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Abstract 

Inherited retinal diseases (IRDs) can induce severe sight-threatening retinal degeneration and impose a considerable 
economic burden on patients and society, making efforts to cure blindness imperative. Transgenic animals mimicking 
human genetic diseases have long been used as a primary research tool to decipher the underlying pathogenesis, 
but there are still some obvious limitations. As an alternative strategy, patient-derived induced pluripotent stem cells 
(iPSCs), particularly three-dimensional (3D) organoid technology, are considered a promising platform for modeling 
different forms of IRDs, including retinitis pigmentosa, Leber congenital amaurosis, X-linked recessive retinoschi-
sis, Batten disease, achromatopsia, and best vitelliform macular dystrophy. Here, this paper focuses on the status 
of patient-derived iPSCs and organoids in IRDs in recent years concerning disease modeling and therapeutic explora-
tion, along with potential challenges for translating laboratory research to clinical application. Finally, the importance 
of human iPSCs and organoids in combination with emerging technologies such as multi-omics integration analysis, 
3D bioprinting, or microfluidic chip platform are highlighted. Patient-derived retinal organoids may be a preferred 
choice for more accurately uncovering the mechanisms of human retinal diseases and will contribute to clinical 
practice.
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Background
Inherited retinal diseases (IRDs) affect millions globally 
and have become one of the leading causes of irrevers-
ible vision loss in children and the working population 

in developed countries [1–3]. IRDs, a group of disorders 
with high clinical and genetic heterogeneity, are associ-
ated with 317 pathogenic genes, among which 281 have 
been identified (RetNet: http://​sph.​uth.​edu/​retnet/, last 
accessed 10 June 2023). These genes have been found to 
play roles in almost all aspects of retinal structure and 
function, including retinal development, phototransduc-
tion, visual cycle, ciliary trafficking, ion channels, phago-
cytosis, mitochondrial function, protein degradation, 
outer segment structure, and pre-mRNA splicing [4]. 
Substantial progress has been made in elucidating the 
molecular genetic factors involved in IRDs and mutation 
screening techniques in the past two decades [5, 6]. How-
ever, the pathological mechanisms associated with spe-
cific genotypes still need to be better understood, owing 
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to the availability of limited treatment options. Establish-
ing accurate and available disease models, categorized 
by mutation and disease phenotype, is vital for gaining 
insight into IRDs.

Rodents have been widely employed as experimental 
models for studying the pathogenesis and treatment of 
human genetic diseases. However, they suffer the demer-
its of not altogether representing the occurrence and 
progression of the disease due to the translation barrier 
between rodents and humans [7, 8], e.g., mice are defi-
cient in a macula on their retinas. Moreover, many stud-
ies reported that IRD mice fail to capture the pathological 
features of retinal photoreceptor degeneration [9–12].

Induced pluripotent stem cells (iPSCs) have the inher-
ent merit of unlimited proliferation, self-renewal capac-
ity, and multidirectional differentiation [13]. Human 
iPSCs can retain the unique genomic information of 
each individual since they are derived from autologous 
cells and devoid of limitations posed by embryonic stem 
cells, like ethical issues and immune rejection after trans-
plantation [14]. Human iPSCs from somatic cell repro-
gramming have opened up an entirely new perspective 
for obtaining patient-specific cell lines, which are then 
differentiated into desired cell types under appropri-
ate conditions, including retinal ganglion cells, vascular 
endothelial cells, cardiomyocytes, osteoblasts, hemat-
opoietic cells, and neurons [14, 15]. In recent years, the 
emergence of three-dimensional (3D) organoids capable 
of forming complex tissue-like structures has gradually 
transformed our ability to model human development 
and disease, drug screening, and cell therapy [16–18]. 
Herein, this review systematically summarizes the role 
of patient-derived iPSCs and organoids in IRDs based on 
previously published studies.

Application of patient‑derived iPSCs in IRDs
Reprogramming technology is considered one of the 
most important advances in the field of stem cell research 
and regenerative medicine [14, 19, 20]. Fibroblasts were 
the first somatic cells to be applied for reprogramming 
into human and mouse iPSCs [21, 22]. Subsequently, 
more and more cell types from patients were identified 
to induce iPSCs, like peripheral blood mononuclear cells 
(PBMCs), urine cells, and dermal fibroblasts, usually used 
as cell sources of human iPSCs, as shown in Table 1. In 
2011, the first study of IRD patient-derived iPSCs for dis-
ease modeling and drug screening was reported by Jin 
et al. [23].

Although the human dermal fibroblast extraction 
and culture are convenient, it requires an invasive sam-
pling of donor skin tissue which might translate into 
permanent scarring. Moreover, DNA variations within 

the cells are another potential obstacle due to long-
term exposure of skin tissue to ultraviolet rays from 
sunlight [24]. As an alternative source, PBMCs can 
be isolated from routine blood samples with written 
informed patient consent and then reprogrammed into 
iPSCs, since most of the blood withdrawal methods use 
peripheral venipuncture techniques, which means less 
trauma and pain for the donor, but it has been reported 
that blood samples kept at room temperature for a 
long time without timely processing translate into a 
decreased number of iPSC colonies; nevertheless, they 
can be cryopreserved without affecting their repro-
gramming efficiency [25]. Compared to fibroblasts and 
PBMCs, urine cell extraction is non-invasive, conveni-
ent, simple, reproducible, and discomfort-free, facilitat-
ing the willingness of most participants for autologous 
urine collection. Urine samples are considered an ideal 
cell source for reprogramming technology because of 
their prominent advantages. However, poor prolifera-
tion and low success rates of urine cells derived from 
healthy adults and patients have been reported [26].

