24 hour 

urine protein ≥1 g and/or serum creatinine ≥1.5 mg/dl) 

that was unresponsive to monthly intravenous cyclo-

phos phamide (0.75 g/m2) and oral prednisone (≥20 mg/

day) for 6 months. All patients received one infusion of 

≥1 × 106 BM-MSCs (from healthy family members) per 

kilogram of body weight. Th e Systemic Lupus Disease 

Activity Index (SLEDAI) at 1, 6 and 12 months follow-up 

improved signifi cantly, as did urinary protein, and also 

CD4+ Foxp3+ T regulatory (Treg) cell counts at 3 months 

follow-up. Prednisone and cyclophosphamide were 

reduced, and the latter even suspended in two patients. 

None had complications after 12 to 18 months follow-up. 

Th ese encouraging results led to a larger phase I open 

trial in 15 patients - including the fi rst 4 cases reported - 

with refractory disease as described above, except that 

one-third of patients had also failed oral mycophenolate 

mophetil (1 to 2 g/day for 3 months) [37]. All cases 

fulfi lled the previously stated criteria for refractory renal 

disease except one with only refractory thrombo cyto-

penia (24 × 109/L). Non-renal manifesta tions included 

arthritis, severe skin disease, serositis and ten cases with 

non-responsive cytopenias. Patients received one intra-

venous infusion of 1 × 106 allogeneic BM-MSCs per 

kilogram body weight (harvested from passages 3 to 5) 

from non-HLA-matched healthy family members. Subse-

quently, steroids were reduced to 5 to 10 mg/day main-

tain ing lower dose cyclophosphamide (0.4 to 0.6 g) for 2 

to 3 months. Mean follow-up reached 17.2 (3 to 36) months 

with no adverse eff ects, deaths or ensuing GVHD. 

Clinical and serological changes were quite dramatic for 

this group of patients with severe disease as gauged by an 

average baseline SLEDAI of 12.1  ± 3.3, in spite of daily 

prednisone (23 ± 5 mg) and immunosuppressive drugs. 

In 12 patients SLEDAI again improved signifi cantly, to 

3.2 ± 2.8 at 12 months (P < 0.05), remaining under 8 in all 

patients and even zero in four patients. Only one subject 

was able to discontinue immunosuppressants, remaining 

with inactive disease at 12 months on 5 mg daily 

prednisone. Two patients fl ared at 6 and 12 months, 

respectively. Quite surprisingly, 24  hour proteinuria 

(2,538.0 ± 382.3 mg at baseline) decreased signifi cantly 

(1,430.7 ± 306.3; P < 0.01, n = 12) as soon as one week 

after MSC therapy - even preceding changes in anti-

dsDNA antibodies - and continued to improve thereafter 

until month 12. Glomerular fi ltration rate improved in 

two patients who had reduced values at study entry, as 

did creatinine levels in four subjects. Anti-dsDNA 

antibodies decreased signifi cantly at 1 month (P < 0.05) 

and 3 months (P < 0.05) post-transplant. Treg cells, which 

have been found to be quantitatively and qualitatively 

defi cient in active SLE [46,47], were restored at week 1 

(from 2.56 ± 0.37 to 4.58 ± 0.51; P < 0.05, n  =  13) as 

judged by the percentage of CD4+ Foxp3+ cells among 

peripheral blood mononuclear cells.

A second open trial from this group in Nanjing, China 

followed, reporting the use of UC-MSCs in severe lupus 

[36]. UC-MSCs are easily accessible, have high prolifera-

tive potential [48] and have been used with success in 

lupus mice [24]. Patients (n = 16) and entry criteria were 

similar to the previous study, though this time 5 of 15 

renal cases had histological confi rmation of proliferative 

nephritis, and 11 were preconditioned with cyclophos-

pha mide (0.8 to 1.8 g intravenously) prior to MSC 

infusion. Subsequently, prednisone was reduced to 5 to 

10 mg every 2 weeks and patients were kept on mainte-

nance cyclophosphamide (0.6 to 0.8 g), which was able to 

be eventually discontinued in only three individuals. 

Mean follow-up was only 8.25 months. Signifi cant im-

prove ment at 1 and/or 3 months was verifi ed by SLEDAI 

score (two patients completed 2 years with scores <4), 

serum albumin, 24 hour urinary protein, serum creati-

nine (six patients), serum C3 (fi ve patients) and anti-

dsDNA antibodies. Baseline CD4+ Foxp3+ cells (Treg 

cells) increased signifi cantly at 3 and 6 months, and a fall 

in serum IL-4 (with a non-signifi cant increase of IFN-γ) 

was interpreted by the authors as indicative of improve-

ment of pathogenic Th 2 imbalance, though animal lupus 

models have shown the opposite cytokine change [27]. 

