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Umbilical cord mesenchymal stromal 
cells in serum‑free defined medium display 
an improved safety profile
Xiaoyun Wu1,2,4,5, Zhijie Ma3, Yuxiao Yang4,6, Yongxu Mu2 and Daocheng Wu1*    

Abstract 

Background  Safety evaluations in preclinical studies are needed to confirm before translating a cell-based product 
into clinical application. We previously developed a serum-free, xeno-free, and chemically defined media (S&XFM–
CD) for the derivation of clinical-grade umbilical cord-derived MSCs (UCMSCs), and demonstrated that intraperito-
neal administration of UCMSCs in S&XFM–CD (UCMSCS&XFM−CD) exhibited better therapeutic effects than UCMSCs 
in serum-containing media (SCM, UCMSCSCM). However, a comprehensive investigation of the safety of intraperitoneal 
UCMSCS&XFM−CD treatment should be performed before clinical applications.

Methods  In this study, the toxicity, immunogenicity and biodistribution of intraperitoneally transplanted 
UCMSCS&XFM−CD were compared with UCMSCSCM in rats via general vital signs, blood routine, blood biochemistry, sub-
sets of T cells, serum cytokines, pathology of vital organs, antibody production and the expression of human-specific 
gene. The tumorigenicity and tumor-promoting effect of UCMSCS&XFM−CD were compared with UCMSCSCM in nude 
mice.

Results  We confirmed that intraperitoneally transplanted UCMSCS&XFM−CD or UCMSCSCM did not cause significant 
changes in body weight, temperature, systolic blood pressure, diastolic blood pressure, heart rate, blood routine, 
T lymphocyte subsets, and serum cytokines, and had no obvious histopathology change on experimental rats. 
UCMSCS&XFM−CD did not produce antibodies, while UCMSCSCM had very high chance of antibody production to bovine 
serum albumin (80%) and apolipoprotein B-100 (60%). Furthermore, intraperitoneally injected UCMSCS&XFM−CD were 
less likely to be blocked by the lungs and migrated more easily to the kidneys and colon tissue than UCMSCSCM. In 
addition, UCMSCS&XFM−CD or UCMSCSCM showed no obvious tumorigenic activity. Finally, UCMSCS&XFM−CD extended 
the time of tumor formation of KM12SM cells, and decreased tumor incidence than that of UCMSCSCM.

Conclusions  Taken together, our data indicate that UCMSCS&XFM−CD display an improved safety performance and are 
encouraged to use in future clinical trials.
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Introduction
Umbilical cord (UC) tissue is easily available and is thus a 
useful source of mesenchymal stromal cells (MSCs) [1, 2]. 
UC-derived MSCs (UCMSCs) show no significant varia-
tions between donors as they are obtained from newborn 
infants, thus lacking age-associated differences [3] and 
suggesting their suitability for cell-based treatments. Pos-
itive results have been obtained on the use of USMSCs 
in different in vivo studies, suggesting their potential for 
clinical applications [4]. However, questions have been 
raised on their safety, immunogenicity, biodistribution, 
and oncological implications in cases of previous malig-
nancy, as well as the use of allogeneic MSCs [5].

The UCMSCs used in preclinical trials are usually 
grown in media containing fetal bovine serum (FBS), in 
line with the preparation of clinical-grade MSCs [6, 7]. 
However, the use of FBS, an animal-derived product, has 
raised serious safety concerns associated with the poten-
tial transmission of unknown viruses and the induction 
of undesirable immunological reactions [8]. A further 
issue is that FBS is poorly defined, presenting difficulties 
for standardization, which may adversely affect the clini-
cal application of MSCs. There is also increasing concern 
regarding the regulation of animal sera in cell culture 
materials [9, 10]. In China, the quality control guidelines 
for the preparation of stem cells specify that animal sera 
should be avoided as far as possible, and encourage the 
use of serum-free media instead of serum-containing 
media (SCM) during the preparation of stem cells for 
clinical applications [11, 12]. In this regard, several stud-
ies have described commercially available serum-free 
media that can be used for isolating and growing MSCs 
(listed in Table 1 in our previous article [13]). However, 
these disclosed or commercial defined media cannot 
support large-scale expansion of UCMSCs in our labora-
tory. We have previously developed a serum-free, xeno-
free, and chemically defined medium (S&XFM–CD) for 
the derivation of clinical-grade UCMSCs that contains 