The preferred somatic cell source for generating 
iPSCs still needs more consensus since selecting a suit-
able cell source depends on the actual situation owing 
to the difference in extraction, culture, and expansion 
[27]. Notably, patient-specific iPSC cell source is gen-
erally required to be consistent with normal control-
derived iPSCs. Furthermore, additional measures 
need to be taken while sampling to avoid contamina-
tion, such as skin surface disinfection, sterile dispos-
able gloves and masks, and timely transportation and 
extraction of somatic cells. Mycoplasma detection of all 
cell samples was performed regularly. Uncontaminated 
and well-conditioned iPSCs are more conducive to dif-
ferentiation into target cells and organoids.

Application of patient‑derived organoids in IRDs
More and more evidence indicated that patient-derived 
retinal organoids (ROs) have the potential to serve as 
an ideal platform for tissue and organ reconstruction 
and in  vitro disease modeling [28–30]. The main rea-
sons are listed as follows: (1) ROs with laminar struc-
ture are similar to the natural retina and have a variety 
of tissue-specific cells, including photoreceptor cells, 
retinal pigment epithelium (RPE) cells, Müller glial 
cells, ganglion cells, amacrine cells, and bipolar cells 
[31]. (2) ROs show high reproducibility and fidelity 
of retinal development [17, 32, 33]. (3) Human iPSC-
derived ROs have the advantages of fewer ethical con-
cerns, easy availability, and large-scale production [34]. 
An overview of recent advances in patient-derived ROs 
in IRDs is below and summarized in Table 2.
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Retinitis pigmentosa (RP)
RP, the most common type of IRD, is characterized by 
progressive degeneration of RPE cells and photorecep-
tors with a prevalence of approximately one in 4000 [35]. 
It initially manifests as night blindness, visual field con-
striction, and changes in the fundus, eventually leading to 
irreversible impairment of central vision [36]. The molec-
ular pathogenesis of RP is not fully understood, and there 
is still no cure or effective treatment to slow down the 
disease progression [37, 38]. Patient-derived RPE cells 
and ROs for modeling RP could recapitulate the geno-
type–phenotype features of the disease. Due to clinical 
and genetic heterogeneity, different retinal degeneration 
phenotypes caused by intra-gene variations and the same 
phenotype caused by mutations in multiple genes could 
be presented.

Mutations in pre-mRNA processing factors (PRPFs) 
are the main cause of autosomal dominant RP related 
to the formation of the U4/U6.U5 tri-snRNP complex, 
a core spliceosome component [39]. For instance, RPE 

cells generated from iPSCs of an RP patient carrying the 
PRPF8 mutation showed widespread changes in alterna-
tive splicing events and dysregulated expression of genes 
involved in the splicing process and ribosome, indicating 
loss of spliceosome function [40]. In addition, ROs and 
RPE models from patient-specific iPSCs with the PRPF31 
mutation showed impaired pre-mRNA splicing process 
as described by Baskin et al. On the other hand, abnor-
mal photoreceptor and RPE changes were also observed, 
including cell morphology, cilium structure, apical-basal 
polarity, and phagocytosis function of the photoreceptor 
outer segment (POS) [41]. Such an aberrant phenotype 
was also observed in iPSC-RPE cells from the PRPF6-
mutated patients [42]. These reports suggested that pro-
gressive RPE and photoreceptor degeneration might be 
attributed to the mis-splicing of genes vital for retinal 
structure and function. Similarly, cytoplasmic mislo-
calization of PRPF31 protein in RPE and photoreceptor 
cells with reduced expression in nuclear localization has 
been reported lately [43]. Moreover, the effect of PRPF31 

Table 1  Source of reprogrammed iPSCs in IRDs

UCs—urine cells; PBMCs—peripheral blood mononuclear cells; DFs—dermal fibroblasts

*Termination codon

Type Pathogenic gene and locus iPSC source Gender Age Method References

RP PRPF8 c.5792C > T, p.T1931M UCs Male 17 Episomal plasmid electroporation [148]

PRPF6 c.2699G > A, p.R900H PBMCs Female 15 Episomal plasmid electroporation [149]

SLC7A14 c.988G > A, p.G330R PBMCs Male 6 Episomal plasmid electroporation [150]

CRB1 c.2249G > A, p.G750D and c.2809G > A, p.A937T PBMCs Male 22 Episomal plasmid electroporation [151]

CRB1 c.1369C > T, p.R457X and c.2027C > T, p.T676M PBMCs Male 10 Lentiviral vectors [152]

RP1 c.2098G > T, p.E700X DFs Female 76 Episomal plasmid vectors [153]

RP1 c.2161_2162insC DFs Female 67 Retroviral vectors [23]

RP9 c.401A > T, p.H137L DFs Male 39 Retroviral vectors [23]

RHO c.562G > A, p.G188R DFs Male 40 Sendai virus [154]

RHO c.644C > T, p.P215L DFs Female 35 Sendai virus [155]

PRPH2 c.946T > G, p.W316G DFs Female 67 Retroviral vectors [23]

RPGR c.1685_1686delAT UCs Male 24 Lentiviral vectors [48]