Finally, a case report from the group in Nanjing, but not 

from the realm of renal disease, draws further attention 

to the potency of MSC treatment: a 19-year-old girl with 

a recent diagnosis of SLE presented with massive diff use 

alveolar hemorrhage unresponsive to methylprednisolone 

(160 mg/d for 4 days, 500 mg/d for 3 days) and 

intravenous immunoglobulin (20 g/day for 5 days) [49]. 

Repeated high-resolution chest computed tomography 

spanning 9 weeks showed diff use bilateral alveolar infi l-

trates. After only one day of UC-MSC infusion (2 × 106/kg 

body weight) the patient’s level of oxygen saturation rose 

from 71 to 91%, and 5 days later mechanical respiratory 

support was removed. Nine days later high-resolution 

chest computed tomography showed complete resolu-

tion. Recurrent pulmonary disease 6 weeks after being 

discharged - while on prednisone, cyclophosphamide and 

cyclosporin A - again responded promptly to MSC re-

treatment. Th is dramatic case underscores the need to 

unravel the biological components underlying the clinical 

eff ects of MSCs.
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Mechanisms of the therapeutic eff ects of MSC 

treatment

Despite the in vitro and in vivo evidence for a therapeutic 

eff ect of MSCs in SLE, the mechanisms by which MSCs 

exert their immunomodulatory and reparative eff ects are 

still incompletely understood, but most likely involve 

multiple mechanisms (Figure 1).

Proinfl ammatory ‘licensing’ of MSCs

In contrast to therapies that cause global immune 

suppression, MSCs have been dubbed ‘smart’ immune 

modulators since their suppressive eff ects require a 

previous ‘licensing’ step that occurs in the presence of an 

infl ammatory environment, and is mediated by the 

secretion of specifi c cytokines [50]. Th us, IFN-γ, alone or 

together with tumor necrosis factor-α, IL-1α or IL-1β, are 

required to provoke the expression by MSCs of high 

levels of soluble factors involved in immunosuppression, 

such as indoleamine 2,3-dioxygenase, hepatocyte growth 

factor, TGF-β1 and nitric oxide [51-54]. Th e need for this 

activation step has been confi rmed in a model of GVHD 

since recipients of IFN-γ-/- T cells did not respond to 

MSC treatment evolving into fatal GVHD [55].

Tipping of the Th1/Th2 balance

Although still controversial, an imbalance in IFN-γ and 

IL-4 cytokine levels, suggestive of a pathogenic T helper 

2 (Th 2) response, has been reported in SLE. Accordingly, 

Figure 1. Systemic administration of mesenchymal stem cells can trigger distal (endocrine) or local (paracrine) eff ects that include 

cell-mediated actions. 1) Promotion of angiogenesis: vascular endothelial growth factor (VEGF), insulin like growth factor 1 (IGF-1), monocyte 

chemoatractant protein 1 (MCP-1), basic fi broblast growth factor (bFGF) and interleukin 6 (IL-6). 2) Stem cell growth and diff erentiation: stem 

cell factor (SCF), leukemia-inhibitory factor (LIF), macrophage colony-stimulating factor (M-CSF), stromal derived factor 1 (SDF-1), angiopoietin 

1 and activin A. 3) Inhibition of fi brosis: hepatocyte growth factor (HGF), bFGF, adrenomedullin (ADM). 4) Inhibition of apoptosis: VEGF, HGF, 

IGF-1, transforming growth factor (TGF)-β, bFGF, granulocyte macrophage colony-stimulating factor (GM-CSF), activin A and thrombospondin-1. 

Immune mediated eff ects include the following (5 to 8). 5) Suppression of T and B cells: human leukocyte antigen G5 (HLA-G5), HGF, inducible 

nitric oxide synthase (iNOS), indoleamine-2,3-dioxygenase (IDO), prostaglandin E2 (PGE-2), bFGF and TGF-β. 6) Induction of regulatory T cell (Treg) 

diff erentiation and expansion by TGF-β expression. 7) Inhibition of natural killer (NK) cells by secretion of IDO, PGE-2 and TGF-β. 8) Inhibition of 

dendritic cell (DC) maturation by secretion of PGE-2. iDC, immature dendritc cells; mDC, mature dendritic cells.
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experimental data suggest that MSC therapy might 

ameliorate SLE by promoting the conversion from a Th 2 

humoral response to a Th 1 cellular immune response 

through modulation of IL-4 and IFN-γ levels in eff ector 

T cells. Zhou and colleagues [22] showed that intraperi-

to neal infusion of human BM-MSCs in MRL/lpr mice 

decreased the production of IL-4 and increased IFN-γ in 

peripheral blood T cells. Sun and colleagues [36] 

reported similar fi ndings with UC-MSC transplantation 

in patients with refractory SLE 3 months after treatment, 

also suggesting a polarization toward a Th 1 phenotype 

that was associated with clinical improvement. However, 

Aggarwal and Pittenger [51] showed the opposite eff ect 

with the addition of human MSCs to diff erentiated 

eff ector T cells in vitro, and Chang and colleagues [27] 

found that UC-MSC transplantation in NZB/W F
1
 mice 

was associated with an increase in the Th 2 phenotype in 

the face of improving disease. Th e divergent results from 

these studies underline the complexity of both MSC-

mediated eff ects and the immunopathogenesis of SLE.

