Yan et al. Stem Cell Research & Therapy (2024) 15:3 Stem Ce” Research & Thera py
https://doi.org/10.1186/s13287-023-03620-0

. . . . o‘)
Progress and application of adipose-derived =

stem cells in the treatment of diabetes and its
complications

Dongxu Yan'", Yujie Song?", Bing Zhang?, Guojie Cao', Haitao Zhou', Hong Li', Hao Sun', Meng Deng',
Yufeng Qiu', Wei Yi? and Yang Sun'"

Abstract

Diabetes mellitus (DM) is a serious chronic metabolic disease that can lead to many serious complications, such

as cardiovascular disease, retinopathy, neuropathy, and kidney disease. Once diagnosed with diabetes, patients need
to take oral hypoglycemic drugs or use insulin to control blood sugar and slow down the progression of the disease.
This has a significant impact on the daily life of patients, requiring constant monitoring of the side effects of medica-
tion. It also imposes a heavy financial burden on individuals, their families, and even society as a whole. Adipose-
derived stem cells (ADSCs) have recently become an emerging therapeutic modality for DM and its complications.
ADSCs can improve insulin sensitivity and enhance insulin secretion through various pathways, thereby alleviating
diabetes and its complications. Additionally, ADSCs can promote tissue regeneration, inhibit inflammatory reac-
tions, and reduce tissue damage and cell apoptosis. The potential mechanisms of ADSC therapy for DM and its
complications are numerous, and its extensive regenerative and differentiation ability, as well as its role in regulating
the immune system and metabolic function, make it a powerful tool in the treatment of DM. Although this technol-
ogy is still in the early stages, many studies have already proven its safety and effectiveness, providing new treat-
ment options for patients with DM or its complications. Although based on current research, ADSCs have achieved
some results in animal experiments and clinical trials for the treatment of DM, further clinical trials are still needed
before they can be applied in a clinical setting.

Keywords Adipose-derived stem cells, Cell therapy, Diabetes mellitus, Complications, Diabetic wounds, Retinopathy,
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Background

Diabetes mellitus (DM) is an endocrine disease that is
prevalent worldwide, and its incidence has been rapidly
increasing in recent years. According to the World Health
Organization, DM is expected to affect over 693 million
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chronic microvascular disease and macrovascular ath-
erosclerosis [3, 4]. The disease can affect multiple organs
and systems in the body and it is a leading cause of pre-
mature death [5]. The occurrence of DM is caused by the
combined effects of genetic and environmental factors
[6, 7]. DM is a complex condition that can be broadly
categorized into four types based on its etiology: type
1 diabetes mellitus (T1DM), type 2 diabetes mellitus
(T2DM), gestational diabetes, and other types of diabe-
tes [8]. Currently, the treatment of DM primarily relies
on administration of exogenous insulin or oral intake of
hypoglycemic drugs. However, these methods can only
alleviate the symptoms of patients and cannot cure DM
completely [9]. Therefore, once diagnosed with DM,
patients need to continuously take medication or use
insulin to control blood sugar, alleviate symptoms, and
prevent disease progression [10]. This has a multifaceted
impact on the daily life of patients, not only requiring
them to constantly monitor the side effects and risks of
hypoglycemic drugs but also inflicting a heavy economic
burden to their families and society [11]. Therefore,
exploring alternative treatments for DM and maintaining
their therapeutic effects is necessary.

Various diseases can be treated with stem cells because
of their ability to self-renew, differentiate into other cell
types, and regulate immunity. There is an ongoing ethi-
cal debate surrounding the procurement and utilization
of embryonic stem cells [12]. Compared with other stem
cells, the adipose-derived stem cells (ADSCs) have wider
and more convenient sources, such as adipose tissue in
the abdomen, limbs, and face areas and obtaining ADSCs
only causes minor damage [13, 14]. Animal models of
DM have been treated with ADSCs, and some human
clinical trials (phase I/II) have also utilized these cells
[15], with a few even progressing to phase III trials [16].
This article focuses on the research progress of ADSCs in
the treatment of DM and its complications and explores
its underlying mechanisms of action.