USH2A c. CGC > CAC, p.R4192H Keratinocytes Unknown 62 Sendai virus [52]

USH2A c.2209C > T, p.R737* and c.8693A > C, p.Y2898S DFs Female 63 Sendai virus [156]

LCA NMNAT1 c.709C > T, p.R237C PBMCs Female 1 Sendai virus [157]

AIPL1 c.834G > A, p.W278X UCs Unknown 3 Episomal plasmid electroporation [65]

AIPL1 c.834G > A, p.W278X and c.466-1G > A, intron UCs Twins 2 Episomal plasmid electroporation [65]

AIPL1 c.265T > C, p.C89R DFs Female 31 Sendai virus [158]

CRX c.695delC DFs Male 6 Sendai virus [159]

RDH12 c.184C > T, p.R62* and c.437T > A, p.V146D PBMCs Male 13 Sendai virus [160]

RDH12 c.619A > G, p.N207D DFs Female 40 Episomal plasmid electroporation [161]

XLRS RS1 c.488G > A, p.W163X PBMCs Male 16 Sendai virus [162]

RS1 c.527T > A, p.F176Y PBMCs Male 13 Episomal plasmid electroporation [163]

RS1 c. 304C > T, p.R102W UCs Male 11 Sendai virus [164]

RS1 c.214G > A, p.E72K PBMCs Male 8 Episomal plasmid vectors [165]

RS1 c.305G > A, p.R102E PBMCs Male 7 Episomal plasmid vectors [166]
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mutation on the spliceosome impaired U4/U6.U5 tri-
snRNP assembly and decreased splicing activity [43]. The 
mutant PRPF31 protein causes photoreceptor cell degen-
eration in organoids, with rods expiring first, followed by 
cones, which correspond to the results obtained in RP 
patients [44]. In contrast, some transgenic mice with prp-
f3T494M/+, prpf8H2309P/+, and prpf31± exhibited unsatisfac-
tory performances in photoreceptor degeneration [9, 45].

The protein trafficking function of connecting cilia in 
photoreceptors is regulated by the retinitis pigmentosa 
GTPase regulator (RPGR), which is necessary for pho-
toreceptor development. In the context of disease mod-
eling, patient-derived ROs showed that gelsolin failed to 
be activated due to disturbed interaction between mutant 
RPGR protein and gelsolin, resulting in impaired F-actin 
disassembly of cilia and mislocalization of photoreceptor 
markers rhodopsin and opsin [46]. Mice with knockout 
RPGR and Gelsolin showed significant abnormalities in 
F-actin polymerization and rhodopsin expression [47]. 
Therefore, using patient-derived ROs could explain the 
ciliary phenotype of F-actin dysregulation as a unique 
RPGR mechanism. To explore the effectiveness of in vitro 
gene editing, Deng et al. performed CRISPR/Cas9-medi-
ated gene correction of RPGR mutation to restore expres-
sion levels of target genes and proteins, thereby rescuing 
ciliary lesions and photoreceptor loss in iPSC-derived 
organoids from three RP patients [48]. Gene therapy 
for heterogeneous IRD may be a promising strategy to 
address the underlying molecular defects, but its devel-
opment in clinical treatment remains a challenge.

Additionally, early retinal development is impeded in 
some forms of RP. Mutations in the USH2A gene encod-
ing usherin protein induce autosomal recessive non-
syndromic RP and Usher syndrome [49]. The usherin 
has been known to house several motifs associated with 
extracellular matrix (ECM) proteins, such as laminin 
and fibronectin type III, which are essential for support-
ing the centrosome-cilium interface and the inner seg-
ment/outer segment region of photoreceptors [50, 51]. 
The patient-specific ROs model carrying the USH2A 
mutation was established a decade ago [52]. Recently, a 
study revealed defective retinal progenitor cell develop-
ment and neuroretinal layer formation due to abnormal 
retinal differentiation and polarization in the USH2A-
related ROs, where increased apoptosis was observed in 
the mutated organoids along with decreased prolifera-
tion and laminin expression on day 34 compared to the 
normal control group [53]. Moreover, multi-omics data 
analysis showed that the down-regulation of ECM organ-
ization promoted patient-derived iPSCs and ROs apopto-
sis via the PI3K-Akt signaling pathway [37].

The gene IMPG2 encodes interphotoreceptor matrix 
proteoglycan 2, a protein expressed by cone and rod 

photoreceptor cells that plays a role in supporting the 
growth and maintenance of light-sensitive POS [54]. 
Mutation in IMPG2 is associated with a severe form of 
autosomal recessive RP. Impg2 knockout mice exhibited 
a relatively mild and late-onset photoreceptor pheno-
type compared to human disease [55]. Human iPSC-ROs 
harboring patient-specific or gene-edited mutations in 
IMPG2 universally lacked a functional POS layer and 
interphotoreceptor matrix disruption due to loss of 
IMPG2 protein or its inability to undergo normal post-
translational modification. This POS phenotype was 
reversed after the correction of the IMPG2 mutation by 
CRISPR/Cas9 gene editing. Interestingly, transplantation 
of IMPG2-mutated ROs into the protected subretinal 
space of immunodeficient rats restored POS growth, sug-
gesting that POS is vulnerable to mechanical stress envi-
ronment [56].