Eff ects on CD4+ T cell populations: upregulation of 

Treg/Th17 ratio

Several studies have provided evidence of a quantitative 

and/or qualitative defect of Treg cells in human SLE, as 

well as an increased production of Th 17 proinfl ammatory 

cells [46-47,56]. On the other hand, MSCs have been 

shown to induce the generation of functional Treg cells 

both in vitro and in vivo [21,57,58]. In MLR/lpr mice, the 

transplantation of MSCs from many sources (bone 

marrow, umbilical cord or exfoliated deciduous teeth), 

can restore Treg cells and induce a signifi cant reduction 

in Th 17 levels, consequently up-regulating the ratio of 

Treg/Th 17 cells [23-25]. In human SLE, the transplan-

tation of either allogeneic or autologous MSCs derived 

from bone marrow or umbilical cord also increases Treg 

cells, suggesting that this may be one of the mechanisms 

of the MSC-mediated improvement of disease [23,36,37]. 

However, in two patients with active but not highly 

infl ammatory SLE, we reported that the infusion of 

autologous MSCs induced no amelioration in spite of 

generating a marked increase in Treg cells [59].

Mesenchymal stem cell homing and diff erentiation

Long-term persistence of autologous or allogenic MSCs 

after a single intravenous infusion has been described in 

baboons, with levels of tissue engraftment ranging from 

0.1 to 2.7% [60]. However, in a chronic kidney disease 

model, only repeated injections were associated with 

functional improvement and cortical entrapment of 

MSCs at 5 weeks [39]. In NZB/W F1 lupus mice treated 

with 1 × 106 human UC-MSCs via the tail vein, Chang 

and colleagues [27] could evidence MSCs in kidney tissues 

at week 2 of infusion, but no long-term engraftment. 

Even if MSCs protect and improve recovery from several 

models of acute and chronic renal injury [61,62], 

paracrine and endocrine eff ects seem most important, 

since con ditioned medium from MSCs has been able to 

mimic the benefi cial eff ects of stem cell therapy [63]. Th e 

intricacy of such endocrine factors in vivo has been 

elegantly illustrated by Lee and colleagues [64] in a 

mouse model in which the reduced size of myocardial 

infarction in response to the infusion of human MSCs 

was due to the secretion of the anti-infl ammatory protein 

TSG-6 triggered by MSC entrapment in the lung.

Gene expression and growth factors

A number of genes and growth factors responsible for 

renal regeneration also seem to be involved in renal 

repair after the administration of MSCs [38]. High levels 

of angiogenic factors, such as VEGF, have been related to 

glomerulonephritis in SLE [65,66], and Zhou and 

colleagues [22] showed that transplantation of human 

BM-MSCs in MRL/lpr mice reduced the expression of 

VEGF and TGF-β and also deposits of fi bronectin in 

glomeruli. In an ischemic model of chronic kidney 

disease we have shown that a single intravenous infusion 

of autologous MSCs triggers a signifi cant increase in a 

group of nephrogenic proteins and transcription factors 

related to endothelial (VEGF and the angiopoietin-1 

receptor Tie-2) and epithelial (bone morphogenetic 

protein-7, Pax-2, and basic fi broblast growth factor) 

diff er entiation, in association with a marked improve-

ment of renal function [67].

Additionally, the importance of epigenetic regulatory 

factors in the control of biological processes and of the 

immune response has also been stressed. Common 

miRNA patterns of expression have been found in three 

diff erent murine models of SLE [68], suggesting these 

might be targeted therapeutically. Since MSCs have been 

shown to secrete microparticles enriched in miRNAs 

[69], several authors have suggested that microvesicle-

mediated transfer of mRNA from MSCs to target tissues 

might also participate in some of the processes involved 

in immunoregulation or in the recovery from kidney 

injury in response to stem cell treatment [70].

Conclusion

Th e results of the fi rst clinical trials with MSC therapy in 

severe SLE are undoubtedly encouraging. However, the 

heterogeneity of MSCs as defi ned today and the intricate 

circuitry of cellular and humoral factors that mediate 

their presently known eff ects still point to many issues to 

be resolved in order to pave the way for cell therapy in 

SLE. Long-term safety concerns remain an issue, given 

the description of in vitro malignant MSC transformation 

[71] and the unknown interaction of regular immuno-

supressants with single or repeated MSC therapy [72]. 
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Along with the need for larger randomized controlled 

clinical trials, future advances from stem cell science can 

be expected to pinpoint signifi cant MSC subpopulations 

and/or stem cell markers for regenerative or immuno-

regulatory properties, as well as specifi c mechanisms of 

action [73]. Th us, assays for in vitro or in vivo MSC 

potency could be developed, leading the way to the use of 

more potent stimulated or primed pre-treated MSCs.
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