
Following acute myocardial infarction, the human heart 

can lose over a billion cardiac myocytes. Th e injured 

tissue undergoes fi brosis, leading to signifi cant loss of 

contractile function, adverse left ventricular remodeling 

and ultimately chronic heart failure. Adult mammalian 

cardiac myocytes are multinucleated and it has been well 

documented that only a limited number of cardiac 

myocytes enter the cell cycle following myocardial repair 

[1]. Scientists at the bench have known for decades that 

cardiac myocytes isolated from adult mammalian myo-

cardium do not enter the cell cycle and actively divide, 

whereas cardiac myocytes from neonatal myocardium do 

have a limited capacity to divide in culture. Th e limited 

proliferative capacity of adult cardiac myocytes correlates 

with the limited capacity of the adult myocardium to 

regenerate itself following acute myocardial infarction, 

and is in distinct contrast to the regenerative capacity of 

the myocardium in lower life forms, including zebrafi sh 

[2].

Th e recent publication by Porrello and colleagues 

sought to answer the question of whether the neonatal 

mammalian heart has the capacity for regeneration that 

is lost with aging [3]. To answer this question they 

resected the apex of the hearts of 1-day-old neonatal 

mice and found that the myocardium does regenerate. 

Th e regenerative process is accompanied by proliferation 

of cardiac myocytes that peaked at 7 days after resection. 

By 21 days after resection the apex of experimental 

animals was indistinguishable from that of sham animals, 

without any evidence of signifi cant scar. Furthermore, 

cardiac function and chamber dimensions were similarly 

un changed between experimental and sham-treated 

animals. In distinct contrast, apical resection in 7-day-old 

mice did not lead to cardiac myocyte proliferation or 

regenera tion of the lost apical tissue. Rather, the apex in 

the 7-day-old mice was markedly fi brotic, suggesting that 

the regenerative capacity of neonatal myocardium is lost 

within the fi rst week of life.

Th e ultimate issue is identifying the mechanism(s) 

behind myocardial regeneration in 1-day-old mice that is 

lost with aging, and whether this mechanism(s) can be 

re-established to achieve clinically meaningful regenera-

tion in patients with left ventricular dysfunction. Figure 1 

schematizes multiple potential mechanisms associated 

with myo cardial repair that could be, and arguably need 

to be, investigated.

Since the seminal work of Orlic and colleagues [4,5], 

the fi eld of cardiac regeneration has demonstrated the 

potential to induce cardiac repair using adult stem cells; 

however, it is unlikely that a signifi cant mechanism of the 

observed benefi t is associated with myocardial regenera-

tion. Multiple stem cell populations have been studied 

and have demonstrated benefi t with multiple adult stem 

cell populations in preclinical studies [6,7] and in clinical 

populations [8-12]. Furthermore, the elucidation of rele-

vant mechanisms associated with myocardial repair [13,14] 

has led to novel clinical trials that focus on inducing 

endogenous repair in the absence of stem cell delivery 

(Clinicaltrials.gov: CXCL12, NCT01082094, Th ymosinβ4 

and NCT01311518).
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Amphibians and zebrafi sh are able to regenerate lost 

myocardial tissue without loss of cardiac function; 

whereas mammals, in response to myocardial 

injury, develop scar and lose cardiac function. This 

dichotomy of response has been thought to be due 

to the fact that adult mammalian cardiac myocytes 

are multinucleated and have limited proliferative 

capacity. Neonatal mammalian cardiac myocytes 

do have a limited capacity to proliferate. What has 

been unknown is whether this limited proliferative 

capacity is associated with the ability to regenerate 

myocardial tissue soon after birth. Recently, it has 

been demonstrated that 1-day-old neonatal mice do 

have the ability to regenerate resected cardiac tissue, 

and that the capacity to regenerate cardiac tissue is 

lost by 7 days after birth. The present commentary 

reviews these results and attempts to off er perspective 

as to how these important fi ndings relate to current 

and future strategies to prevent and treat cardiac 

dysfunction in clinical populations.
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In the study by Porrello and colleagues, the authors 

attempted to determine whether the cardiac myocytes in 

the regenerated apical tissue were derived from endoge-

nous cardiac myocytes or a source of progenitor cells [3]. 

To address this question they cross the αMHC-

MerCreMer mouse with the Rosa26-lacZ reporter 

mouse. Th e mice were treated with a single dose of 

tamoxifen at birth. Th e dosing of tamoxifen led to 

chimeric cardiac myocytes with a specifi c percentage 

being lacZ-positive. If the apex was regenerated from 

endogenous cardiac myocytes, then the regenerated 

tissue should have the same percen tage of lacZ-positive 

cardiac myocytes; whereas if the tissue was regenerated 

from a progenitor pool, then the apex would have a 

higher percentage of lacZ-negative cardiac myocytes 

since the tamoxifen would not have activated the αMHC-

MerCreMer promoter in these cells. Th e data nicely 

demonstrate that the regenerated apex had the same 

proportion of lacZ-positive cardiac myocytes as the 

endo ge nous myocardium [3], suggesting that the 

regenerated tissue was derived from endogenous cardiac 

myocytes. While this may be accurate, what is not taken 

into account is that the αMHC-MerCreMer promoter is 

activated in cardiac stem cells. Th ese mice therefore 

probably have a chimera of lacZ-positive and lacZ-

negative cardiac stem cells from which the cardiac myo-

cytes in the regenerated apex could have been derived. 

Regardless, the fi ndings of the paper are relevant since 

there is little evidence that adult cardiac stem cells can 

regenerate cardiac myocytes [15].

Consistent with the observations by Porrello and 

colleagues with respect to myocardial regeneration, stem 

cell function and endogenous myocardial repair are lost 

with aging. We recently demonstrated that cardiac 

myocyte hypertrophy in response to pressure overload is 

age dependent. We further demonstrated that aging leads 

to a decline in the generation of bone-marrow-derived 

cardiac stem cells, and that the eff ects of aging on cardiac 

myocyte hypertrophy could be reversed by trans plan-

tation of young bone marrow into aged mice [16].

Th e loss of cardiac myocyte regeneration and repair 

with aging may help explain the rarity of cardiac tumors. 

Such observations suggest that dissecting the cardiac 

regenerative and reparative mechanisms lost with aging 

that have relevance to tumor suppression could yield 

important targets for future therapeutic approaches. One 

such example is our recent fi nding that downregulation 

of the tumor suppressor protein disabled-2 results in 

signi fi cantly improved stem-cell-based cardiac repair 

[17].

In summary, the study by Porrello and colleagues 

demonstrates that the complete regeneration of myo-

cardial tissue is possible in mammals [3]. Th is observation 

is important because we now know that myocardial 

Figure 1. Potential mechanisms for myocardial regeneration. Schematic of potential mechanisms for myocardial regeneration including 

chemokine/growth factor release, endogenous cardiac myocyte proliferation, proliferation and recruitment of endogenous cardiac stem cells and 

recruitment of bone-marrow-derived stem cells.
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regeneration is a natural process in mammals; and if we 

can defi ne the associated mechanisms, and determine 

how these mechanisms are modulated by aging, new 

therapeutic strategies targeted at myocardial regeneration 

should be possible.
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