Leber congenital amaurosis (LCA)
LCA is the most severe form of IRD, leading to congeni-
tal or early-onset blindness [57, 58]. Patients typically 
present with nystagmus, poor pupillary light response, 
severe retinal degeneration, and nearly disappeared full-
field electroretinogram in infancy or childhood [59]. 
Luxturna was approved by the Food and Drug Admin-
istration (FDA) in 2017 as the first gene therapy drug 
in ophthalmology, but it is only available for biallelic 
RPE65 mutation-associated LCA with a mounting cost of 
$850,000 [60]. To date, at least 26 pathogenic genes have 
been linked to LCA, mainly in an autosomal recessive 
inheritance pattern (RetNet).

Mutation in the aryl hydrocarbon receptor-interact-
ing protein-like 1 (AIPL1) gene is one of the most clini-
cally severe forms of the disease (known as LCA-4 type), 
accounting for 5%–10% of all LCA cases [57]. AIPL1 pro-
tein acts as a photoreceptor-specific cochaperone, inter-
acting with the molecular chaperone heat shock protein 
90 (HSP90) to regulate the stability and assembly of phos-
phodiesterase 6 (PDE6) holoenzyme in the phototrans-
duction cascade, which is responsible for regulating 
intracellular levels of cyclic guanosine monophosphate 
(cGMP) in rods and cones [61]. The phenotype of patient 
iPSC-derived ROs in vitro modeling LCA was similar to 
LCA-4 rodents as described previously [62]. The loss of 
AIPL1 protein hindered the PDE6 holoenzyme forma-
tion, resulting in increased cGMP levels in photorecep-
tor cells [63, 64]. Similarly, Leung et al. confirmed these 
molecular pathological changes in AIPL1-mutated ROs 
derived from four patients and attempted to investigate 
the effectiveness of the reagent PTC124, a translational 
read-through-inducing drug [65]. The results showed a 
slight increase in full-length AIPL1 protein but failed to 
completely restore the functional expression of PDE6 and 
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reduce the cGMP levels in photoreceptor cells. However, 
CRISPR/Cas9-mediated gene editing could rescue the 
mutant phenotype, as observed in the AIPL1-corrected 
organoids [65].

In addition, modeling CRX mutation-related LCA 
using patient iPSC-ROs technique revealed immature 
photoreceptor cell development and reduced visual 
opsin expression [66], which were alleviated using CRX 
gene augmentation therapy mediated by adeno-asso-
ciated virus (AAV) vectors [67]. The organoid model of 
the cilia gene CEP290 recapitulated the LCA-10 disease 
phenotype and exhibited abnormal splicing and ciliary 
defects [68]. Contrarily, eupatilin, a bioactive flavonoid, 
has improved cilium formation and length in CEP290-
associated ROs [69]. CRISPR/Cas9-mediated gene cor-
rection of a nonsense variant in LCA5 rescued lebercilin 
expression and localization along the ciliary axoneme in 
patient-derived ROs [70].

X‑linked recessive retinoschisis (XLRS)
XLRS, also called RS1-associated IRD, is character-
ized by a splitting of the neurosensory retina and cystic 
macular dystrophy affecting the young male population 
[71]. Retinoschisin encoded by the RS1 gene is assembled 
by retinal bipolar cells and photoreceptors, followed by 
its secretion into the extracellular surfaces as a homo-
octameric complex [71]. The protein contains an amino-
terminal signal peptide, the RS1 domain, and a discoidin 
domain, a specialized domain found in a family of extra-
cellular surface proteins that plays an important role in 
retinal cell adhesion and cell–cell interactions [72]. At 
present, several XLRS mouse models have been con-
structed to recapitulate the retinoschisis phenotype [73, 
74]. A recent study has shown that this specific retinopa-
thy may occur in patient iPSC-derived ROs [75]. PBMCs 
were extracted from blood samples of two patients diag-
nosed with XLRS, reprogrammed into iPSCs, and then 
induced into RO disease models. On day 150 of differ-
entiation, RS1 mutant ROs exhibited cyst/schisis-like 
features similar to the fundus characteristics of retinal 
splitting between the inner and outer nuclear layers in 
XLRS patients and mice. Western blotting and immu-
nofluorescence staining showed that patient-derived 
ROs had aberrant RS1 protein expression and secretion, 
resulting in altered paxillin dynamics, photoreceptor 
development, and retinopathy-related gene expression 
[75]. Subsequently, CRISPR/Cas9-mediated correction of 
RS1 deficiency effectively reversed pathological changes 
in morphological structure and molecular expression, 
and likewise, introducing this RS1-specific mutation into 
normal control iPSCs successfully reproduced the disease 
phenotypes [75].

Other IRDs
Other relatively uncommon types of IRDs have also 
been studied, such as Batten disease, achromatopsia, 
and best vitelliform macular dystrophy (BVMD). It has 
been reported that patient-derived RO models of Batten 
disease with the CLN3 mutation exhibited altered pre-
mRNA splicing, accumulation of mitochondrial ATPase 
subunit-C, peroxisomes mislocalization, and vacuoli-
zation of photoreceptor inner segments [76]. Achro-
matopsia is characterized by loss of cone photoreceptor 
function. At the same time, achromatopsia ROs from 
patients carrying the ATF6 variants exhibited molecu-
lar and cellular phenotypes, including cone defects, 
increased endoplasmic reticulum stress, Müller cell acti-
vation, disrupted mitochondrial structure, and elevated 
mitochondrial respiratory chain activity gene expression 
[77]. Intervention with AA147, a lead small molecular 
ATF6 agonist, may enhance cone photoreceptor growth 
and gene expression in the disease ROs by promot-
ing Class 1 ATF6-regulated transcriptional activity [78]. 
In addition, impaired bestrophin channel activity was 
observed in BVMD patient-derived RPE cells with the 
BEST1 mutation, which was restored by AAV-mediated 
BEST1 gene augmentation [79, 80].