nutrients, hormones, minerals, and growth factors (see 
Patent No. CN. ZL201210350602.0 and [13]). A previous 
study confirmed the superiority of delivery by intraperi-
toneal, rather than intravenous or anal injection, show-
ing higher numbers of MSCs after delivery and better 
recovery from experimental colitis, suggesting that this 
might be the best route for delivering MSCs during coli-
tis treatment [14]. Furthermore, we demonstrated that 
intraperitoneal delivery of UCMSCs in S&XFM–CD 
medium (UCMSCS&XFM−CD) was therapeutically more 
effective than the administration of UCMSCs in SCM 
(UCMSCSCM), shown by the enhancement of mac-
rophage polarization from the proinflammatory M1 to 
anti-inflammatory M2 stages in an experimental model 
of acute colitis [15]. Furthermore, no transformation 
was observed in UCMSCS&XFM−CD and both the normal 
karyotype and genome were preserved, allowing their 
successful long-term culture in  vitro [13]. However, the 
safety of using UCMSCs in serum-free medium remains 
debatable due to infrequent safety analyses and a lack of 
comprehensive tests. In addition, the safety of intraperi-
toneal delivery of UCMSCS&XFM−CD requires in-depth 
evaluation before this strategy can be translated into clin-
ical application. Safety is critical for clinical applications 
of cell-based products [2], and the safety of these prod-
ucts thus need to be thoroughly evaluated in both pre-
clinical and in vitro assessments [16].

Potential adverse events related to MSC use, including 
the risk of biodistributed, immunological, and oncologi-
cal safety concerns, have received increasing attention in 
the last decade [17]. In addition, differences in cell cul-
ture condition may affect MSC characteristics, which 
may influence their safety, biological actions, and thera-
peutic effectiveness [18]. Biosafety analyses related 
to biodistribution, tumor-promoting effects, and the 
immunological consequences of UCMSCS&XFM−CD and 
UCMSCSCM administration require further comparison 
and evaluation. Hence, in this study, we compared the 

Table 1  Vital sign assessment

Data are expressed as mean ± SD

SBP systolic blood pressure, DBP diastolic blood pressure, HR heart rate, BPM beats per minute

Compared with the PBS group, P ≥ 0.05, compared with the UCMSCSCM group, P ≥ 0.05

Parameters Day 14 Day 35

PBS UCMSCSCM UCMSCS&XFM−CD PBS UCMSCSCM UCMSCS&XFM−CD

Weight (g) 279.75 ± 55.15 281.38 ± 53.40 279.63 ± 58.08 303.63 ± 63.59 308.25 ± 66.30 309.38 ± 67.94

Temperature (°C) 38.08 ± 0.23 38.26 ± 0.30 38.36 ± 0.35 38.1625 ± 0.41 38.3 ± 0.30 38.2625 ± 0.23

SBP (mmHg) 107.42 ± 6.22 114.22 ± 6.95 109.10 ± 11.52 108.69 ± 8.20 113.36 ± 5.18 115.71 ± 5.08

DBP (mmHg) 73.27 ± 4.05 77.33 ± 6.12 74.36 ± 7.07 74.81 ± 7.02 76.96 ± 4.36 79.33 ± 4.16

HR (BPM) 379.22 ± 35.90 377.72 ± 26.91 369.17 ± 23.11 373.00 ± 32.10 370.50 ± 28.59 380.22 ± 11.41
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differences in safety-related biological characteristics 
between UCMSCS&XFM−CD and UCMSCSCM such as tox-
icity, immunogenicity, biodistribution, tumorigenicity, 
and tumor-promoting effects, and comprehensively eval-
uated the biosafety of UCMSCS&XFM−CD.

Materials and methods
UCMSCs isolation
Human umbilical cord tissue was obtained at the First 
Affiliated Hospital of Baotou Medical College from a full-
term healthy infant delivered after a cesarean section, 
whose mother had signed an informed consent form 
and the procedure was approved by the Medical Ethics 
Committee of Baotou Medical College (No: 2021-033). 
Isolation and culture of UCMSCs were performed as pre-
viously described [19]. Briefly, the UC was rinsed with 
sterile phosphate-buffered saline (PBS) to remove any 
remaining blood, and the vessels were separated from 
the cord segments. After thorough washing with PBS, 
Wharton’s jelly was initially chopped and then sliced into 
pieces (0.5‒1 mm) which, following removal of the cord 
segments, were incubated for five days in either S&XFM–
CD or SCM (IMDM with 10% FBS) at 37 °C and 5% CO2. 
Approximately half of the culture medium was replaced 
every two to three days. UCMSCs were passaged when 
80‒90% confluent to densities of 3000 cells/cm2.

Flow cytometry
UCMSCS&XFM−CD and UCMSCSCM from the fifth passage 
were harvested, resuspended as single-cell suspensions, 
and incubated (1  h, 4  °C, in the dark) with commercial 
antibodies against CD14, CD19, CD29, CD34, CD44, 
CD45, CD73, CD90, CD105, and HLA-DR. The antibody 
details are provided in Additional file 1: Table S1 (all rea-
gents were from BD). A FACSCalibur flow cytometer 
(Becton Dickinson, Franklin Lakes, NJ, USA) was used 
with data analysis with CellQuest Pro 3.7 software (Bec-
ton Dickinson).