ADSCs

In recent years, there have been experiments using mes-
enchymal stem cells (MSCs) from different sources to
treat diabetes. The early focus was on bone marrow-
derived MSCs (BM-MSCs), which contain various types
of stem cells including hematopoietic stem cells, mes-
enchymal stem cells, and endothelial progenitor cells.
After the application of BM-MSCs, the patient’s insulin
requirement decreased, insulin sensitivity increased, and
[-cell function improved [17-19]. However, BM-MSCs
are obtained invasively through the femur or iliac bone,
which is not only painful but also yields a small quan-
tity of cells and carries the risk of infection after extrac-
tion [20]. Umbilical cord-derived MSCs have a higher
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similarity to embryonic stem cells and possess greater
differentiation potential compared to other common
types of MSCs. After the infusion of Umbilical cord-
derived MSCs, there was an increasing trend in the num-
ber of regulatory T (Treg) cells and a slight decrease in
insulin requirements [21]. Jiang et al. [22] studied the
use of placenta-derived MSCs in treating type 2 diabetes
mellitus (T2DM), which resulted in a decrease of >50%
in insulin requirements and improvement in kidney and
heart function to some extent. However, MSCs derived
from fetal appendages are obtained after birth, which
poses potential risks of allogeneic stem cells and corre-
sponding ethical issues [23]. Following BM-MSCs and
fetal appendage-derived MSCs, ADSCs have become an
alternative choice for clinical cell therapy due to their
easy accessibility, abundant source, subcutaneous loca-
tion, and longer culture time [24, 25]. Compared with
other types of MSCs, such as BM-MSCs, ADSCs have
similar proliferation and differentiation abilities and can
be obtained with less pain [26, 27]. The cell surface mol-
ecules of ADSCs have been found to include differentia-
tion clusters such as CD9, CD29, CD36, CD44, CD49d,
CD49e, CD51, CD55, CD73, CD82, CD105, CD106,
CD271, and von Willebrand factor (vWF), among which
CD36 and CD49d are unique to ADSCs, whereas CD3,
CDl11a, CDl11c, CD31, CD33, CD45, CD133, c¢-Kit, Lin,
major histocompatibility complex II, and human leuko-
cyte antigen (HLA)-DR surface proteins are lacking [28].

In some experiments, ADSCs showed genetic and
epigenetic stability [29] and did not show significant
immune response [30] and tumorigenicity [31]. Addition-
ally, there have been no significant safety issues observed
when ADSCs are transplanted into animal models [16,
29] or when used in human clinical trials [32]. Accord-
ing to existing research, ADSCs have not shown apparent
safety issues and have a low potential for stimulating anti-
HLA immune responses. There have been few reports
of adverse reactions to ADSC-based treatments, but the
long-term immunogenicity effects still need to be consid-
ered [33]. At the same time, in some studies, researchers
have observed pulmonary embolism and infarction after
injecting ADSCs into mice or patients [34, 35]. Other
literatures have also reported an increase in levels of
thrombin-antithrombin and D-dimer after intravenous
infusion of allogeneic ADSCs, both of which are markers
of coagulation activation [36].

Several experiments have explored the functions of
ADSC:s in different cell lineages [37, 38]. The advantages
of ADSCs in cell replacement therapy and cell repair
functions have been validated using animal models [39].
Some studies have demonstrated that direct intrave-
nous or in situ injection of ADSCs restores the vitality of
transplanted cells, which then differentiate and integrate
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ADSC functions in the body [40]. Transplanted ADSCs
secrete several repair molecules such as neurotrophic
factors [41], chemokines [42], immune regulatory factors
[43], and inflammation regulatory factors [44]. To date,
the therapeutic ability of ADSCs for diseases has been
verified in several clinical trials [16, 38, 45—-47]. These
findings provide evidence of the safety of ADSCs and
their potential in regenerative medicine, suggesting that
ADSCs hold promise for use in human clinical trials.

Application of ADSCs in type 1 diabetes mellitus
In T1IDM, due to autoimmune reactions, T helper 1
(Th1) cells attack pancreatic B cells, leading to the loss
of insulin-producing cells (IPCs) [48]. The presence of
macrophages, dendritic cells, natural killer cells, and lym-
phocytes also accelerates the progression of TIDM [49].
CD4" T cells and inflammatory factors, including inter-
feron-gamma (IFN-y), interleukin-2 (IL-2), and tumor
necrosis factor-alpha (TNF-a), play important roles in
the process of B cell damage [50]. As pancreatic  cells
are the sole producers of insulin in the body, their death
leads to a complete absence of insulin secretion, ulti-
mately resulting in the development of diabetes [51].
Long-term complications, such as vascular degenera-
tion, renal failure, and blindness, cannot be prevented
with the current interventions. The methods that have
been applied in clinical practice to replace B cells mainly
include whole pancreas and islet cell transplantation [52].
However, there are still many obstacles to the develop-
ment of these methods, such as a lack of suitable islet
donors, the need for lifelong immunosuppressive therapy
after transplantation, and the exhaustion of transplanted
organs and cells in diabetic patients, all of which restrict
the development of this technology [53]. In recent years,
ADSCs have gradually gained the attention of research-
ers owing to their ability to self-renew, differentiate into
other cell lineages, and regulate the immune system. It is
hoped that the characteristics of ADSCs can be utilized
to achieve the goal of curing TIDM.