Taken together, a genotype–phenotype correlation of 
the disease was corroborated through a series of tests and 
analysis in patient iPSC-derived RO models, which can 
accurately reflect instead of mimic the complex clinical 
and genetic background of human retinal disease, may 
provide a very favorable experimental tool and platform 
for launching relevant research, and may also contrib-
ute to future drug development and gene therapy strate-
gies. Recently, a clinical trial of a CRISPR/Cas9-mediated 
gene therapy drug for RP disease was conducted in China 
(NCT05805007).

Preclinical application
In recent years, stem cell-derived ROs can be prepared 
into suitable retinal sheets or purified photoreceptor cells 
for transplantation in animal models of retinal degenera-
tion to restore the structural and functional integrity of 
the host retina [81–85]. Notably, purified photoreceptors 
can directly form host-graft synaptic contact but seldom 
survive for long after transplantation [86]. In contrast, 
neuroretina-like graft sheets develop a structured layer 
in the form of a rosette that promotes graft photorecep-
tor survival and synaptic interaction with host bipolar 
cells, and retinal ganglion cell responses to light can be 
detected via multiple electrode arrays in end-stage retinal 
degeneration models [87, 88]. A protocol for the prepa-
ration, quality control, and transplantation of retinal 
sheets into retinal degeneration rats has been established 
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and validated previously [82]. Based on prior proof-of-
concept studies, Kobe City Eye Hospital has launched 
the first human clinical trial in Japan using retinal sheets 
from allogeneic iPSC-derived ROs for transplanta-
tion in advanced RP patients (jRCTa050200027). Two 
patients underwent the surgery, and no serious adverse 
events have been reported for at least one year follow-
ing transplantation. Since the graft sheet with a tiny area 
of approximately 0.5 × 1 mm was delivered into a lim-
ited area, improving visual function may be insufficient 
and requires a better version to induce adequate efficacy 
[89]. Furthermore, the presence of bipolar cells and their 
established synaptic connections within the graft may 
impede graft-host neural integration. Yamasaki et  al. 
induced the ISL1 gene deletion to significantly reduce 
the number of retinal bipolar cells to enhance functional 
integration after transplantation [90]. Besides RO trans-
plantation therapy, a clinical trial of intestinal organoid 
transplantation in patients with ulcerative colitis was 
approved in February 2020 and conducted at Tokyo Med-
ical and Dental University in Japan (jRCTb032190207).

Challenges in the clinical application of iPSCs 
and organoids
With the rapid progress of regenerative medicine and 
precision therapy, human iPSCs and 3D organoids play 
a prominent role in cell transplantation, gene therapy, 
and drug testing [29, 91–93]. Treatment decisions will 
become multi-faceted and personalized. Using human 
iPSC derivatives for transplantation is a way to avoid or 
reduce the risk of autoimmune rejection, as these cells 
can be derived from patient samples [94, 95]. However, 
the clinical application of human iPSCs and organoids 
is contentious, related to the tumorigenicity and hetero-
geneity of iPSCs, as well as the absence of standardized 
culture protocols, such as viability and batch effect of 
iPSC-derived cells or organoids.

Regulatory requirement
The development of iPSCs and organoids is an impor-
tant step in overcoming a clinical application challenge, 
which requires the use of bioprocesses that are compliant 
with quality and regulatory guidelines. Regulatory affairs 
for new cellular products may vary globally, but they are 
usually manufactured under current good manufactur-
ing practice (GMP) conditions [96]. The establishment 
of automated and high-throughput methods, supported 
by machine learning and advanced robotics, will con-
tribute to product consistency, repeatability, and trace-
ability in future clinical applications [97]. Bohrer et  al. 
recently developed a robotic cell culture platform called 
Cell X to produce clinical-grade patient-specific iPSCs 
and ROs [98]. Briefly, iPSC clone generation, picking, 

expansion, and spontaneous retinal formation were all 
tasks performed by the robotic system, and single-cell 
RNA sequencing showed that these organoids generated 
automatically are comparable to those obtained manu-
ally [98]. The incorporation of the Cell X robotic platform 
into iPSCs production and differentiation enables fine 
labor and time under GMP standards and reduces batch-
to-batch variability caused by human error or protocol 
drift.

In addition, most methods of iPSC generation and reti-
nal induction rely on animal-derived components (i.e., 
fetal bovine serum) and/or animal-derived matrix mol-
ecules or feeder cells [34, 99–101]. However, it is undesir-
able for cell therapy developers and regulatory agencies 
to expose clinical-grade cells or organoids to products of 
animal origin. Recently, Slembrouck-Brec et al. described 
a defined xeno-free and feeder-free culture condition 
for the generation of human iPSC-derived ROs and RPE 
cells [102]. In our previous study, fetal bovine serum was 
replaced with human platelet lysates to establish a xeno-
free ROs culture workflow that facilitates clinical applica-
tion [103].