In the animal experiments, blood samples were taken 
from the orbital venous plexus of the rats. After isola-
tion, mononuclear cells were incubated as above with 
commercial antibodies against CD3, CD4, and CD8 (all 
reagents were from BD, Additional file 1: Table S1). The 
proportions of CD3+, CD4+, and CD8+ T cells, and the 
CD4+/CD8+ T cell ratios were analyzed on the flow 
cytometer as above.

Lineage differentiation and staining
UCMSCS&XFM−CD and UCMSCSCM at passage 5 were 
differentiated into adipocytes, osteocytes, and chondro-
cytes. Histochemistry was performed as described previ-
ously [20] (All reagents were from Cyagen, Guangzhou, 
China).

Animal experiments
All animals were provided and raised by the Experi-
mental Animal Center of the First Affiliated Hospital 
of Baotou Medical College, with 12-h light–dark cycle 
and free access to food and water. All animal opera-
tions were approved by the Ethics Committee of Bao-
tou Medical College (No: 2021-033) and followed the 
guidelines for the care and use of experimental animals 
of the National Institutes of Health. Then the animals 
were euthanized by intraperitoneal injection of pento-
barbital sodium (180 mg/kg), and the follow-up experi-
ments were carried out.

Toxicity, immunogenicity, and biodistribution assays
15 six-week-old male Sprague–Dawley (SD) rats 
(weighing 200 ± 20  g) were randomly divided into 
three groups, with 5 rats in each group. Of these, the 
UCMSCS&XFM−CD and UCMSCSCM groups received 
respective doses of UCMSCS&XFM−CD and UCMSCSCM 
(2 × 106 cells/kg body weight) suspended in 0.5 mL PBS 
via intraperitoneal injection once at the beginning of 
the study, and the PBS group received 0.5 mL of PBS.

Antibody detection experiments
Rats received intraperitoneal injections of 
UCMSCS&XFM−CD or UCMSCSCM (2 × 106 cells/kg 
body weight) in 0.5  ml of PBS (n = 5/group). Further 
injections were given weekly for the subsequent three 
weeks. Blood samples for antibodies against bovine 
serum albumin (BSA) and apolipoprotein B-100 (apoB-
100) were collected before the injections and one week 
following the last injection.

Tumorigenicity assay
20 six-week-old male nude mice (weighing 20 ± 2  g) 
were randomly assigned to three groups, with 5 mice 
in each group. The groups received single subcutane-
ous inoculations of UCMSCS&XFM−CD, UCMSCSCM, 
and human colon cancer KM12SM cells (2 × 106 cells/
mouse), respectively, into the lateral trunk region. The 
mice were checked twice a week thereafter for tumor 
growth (for 3 months).

Tumor‑promoting assay
Nude mice as above were randomly divided into 
three groups. Single subcutaneous inoculations of 
KM12SM cells (2 × 106 cells/mouse) were given into 
the lateral trunk region alone or in conjunction with 
UCMSCS&XFM−CD or UCMSCSCM at a 1:1 ratio. After 
inoculation, the mice were observed twice a week 
for tumor growth. After sacrifice, the tumors were 
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weighed and the volumes were calculated as ½ × minor 
axis2 × major axis.

General vital sign detection
The vital signs of the rats, including anal temperature, 
weight, blood pressure, and heart rate were observed and 
recorded. The injection sites were checked, anal tempera-
tures were measured with thermometer (Ji Nuo Tai Tech-
nology, Beijing, China), and the blood pressure and heart 
rates with a Softron 2006A meter (Softron Biotechnol-
ogy, Beijing, China).

Blood routine and biochemical index detection
Blood samples were collected from orbital venous plexus, 
and performed to detect and compare blood routine and 
biochemical indexes by using the kits (Jiancheng, Nan-
jing, China).

Enzyme‑linked immunosorbent assays
Blood was collected and assayed for antibodies against 
BSA and apoB-100 by ELISA (Absin, Shanghai, China) 
as previously described [8, 21]. Interferon (IFN)-γ, tumor 
necrosis factor (TNF)-α, interleukin (IL)-4, and IL-6 lev-
els in serum were also measured by ELISA (Neobiosci-
ence, Shenzhen, China).