Tumorigenicity
The clinical application of human iPSCs and their deriva-
tives raises issues about efficacy and safety. Mandai et al. 
reported a clinical study of iPSC-derived autologous 
RPE cell sheets in two patients with advanced neovas-
cular age-related macular degeneration [104]. The first 
patient underwent surgical removal of the neovascular 
membrane followed by subretinal transplantation of an 
autogenous iPSC-derived RPE cell sheet. One year after 
surgery, there was no sign of graft rejection or recurrence 
of the neovascular membrane. However, three abnor-
mal DNA copy number mutations were detected in RPE 
cells from another patient; therefore, surgery was not 
conducted because it might affect gene expression dys-
regulation [104]. Many researchers have found that either 
iPSC-derived grafts may retain undifferentiated stem 
cells or immature progenitor cells that continue to pro-
liferate [105, 106], or genetic mutations during in  vitro 
culture may drive tumorigenesis [107]. Moreover, if tran-
scription factors used in reprogramming technology are 
integrated into the cell genome, specifically the c-Myc 
factor, teratomas or tumors may emerge [108]. However, 
only some studies have focused on the genetic safety of 
iPSC-derived autografts; thus, their long-term in  vivo 
safety still needs to be well understood.

Heterogeneity
The iPSCs heterogeneity in differentiating potential is 
a hurdle for downstream applications, including drug 
screening, gene therapy, and cell therapy. Human iPSCs 
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and their derivatives vary in efficiency across cell lines, 
which may be attributed to genetic background, epi-
genetic variables, passage, and culture protocols. For 
example, most normal iPSCs induce ROs effectively, but 
a few indeed exhibit inefficiencies or cannot generate 
retinal tissues [109]. Recently, an optimized system with 
the addition of recombinant Dickkopf-related protein 1 
(DKK1) could significantly improve ROs’ self-organiza-
tion capacity in specific iPSC lines [110]. Additionally, 
genetic abnormalities affect the development of patient-
derived ROs with distinct diseases or variants. Mahato 
et  al. reported that the retinal forming efficiency of RP 
disease-specific iPSCs was identical to that of the healthy 
control cells; however, iPSCs with the RB1−/− mutation 
failed to form eye field primordial structures [111]. The 
passage approach employing enzyme and manual puri-
fication was more effective than flow cytometry-based 
sorting for high-yield purification of functional RPE cells 
from diverse stem cell sources [112]. Although many pro-
tocols for generating iPSC-derived ROs have been devel-
oped, there are still differences among them. Given this, 
if iPSCs and their derivatives are to be used clinically, 
conditions for iPSCs culture and differentiation must be 
standardized, and regular monitoring of genetic variation 
throughout the process must be emphasized. In addition, 
rigorously designed preclinical studies in large animal 
models are required. Assessing the long-term efficacy 
and safety of iPSC-based therapies will be meaningful to 
promote clinical applications in future.

Future trends
Patient-derived ROs have been used to model IRDs, ena-
bling the recapitulation of disease genotype–phenotype 
features in  vitro. Recently, human organoid technol-
ogy has integrated multi-omics data to deeply analyze 
the pathogenesis of retinal diseases, or combined with 
microfluidic chip platform and 3D bioprinting technol-
ogy to create more mature and complex organoids [113], 
which may become the development direction in disease 
research and tissue engineering (Fig. 1).

Multi‑omics integration analysis
Although IRDs occur due to mutations in the causative 
gene, the exact molecular mechanisms remain unclear, 
and more effective treatment strategies are to be dis-
covered [114, 115]. With advances in high-throughput 
sequencing technology, genomics, epigenomics, tran-
scriptomics, proteomics, metabolomics, and single 
cell-omics are frequently used in research to better 
understand biological processes at the gene, protein, and 
metabolic levels and discover new biomarkers and thera-
peutic targets [116]. However, single omics data is insuffi-
cient for studying systems biology across multiple levels. 

Multi-omics analysis, which integrates data from two or 
more omics, has recently been popular in uncovering 
mechanistic insights [117–120].

It was observed that the USH2A mutation dysregu-
lated ECM-related gene expression in patient-derived 
ROs, which was well validated at transcriptomic and pro-
teomic levels, suggesting an interaction between gene 
expression and protein synthesis in USH2A-related ROs 
[37]. The degeneration of photoreceptor cells is the main 
hallmark of IRDs, although the early molecular and cel-
lular events before photoreceptor death are not fully 
understood. An integrative multi-omics approach was 
performed in the Pde6brd1/rd1 mouse model of RP, includ-
ing temporal transcriptomics of purified rod photorecep-
tors along with proteomic and metabolomic analysis of 
the retina [121]. They found that mitochondrial damage 
and metabolic disruptions are early pathological factors 
of photoreceptor cell death in retinal degeneration. It 
was demonstrated for the first time that calcium signal-
ing defects are drivers of mitochondrial and metabolic 
changes. The molecular mechanisms underlying the 
onset and early progression of an XLRS mouse model 
were investigated by combined transcriptomic-prot-
eomic analysis [122]. However, bulk RNA sequencing 
cannot provide cell-type-specific changes in gene expres-
sion. In contrast, single-cell RNA sequencing enables 
extensive molecular characterization at single-cell resolu-
tion and removes the interference caused by diverse cell 
compositions, making the information obtained more 
comprehensive [31, 123]. Lee et  al. analyzed bulk RNA 
sequencing data from achromatopsia patient-derived 
ROs carrying the ATF6 mutation and identified disrupted 
mitochondrial structure and abnormal respiratory chain 
activity gene expression [77]. Single-cell RNA sequenc-
ing subsequently indicated considerable down-regulation 
of cone-related and up-regulation of Müller cell-related 
genes. Thus, the combination of bulk and single-cell RNA 
sequencing allows us to establish an integrated under-
standing of transcriptomes in studying human retinal 
diseases.