Histological analysis
Fixed tissues (lung, liver, kidney, heart, testis, and colon) 
were paraffin-embedded, sectioned (5  µm), and stained 
with hematoxylin and eosin. The stained sections were 
observed by a blinded histopathologist under light 
microscopy to check for pathological changes.

qRT‑PCR
Standard curves for the assessment of the biodistribu-
tion of UCMSCS&XFM−CD and UCMSCSCM were gener-
ated by administering serial dilutions of UCMSCs to 
mouse tissues. UCMSCs (2 × 10, 2 × 102, 2 × 103, 2 × 104, 
or 2 × 105) were added to the whole mouse tissues prior 
to homogenization. Total RNA was extracted from the 
hearts, brains, lungs, livers, kidneys, spleens, quadri-
ceps, and iliac marrow of the rats using TRIzol reagent 
(Invitrogen, USA) and reverse-transcribed to cDNA 
using the QuantiTect Reverse Transcription Kit (Qiagen, 
Germany). The cDNA was amplified by qRT-PCR using 
Platinum SYBR Green PCR Mix (Invitrogen, USA) and a 
7700 Sequence Detector (Applied Biosystems, USA) with 
human and mouse GAPDH primers (Human GAPDH 
primers: Forward primer, TGC TTT TAA CTC TGG 
TAA AGT GGA TA; Reverse primer, GTG GAA TCA 
TAT TGG AAC ATG TAA AC. Mouse GAPDH primers: 
forward primer, CAG CGA CAC CCA CTC CTC CAC 

CTT; reverse primer, CAT GAG GTC CAC CAC CCT 
GTT GCT).

Statistical analysis
The data were presented as mean ± standard deviation 
(SD). Differences between two groups were analyzed by 
t-tests and those between multiple groups by one-way 
analysis of variance (ANOVA) followed by Tukey’s mul-
tiple comparisons tests. P < 0.05 was considered statisti-
cally significant. Data were analyzed using SPSS 17.0 
(SPSS, IL, USA).

Results
Characterization of UCMSCS&XFM−CD and UCMSCSCM

While both UCMSCS&XFM−CD and UCMSCSCM exhib-
ited the essential fibroblast-like structure of MSCs, 
UCMSCS&XFM−CD appeared slender and bright (Fig. 1A). 
As shown by flow cytometry, both cell types showed high 
levels (> 95%) of CD29, CD44, CD73, CD90, and CD105 
but poor expression (< 2%) of the CD14, CD19, CD34, 
CD45, and HLA-DR surface antigens (Fig. 1B). The abili-
ties of UCMSCS&XFM−CD and UCMSCSCM to differentiate 
into osteocytes, chondrocytes, and adipocytes were con-
firmed by Alizarin Red, Alcian Blue, and Oil Red-O stain-
ing, respectively (Fig. 1C).

Toxicity evaluation of UCMSCS&XFM−CD and UCMSCSCM

To evaluate potential toxic effects, rats received intra-
peritoneal injections of UCMSCSCM, UCMSCS&XFM−CD, 
or PBS followed by assessments on days 14 and 35. The 
rats in all three groups survived. The vital signs, including 
body weight, temperature, heart rate, and blood pressure 
(both systolic and diastolic) of rats in the UCMSCSCM and 
UCMSCS&XFM−CD groups were not significantly different 
from those in the PBS group at days 14 and 35 after cell 
transplantation (Table 1). Compared with the PBS group, 
alkaline phosphatase levels were significantly increased 
in the UCMSCSCM group on the 14th day (P < 0.05), 
but no changes were observed in the UCMSCS&XFM−CD 
group (Table 2). Albumin, urea nitrogen, and glucose in 
both the UCMSCSCM and UCMSCSCM groups were sig-
nificantly increased (all P < 0.05), while there were no 
significant changes in other blood biochemical indices 
(Table 2). On day 35, none of the blood biochemical indi-
ces in the UCMSCS&XFM−CD and UCMSCSCM groups dif-
fered significantly from those in the PBS group (Table 2). 
Microscopic diagnosis showed no obvious histopatholog-
ical changes associated with MSCs in the six tissues ana-
lyzed (lung, liver, kidney, heart, testis, and colon) in the 
UCMSCS&XFM−CD and UCMSCSCM groups (Fig. 2).
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Fig. 1  The characterization analysis of UCMSCS&XFM−CD and UCMSCSCM. A Morphology characteristics of UCMSCS&XFM−CD and UCMSCSCM. Scale 
bar = 100 μm. B Flow cytometry revealed that UCMSCS&XFM−CD and UCMSCSCM showed high expression of CD29, CD44, CD73, CD90 and CD105, 
but lacked expression of CD14, CD19, CD34, CD45 and HLA-DR surface antigens. C Representative images of osteogenic, chondrogenic, 
and adipogenic differentiation of UCMSCS&XFM−CD and UCMSCSCM after specific inductions and staining. Scale bars = 100 μm
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Immunogenicity of UCMSCS&XFM−CD and UCMSCSCM

No significant changes were observed in the routine 
blood measurements between the UCMSCSCM and 
UCMSCS&XFM−CD groups compared with the PBS group 
on days 14 and 35 (Table 3). The CD3+, CD4+, and CD8+ 
T lymphocyte proportions and CD4+/CD8+ ratios in 
the UCMSCS&XFM−CD group were not significantly dif-
ferent from those in the UCMSCSCM group (Table  4). 
One rat was found to be positive for serum IFN-γ in the 
UCMSCSCM group but no IFN-γ positivity was observed 
in the PBS and UCMSCS&XFM−CD groups. All rats were 
negative for IL-4 and IL-10, and the serum TNF-α level 
did not change in the UCMSCSCM group relative to the 
PBS group (Table  5). All rats were evaluated for the 
production of antibodies binding to BSA and apoB-
100. As expected, no antibodies were detected in the 
UCMSCS&XFM−CD group on days 21, 28, and 35. While 
in the UCMSCSCM group, one, three and four rats had 
developed antibody against BSA on days 21, 28, and 35, 
and one, two and three rats for antibody against apoB-
100, respectively (Table 6).

Biodistribution of UCMSCS&XFM−CD and UCMSCSCM

Previously, we found that intraperitoneal injection of 
both UCMSCS&XFM−CD and UCMSCSCM resulted in 
minimal recruitment and persistence of the cells in the 
colon after 72  h, shown by fluorescence imaging [15]. 
For further tracking and quantification of UCMSCs, 
UCMSCS&XFM−CD, and UCMSCSCM (2 × 106 cells) after 
intraperitoneal injection, the lungs, kidneys, livers, tes-
tes, hearts, and colons of the mice were collected at 
24 and 72  h after transplantation and were quantified 

by qRT-PCR measurements and the construction of 
standard curves, as described previously [22]. Both 
UCMSCS&XFM−CD and UCMSCSCM were observed in the 
hearts, lungs, livers, testes, kidneys, and colons, and a 
large number of injected cells were blocked in the lungs 
at 24  h after intraperitoneal injection in both groups 
(Fig. 3A). Then, the number of UCMSCS&XFM−CD blocked 
in the lungs quickly decreased, and significantly fewer 
UCMSCS&XFM−CD than UCMSCSCM were in the lungs at 
72 h after injection (P < 0.05, Fig. 3B, C). However, more 
UCMSCS&XFM−CD than UCMSCSCM retained in the kid-
neys and colon (both P < 0.05–0.01, Fig. 3B, C).

Tumorigenic potential of UCMSCS&XFM−CD and UCMSCSCM

Mice inoculated with the KM12SM cell line formed pro-
gressive nodules at the injection site, which were found 
after sacrifice to cover a macroscopic tumor. The mice 
treated with UCMSCSCM, UCMSCS&XFM−CD, or PBS 
showed no clinical signs during the experimental period 
(Fig. 3D).

Tumor‑promoting effect of UCMSCS&XFM−CD and UCMSCSCM

We next investigated the role of UCMSCS&XFM−CD and 
UCMSCSCM on tumor growth in nude mice. Subcutane-
ous injections of 2 × 106 KM12SM cells were given into 
the right flanks of the mice, together with equal numbers 
of UCMSCS&XFM−CD or UCMSCSCM. The control group 
was injected with PBS only. Co-injection of KM12SM 
cells with UCMSCSCM reduced the time taken for tumor 
formation to 13 days compared with 15 days in the group 
co-injected with UCMSCS&XFM−CD and 21  days in the 
PBS group (Fig.  4A). UCMSCSCM also increased the 

Table 2  Biochemical indicators test

Data are expressed as mean ± SD

ALT alanine transaminase, AST aspartate aminotransferase, ALP alkaline phosphatase, TBIL total bilirubin, TP total protein, ALB albumin, BUN blood urea nitrogen, Cr 
crea, TG triglyceride, TC total cholesterol, GLU glucose

*P < 0.05 vs PBS group

Parameters Day 14 Day 35

PBS UCMSCSCM UCMSCS&XFM−CD PBS UCMSCSCM UCMSCS&XFM−CD

ALT (U·L−1) 33.36 ± 6.24 34.64 ± 5.56 33.44 ± 6.19 33.50 ± 5.95 29.22 ± 5.05 28.70 ± 6.08

AST (U·L−1) 86.70 ± 15.78 88.38 ± 16.28 97.55 ± 16.57 86.39 ± 19.1 90.93 ± 15.19 84.28 ± 16.16

ALP (U·L−1) 103.04 ± 12.41 130.27 ± 24.65* 123.38 ± 29.76 95.12 ± 7.22 97.53 ± 19.1 92.01 ± 11.6

TBIL (µmol·L−1) 4.19 ± 1.23 5.27 ± 1.51 5.36 ± 1.32 4.1 ± 1.27 97.53 ± 19.1 5.04 ± 1.21

TP (mg·L−1) 494.8 ± 12.28 486.13 ± 11.92 485.77 ± 14.12 483.28 ± 10.95 482.57 ± 13.25 482.53 ± 22.48