Furthermore, studies based on a multi-omics strat-
egy may help identify biomarkers for early diagnosis or 
potential therapeutic targets. A recent study showed that 
microRNA-143 expression was significantly downregu-
lated in oxygen-induced retinopathy rats, and intravitreal 
injection of its mimics inhibited retinal neovasculariza-
tion [124]. This is possible by regulating endothelial cell–
matrix adhesion and mediating the hypoxia-inducible 
factor-1 signaling pathway; therefore, microRNA-143 
can be used as a potential biomarker and therapeutic 
target. In addition to attenuating retinal angiogenesis, 
microRNA-143 had a suppressive effect on retinoblas-
toma [125]. Bioinformatics analysis of multi-omics data 
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also identified TTK, RRM2, and CDK1 as potential ret-
inoblastoma molecular biomarkers [126]. TTK, described 
as an oncogene that promotes tumor progression, was 
highly expressed in various cancers [127–129], making it 
a promising therapeutic target.

3D bioprinting technology
3D bioprinting technology is the inclusion of 3D printing 
into tissue engineering and regenerative medicine appli-
cations, allowing the rapid and reproducible fabrication 
of complex biomimetic tissues or organs in vitro, such as 
3D-bioprinted ventricles, corneal stroma, skin, bone, and 
cartilage tissue [130–133]. In recent years, the efficacy of 
3D tissue or organ structure printing has been markedly 
improved due to the rapid development of functional 
bio-inks.

Additionally, 3D bioprinting technology is also used 
for personalized modeling engineering to flexibly design 

the external shape and internal structure of an object. 
Despite advances in self-organizing retinal morphogen-
esis, patient-derived ROs are not currently optimal for 
testing candidate drugs or cell therapies. For example, 
ROs often vary in size and quality, contain some off-tar-
get tissues and their development may be inconsistent 
[82]. We previously used 3D-printed polydimethylsi-
loxane (PDMS) microwell platform for adherent ROs 
cultivation [103]. Unlike suspended ROs on ultralow 
adhesion microwell plates, iPSC-derived ROs on PDMS 
molds were confined to their respective microcavities but 
shared the same medium and microenvironment, which 
could not only avoid the fusion of multiple ROs but also 
ensure the long-term culture and survival of ROs, result-
ing in efficient and homogeneous ROs with fewer apop-
totic cells (Fig.  2). The PDMS microwell platform using 
3D bioprinting is envisaged to improve the robustness 
of in  vitro retinal organogenesis and standardization of 

Fig. 1  Future trends in the application of patient iPSC-derived ROs. Human organoid technology can be used for disease modeling, in-depth 
analysis of retinal pathogenesis in combination with multi-omics data, or biomimetic construction of retinal tissue in combination with 3D 
bioprinting and microfluidic chips
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ROs. However, guiding the proper spatial arrangement of 
photoreceptor cells for transplantation remains challeng-
ing. In 3D scaffolds, retinal progenitor cells harvested 
from dissociated ROs formed neuronal processes that 
extended into and aligned with scaffold vertical pores 
[134]. To precisely establish tissue structures in  vitro, 
strategies based on biomaterials similar to the extracel-
lular microenvironment have been developed to enhance 
cell characterization. Shrestha et  al. used two-photon 
polymerization to construct a hyaluronic acid (HA) and 
gelatin scaffold, enabling ECM-derived molecules to offer 
cellular support and retain significant vitality and prolif-
eration of rat retinal cells [135]. Furthermore, an immer-
sion bioprinting method produced patient-derived brain 
tumor organoids using HA and collagen bio-inks, where 

organoids embedded in the HA bath displayed homoge-
neous volume and geometry for subsequent anti-cancer 
drug studies [136].

Microfluidic chip platform
Organ-on-a-chip, such as microfluidic retina-on-a-chip 
models, is an emerging technology that allows the devel-
opment of novel platforms to simulate the complex struc-
ture and microenvironment of the retina in artificially 
controlled perfusion devices. Briefly, organ-on-a-chip 
includes the different cell types, structural organization, 
and microenvironment, usually separated by micropo-
rous membranes, offering the advantage of controlling 
cellular and multiorgan interactions exposed to cultural 
conditions. Multiple organ-on-a-chip systems that model 