ALB (g·L−1) 30.38 ± 2.65 38.45 ± 1.26* 34.48 ± 2.35* 32.01 ± 3.76 35.05 ± 1.98 33.22 ± 1.87

BUN (mmol·L−1) 10.17 ± 0.57 11.47 ± 1.27* 11.31 ± 1.18* 9.68 ± 0.64 10.31 ± 0.97 9.58 ± 0.88

Cr (µmol·L−1) 19.33 ± 3.58 19.65 ± 1.59 16.51 ± 2.32 18.09 ± 3.77 19.23 ± 3.45 20.05 ± 3.31

TG (mmol·L−1) 2.29 ± 0.69 2.44 ± 0.43 3.05 ± 0.25 2.41 ± 0.53 2.41 ± 0.58 2.78 ± 0.55

TC (mmol·L−1) 2.06 ± 0.23 2.12 ± 0.24 2.3 ± 0.34 2.1 ± 0.36 2.39 ± 0.34 2.21 ± 0.2

GLU (mmol·L−1) 3.69 ± 0.73 4.86 ± 0.46* 4.62 ± 0.6* 4.47 ± 0.68 4.81 ± 0.43 4.91 ± 0.19
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incidence of tumor development in the mice to 90% com-
pared with 80% in mice co-injected with UCMSCS&XFM−
CD and 50% in the PBS group (Fig. 4A). However, neither 
the weights nor volumes of the tumors differed signifi-
cantly between the UCMSCS&XFM−CD and UCMSCSCM 
groups (Fig. 4B–D).

Discussion
The evaluation of the safety of UCMSCs, including 
assessment of toxicity, abnormal immunological reac-
tions, biodistribution, and tumorigenicity, is a major 
focus in the development of “cell-based therapies” [23]. 

UCMSCs cultured in FBS or platelet lysates have been 
increasingly shown to be safe without deterioration 
[24–26]. However, the usage of FBS or platelet lysates 
makes standardization of cell manufacturing process 
difficult because of the poorly defined nature. The use 
of S&XFM–CD, as an ideal cell culture medium for 
cell therapy, has been proposed to replace SCM dur-
ing the preparation of stem cells [10]. In this study, 
we demonstrated that intraperitoneally transplanted 
UCMSCS&XFM−CD did not cause significant changes in 
general vital signs, histopathology, routine blood indi-
ces, T lymphocyte subsets, and serum cytokine levels, 

Fig. 2  Toxicity evaluation of UCMSCS&XFM−CD and UCMSCSCM. H&E-stained lung, liver, kidney, heart, testicle and colon in PBS, UCMSCS&XFM−CD 
or UCMSCSCM group for 28 days. Images were captured at magnification of 10×
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and showed no obvious tumorigenic activity in experi-
mental rats. Furthermore, UCMSCS&XFM−CD did not 
result in the production of anti-BSA and apoB-100 

antibodies, in contrast to UCMSCSCM which has a very 
high chance of producing antibodies to BSA (80%) 
and apoB-100 (60%). In addition, UCMSCS&XFM−CD 

Table 3  Blood routine test

Data are expressed as mean ± SD

RBC red blood cells, WBC white blood cells, PLT platelets, Hb haemoglobin, NEUTRO neutrophils, LYM lymphocyte

Compared with the PBS group, P ≥ 0.05, compared with the UCMSCSCM group, P ≥ 0.05

Parameters Day 14 Day 35

PBS UCMSCSCM UCMSCS&XFM−CD PBS UCMSCSCM UCMSCS&XFM−CD

RBC (× 1012⋅L-1) 7.12 ± 0.62 7.02 ± 0.32 7.15 ± 0.41 7.38 ± 0.98 7.42 ± 0.79 7.82 ± 0.96

WBC (× 109⋅L-1) 6.91 ± 2.16 6.25 ± 1.87 7.18 ± 1.74 7.19 ± 1.51 6.81 ± 1.42 7.25 ± 1.34

PLT (× 109⋅L-1) 930.50 ± 111.5 1001.88 ± 66.35 860.13 ± 66.88 995.13 ± 88.49 10175.50 ± 65.90 992.13 ± 139.39

Hb (g⋅L-1) 135.50 ± 12.82 136.50 ± 7.03 135.50 ± 5.24 126.13 ± 7.62 128.25 ± 8.05 129.88 ± 7.36

NEUTRO (× 109⋅L-1) 0.59 ± 0.16 0.61 ± 0.18 0.65 ± 0.26 0.75 ± 0.36 0.75 ± 0.36 0.65 ± 0.31

LYM (× 109⋅L-1) 4.79 ± 1.59 4.06 ± 0.40 6.46 ± 2.44 7.40 ± 2.01 6.90 ± 2.10 6.99 ± 2.10

Table 4  The sub-population of T-cells

Data are expressed as mean ± SD; Compared with the PBS group, P ≥ 0.05, compared with the UCMSCSCM group, P ≥ 0.05

Parameters Day 14 Day 35

PBS UCMSCSCM UCMSCS&XFM−CD PBS UCMSCSCM UCMSCS&XFM−CD

CD3+ 66.39 ± 7.97 68.33 ± 9.05 70.21 ± 10.69 67.48 ± 11.07 68.51 ± 9.34 69.65 ± 8.97

CD3+CD4+ 35.42 ± 5.52 33.14 ± 4.08 34.26 ± 2.99 36.35 ± 6.85 34.32 ± 7.04 37.15 ± 4.07

CD3+CD8+ 20.37 ± 3.64 24.61 ± 7.61 22.74 ± 5.06 22.08 ± 4.02 23.09 ± 5.72 21.84 ± 4.48

CD4/CD8 1.74 ± 0.52 1.35 ± 0.54 1.5 ± 0.59 1.65 ± 0.70 1.48 ± 0.23 1.70 ± 0.91

Table 5  Cytokine levels

Data are expressed as mean ± SD

*One mouse which was positive for IFN-γ in the UCMSCSCM group. Compared with the PBS group, P ≥ 0.05, compared with the UCMSCSCM group, P ≥ 0.05

Parameters Day 14 Day 35

PBS UCMSCSCM UCMSCS&XFM−CD PBS UCMSCSCM UCMSCS&XFM−CD

IFN-γ (pg/ml) Not detected Not detected* Not detected Not detected Not detected Not detected

TNF-α (pg/ml) 5.15 ± 2.23 7.86 ± 3.09 6.74 ± 2.38 4.93 ± 3.09 7.64 ± 2.67 6.62 ± 2.48

IL-4 (pg/ml) Not detected Not detected Not detected Not detected Not detected Not detected

IL-10 (pg/ml) Not detected Not detected Not detected Not detected Not detected Not detected

Table 6  Incidence of antibody to BSA and apoB-100

The incidence of antibody was presented by the no. of rats which were positive for antibody/the no. of rats which were measured in all

Parameters Day 21 Day 28 Day 35

UCMSCSCM UCMSCS&XFM−CD UCMSCSCM UCMSCS&XFM−CD UCMSCSCM UCMSCS&XFM−
CD

Anti-BSA 1/5 0/5 3/5 0/5 4/5 0/5

Anti-apoB-100 1/5 0/5 2/5 0/5 3/5 0/5
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Fig. 3  Migration and tumorigenic potential of UCMSCS&XFM−CD and UCMSCSCM. Percentages of UCMSCSCM or UCMSCS&XFM−CD in lung, kidney, liver, 
testicle, heart, and colon at 24 (A) and 72 h (B) after intraperitoneally injection. C The fold decrease in the number of UCMSCS&XFM−CD and UCMSCSCM 
in each organ from 24 to 72 h. D Representative images of tumorigenic activity of UCMSCS&XFM−CD and UCMSCSCM

Fig. 4  Tumor-promoting effect of UCMSCS&XFM−CD and UCMSCSCM. A Kaplan–Meier curve. The weights B and volumes C of the excised tumors 
between the UCMSCS&XFM−CD and UCMSCSCM groups. D Representative images of the excised tumors between the UCMSCS&XFM−CD and UCMSCSCM 
groups
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extended the time taken for KM12SM cell tumor for-
mation and decreased the tumor incidence compared 
with UCMSCSCM. Finally, intraperitoneally injected 
UCMSCS&XFM−CD were less likely to be blocked by 
the lungs and migrated more easily to the kidneys and 
colon than UCMSCSCM and had almost disappeared 
72 h after transplantation. Thus, these findings indicate 
that UCMSCS&XFM−CD displayed an improved safety 
performance.

Although the levels of albumin, urea nitrogen, 
and glucose sugar were significantly elevated in the 
UCMSCS&XFM−CD group at day 14, the levels of these 
indicators are still within the reference range [27, 28]. 
According to the general guidelines for clinicopathologi-
cal data analysis, clinicopathological parameters cannot 
be evaluated in isolation, and damage to organs is only 
likely when the activities or concentrations of these indi-
cators are higher than twice the normal upper limit [28, 
29]. Moreover, no significant differences were shown 
between the UCMSCS&XFM−CD and UCMSCSCM group, 
suggesting that the changes in blood biochemical indices 
caused by the intraperitoneal administration of UCM-
SCs were independent of the cell culture conditions. In 
addition, the levels of these three indicators did not dif-
fer significantly between the UCMSCS&XFM−CD and PBS 
groups on day 35. This indicates that changes in blood 
biochemical indices resulting from transplantation of 
UCMSCs into the abdominal cavity occur over a period 
of time, and that the indicators will gradually return to 
normal over time.