Fig. 2  Self-organization of ROs from human iPSCs on a PDMS microwell platform. A Schematic diagram of manufacturing PDMS microwell molds, 
including (a) design and fabrication of 3D-printed positive molds, (b) addition of PDMS biomaterials, and (c) fabrication of complementary PDMS 
molds. B Immunofluorescence staining images of adherent 3D ROs. (a) Ciliary margin domain was stained with RDH10 (red). (b) Neural retina 
domain was stained with VSX2 (green) and eye field was stained with PAX6 (red). (c, d) RPE domain was stained with ZO-1 (green), MITF (red), 
and PRE65 (red). Nuclei were labeled with DAPI (blue). Scale bar: 50 µm. [103] Copyright Sun et al. 2023, Biofabrication
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the interface between RPE and photoreceptor cells, 
microvascular endothelium and RPE, microglia, and cer-
ebral organoids have been described [29, 137–139]. For 
example, a study utilized a microfluidic chip platform to 
co-culture iPSC-derived RPE cells and ROs, which gen-
erated the desired pattern, i.e., an outer retinal morphol-
ogy with vasculature-like perfusion [29] (Fig.  3). After 
a week of running the microfluidic retina-on-a-chip, it 
was revealed that photoreceptor calcium dynamics and 
digested outer segment-like structure signs, replicating 
retinal basic activities associated with the visual cycle. 
It was then evaluated with chloroquine and gentamicin, 
known to induce retinal damage, and the results revealed 
cell dysfunction and death [29]. Researchers recently 
analyzed the efficacy, kinetics, and cell tropism of seven 
different AAV vectors using the retina-on-a-chip plat-
form with satisfactory results [140]. First, they evalu-
ated the performance of different types of AAV vectors 
in mouse retinas and human iPSC-ROs. Significantly 
higher fluorescence expression was detected when deliv-
ered with the AAV2.7m8 vector, which is consistent 
with data reported by Dalkara et  al. from AAV2.7m8 
with highly efficient transduction in the retina of mice 
and non-human primates [141]. Subsequently, the same 
vector panel was applied to the retina-on-a-chip model, 
and the results showed that the AAV2.7m8 vector had 
stronger transduction signals and cell tropism compared 
to other AAV types. In addition, two recently developed 

second-generation AAV vectors, AAV2.NN and AAV2.
GL, were analyzed using the retina-on-a-chip platform 
and subsequently demonstrated their efficient transduc-
tion for rod and cone photoreceptors as well as Müller 
cells [140]. Many retinal diseases involve the outer lay-
ers of the retina, including RPE and photoreceptor cell 
layers. Thus, we hypothesize that IRD patient-specific 
retina-on-a-chip can replicate the corresponding physio-
logical tissue or organ microenvironment in vitro and has 
great potential as a tool for high-throughput pharmacol-
ogy and drug screening.

In addition to modeling the outer retina, two microflu-
idic organ-on-a-chip models of the outer blood-retinal 
barrier were reported [137, 142]. In one of the models, 
RPE and human umbilical vein endothelial cells were co-
cultured in a microfluidic chip with microchannels and 
an open-top culture chamber separated by a polyester 
membrane [142]. Upon inducing oxidative stress by treat-
ing with hydrogen peroxide, a dose-dependent increase 
in barrier permeability was observed by using a dynamic 
assay for fluorescence tracing, analogous to the clini-
cally used fluorescence angiography. This method allows 
semi-quantitative evaluation of the endothelial barrier 
by analyzing the slope of the fluorescence increase in the 
perfusion phase and qualitative assessment of lesions and 
defects by analyzing local fluorescent dye accumulation 
in the removal phase. They also found that optical coher-
ence tomography could detect changes in microvessel 

Fig. 3  Microfluidic retina-on-a-chip. A Photo and B schematic representation of ROs and RPE co-cultured in a microfluidic retina-on-a-chip model. 
C Immunofluorescence staining of ROM1 (green), phalloidin (white), and rhodopsin (red) was performed after 7 days of co-culture. Scale bar: 40 µm. 
D Electron microscope image. Scale bar: 5 µm. [29] Copyright Achberger et al. 2019, eLife
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diameter and quality after imaging 3D vascular struc-
tures generated by cells in the collagen I hydrogel chip. 
Another designed model consisted of an iPSC-derived 
RPE monolayer in the upper compartment and pri-
mary human retinal microvascular endothelial cells and 
choroidal fibroblasts in a hydrogel scaffold in the lower 
compartment, respectively [137]. After seven days, reti-
nal endothelial cells’ vasculogenic self-assembly devel-
oped into a dense network of microvessels approximately 
10 – 25 μm in diameter, enhancing the RPE phenotype, 
including intercellular tight junctions, laminin produc-
tion and deposition, RPE pigmentation, and RPE65 pro-
tein expression.

Conclusions
Human iPSCs and 3D organoid technology play a role in 
studying human organogenesis and development, dis-
ease modeling, drug screening, and preclinical therapies. 
Recently, the first human clinical trial using intestinal 
organoids to treat ulcerative colitis patients is ongoing 
in Japan (jRCTb032190207). In this paper, we reviewed 
the concept and sources of iPSCs, the recent research 
advancement of patient-derived iPSCs and organoids in 
IRDs, and the main challenges that need to be overcome 
in clinical application. Moreover, multi-omics integration 
analysis, 3D bioprinting technology, and microfluidic 
chip platform are further promising patient-derived ROs 
research avenues.

However, the lack of vascular networks, immune cells, 
continuous RPE monolayer, and the central nervous sys-
tem may limit RO generation and development. Co-cul-
ture systems for interaction between multi-organoids, 
or organoids with cells/spheroids, have been studied to 
address the constraints of traditional organoid cultiva-
tion [143–147]. Meanwhile, establishing an organoid 
culture system with standardized, high-throughput, and 
undifferentiated operations is required. Homogeneous 
organoids will simulate the complex organ structure 
and function, reproduce cell-to-cell communication and 
molecular features, and explore disease pathogenesis 
and treatment. Organoids from healthy individuals or 
patients can also provide a comprehensive evaluation of 
susceptibility across age, gender, and ethnicity, poten-
tially facilitating the implementation of personalized 
intervention strategies.
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