Intraperitoneally administered UCMSCS&XFM−CD did 
not induce immune changes, including alterations in the 
levels of routine blood indices, inflammatory cytokines, 
and T-cell sub-populations, which is consistent with 
the low expression of HLA-DR in UCMSCS&XFM−CD 
[13]. This suggested low immunogenicity of the alloge-
neic UCMSCs in S&XFM–CD, as they did not cause 
alloimmune reactions. Alloantibodies can also result 
from exposure to FBS [8, 30] and MSCs are often grown 
in medium containing FBS. Uptake of FBS by MSCs 
has been observed, together with the presence of FBS 
components on the cell surfaces [31]. It has also been 
reported that anti-BSA antibodies interfered with the 
efficacy of treatment [32] and an animal study observed 
marked humoral responses after administration of MSCs 
cultured in 20% FBS [31]. UCMSCSCM thus have a very 
high chance of inducing antibody production, while no 
antibodies are produced in UCMSCS&XFM−CD due to the 
absence of animal-derived ingredients. This is easy to 
understand as serum-free media have no animal-derived 
components. This feature of UCMSCS&XFM−CD is thus a 
great advantage in clinical applications, especially for 
repeat infusions.

The in  vivo distribution of MSCs is closely related to 
the transplantation route [33]. The distribution of MSCs 
after intravenous infusion has been reported in many 
studies [34, 35]. A previous study confirmed that deliv-
ery by intraperitoneal injection resulted in greater MSC 
distribution and better recovery from experimental coli-
tis than either intravenous or anal injections [14], and 
intraperitoneally administered UCMSCS&XFM−CD showed 
greater therapeutic efficacy than UCMSCSCM. Interest-
ingly, we found that intraperitoneal infusion resulted 
in a similar cell distribution to intravenous infusion, 
such as lung preference within 24  h, but changing to a 
gradual predominance of kidney and colon distribution 
at 48  h [36]. We found that intraperitoneally injected 
UCMSCS&XFM−CD are less likely to be blocked by the 
lungs, which might reduce the risk of vascular embo-
lism. The lung is the organ in which the injected cells 
are blocked most heavily compared with other organs 
and pulmonary complications are more likely to be 
life-threatening. This is related to the size of the cells, 
consistent with the findings of previous studies [24]. 
However, it is inconsistent with low expression of SDF-1 
in UCMSCS&XFM−CD [13, 37], suggesting that cell size 
plays a greater role than SDF-1 expression. Of course, 
other unknown factors cannot be ruled out. In addition, 
UCMSCS&XFM−CD migrated more easily to the colon than 
UCMSCSCM, which may be related to the intraperitoneal 
injection route. This may be more beneficial for colitis. 
Although more UCMSCS&XFM−CD migrated to the kid-
neys in our study, in view of the differences about cell 
homing in healthy and colitis rats, more experiments are 
still needed to further confirm the distribution of cells 
in colitis rats. In this study, we used normal rats with 
normal immune function, while most of the patients in 
the clinic would have abnormal immune function, espe-
cially immune-related diseases. Thus, the life span and 
migration rate of UCMSCs may differ between the nor-
mal and injured colon due to the inflammatory micro-
environment, and the secretion of inflammatory factors 
may attract UCMSCs homing to and staying in the injury 
area, which is supported by our previous findings [15].

Although there is still controversy surrounding the 
ability of MSCs to induce tumors, some studies have 
indicated that MSCs can indeed induce both tumor 
development and metastasis [38, 39]. The develop-
ers of cell therapy products are required to conduct 
tumor-promoting tests and consult with regulators. 
Our results show that UCMSCS&XFM−CD have a lower 
tumor-promoting effect than UCMSCSCM. We speculate 
that this may be due to the reduced release of SDF-1 by 
UCMSCS&XFM−CD [13, 40]. However, our previous results 
showed that UCMSCS&XFM−CD expressed high levels of 
PDGF and IGF-1 [13], and it has been found that these 
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cytokines enhance MSC-mediated tumor promotion 
[41, 42]. This finding conflicts with our results and may 
be the consequence of different cell sources [43], differ-
ent culture conditions, or different tumors [44, 45]. In 
short, UCMSCS&XFM−CD have low tumor-promoting abil-
ity, which would likely increase the use of cells. However, 
further research on the exact mechanism underlying the 
reduced tumor-promoting effect is needed.

Conclusions
In conclusion, the present study provided evidence that 
UCMSCS&XFM−CD display an improved safety perfor-
mance. In combination with our previous reports that 
UCMSCS&XFM−CD are more effective in promoting recov-
ery from experimental colitis [13, 15], we encourage the 
use of UCMSCS&XFM−CD in future clinical trials.
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