Animal models and human clinical trials

In the application of ADSCs to animal models, undif-
ferentiated ADSCs or differentiated IPCs from ADSCs
can be transplanted via intravenous, intraperitoneal,
or renal capsule injection [44, 50, 54—61], as shown in
Table 1. According to research, the mortality rate of
mice within 24 h is close to 85% when a large number of
ADSCs are administered through the tail vein. Reduc-
ing the injection quantity can avoid similar occurrences
[35]. Some studies use intraperitoneal or renal capsule
injection to attempt to avoid this problem [50, 55, 57,
58]. Currently, the use of ADSCs for treating T1IDM
patients is still in the preliminary research stage. There
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are not many studies related to this direction, and there
are differences in administration routes. Currently, the
administration routes that have been used include dif-
ferentiating ADSCs into IPCs and then injecting them
into the portal vein, thymus, or subcutaneous tissue [62].
Alternatively, ADSCs can be induced to become insulin-
secreting ADSCs and co-transplanted with unfraction-
ated cultured bone marrow cells into the portal vein of
diabetic patients [15, 63]. It is administered through
portal vein infusion because it allows the cells to stay in
the liver microcirculation, and the liver, being a tolerant
organ, would not reject cell engraftment. However, there
is currently no consensus on the specific administration
method that can achieve better therapeutic effects. In
addition, regarding the number of transplanted ADSCs,
there are also variations in current studies. Some stud-
ies used a level of 10° cells, while others used a level of
102 cells, as shown in Table 2 [15, 62, 63]. However, the
specific number of cells required to achieve therapeutic
effects while minimizing the potential risks of ADSCs
still needs further investigation.

Mechanism of ADSCs in T1IDM

ADSCs differentiation to IPCs

According to current research, one of the mechanisms
for using ADSCs to treat T1DM is to transplant differ-
entiated IPCs or ADSCs into animals or humans and
utilize their ability to secrete insulin. Timper et al. [68]
conducted the first experiment to differentiate human
ADSCs into IPCs. The glucagon-like peptide-1 (GLP-1)
was used in another study to induce differentiation of
human ADSCs into IPCs. Insulin and C-peptide were
released by IPCs in a glucose concentration-dependent
manner [61]. Additionally, the injection of differenti-
ated IPCs or undifferentiated ADSCs into diabetic ani-
mals resulted in a rise in insulin levels in diabetic animal
serum and a return to normal blood glucose levels, as
shown in Table 1.

The differentiation of ADSCs into IPCs is influenced
by many factors, including the Wnt signaling pathway.
Pancreatic development, islet function, and insulin pro-
duction and secretion depend on this pathway [69].
Some studies have found that activating the Wnt sig-
nal can induce ADSCs of rats to differentiate into IPCs,
which can be identified by detecting the expression levels
of genes such as INS (insulin), pancreatic and duodenal
homeobox 1 (PDX1), and GLP-1, as well as the protein
expression levels of PDX1, cytokeratin 19, nestin, insulin,
and C-peptide [70]. Additionally, the phosphatidylinosi-
tol 3-kinase (PI3K)/Akt signaling pathway is also crucial
in the differentiation of IPCs. The PI3K/Akt signaling
pathway is significantly activated during the differen-
tiation process of ADSCs into IPCs, mediated by the
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stromal cell-derived factor 1a and basic fibroblast growth
factor [71]. According to a recent study, the upregulation
of miR-375 is a crucial aspect of ADSC differentiation
into IPCs [72]. A further aspect of its expression is that
it is related to the secretion of insulin as well as cell pro-
liferation [73]. Finally, IPCs are also developed through
the Sonic hedgehog signaling pathway. To promote the
development of IPCs, it is necessary to remove the inhi-
bition of the Sonic hedgehog signaling pathway on them
[74].

Restore the function of residual pancreatic islets

in the body

ADSCs can not only serve as a source of IPCs, but also
support the function of residual pancreatic islets in
patients with diabetes [75]. In these experiments, it
was observed that the function of residual pancreatic
was restored after injection of ADSCs or IPCs differ-
entiated from ADSCs [50, 54, 59, 64, 66, 67, 76]. These
transplanted ADSCs release a variety of cytokines,
including interferon-induced protein 10, eosinophil
chemotactic factor (eotaxin), vascular endothelial growth
factor (VEGF), and tissue inhibitor of metalloprotein-
ase 1 (TIMP-1), all of which can prevent apoptosis of
B cells and promote P cell proliferation [54]. In addi-
tion, transplantation of ADSCs effectively improved the
autoimmune mechanism of diabetes in non-obese dia-
betic mice by reducing the Thl immune response and
inducing the proliferation of Tregs to improve the high
blood glucose levels of early-onset autoimmune diabe-
tes [50]. Compared to the untreated diabetes group, the
IPCs transplantation group showed increased pancre-
atic regeneration, as well as a significant increase in the
number of islet cells, islet area and density, and C-peptide
immunoreactive area. The percentage of collagen fiber
area in the islets of the IPCs transplantation group also
decreased [67].

Maintain the function of pancreatic islet grafts in vivo

or in vitro

ADSCs can also be used for preconditioning of pancre-
atic islet grafts in vitro to enhance the viability of the
transplanted islets. Existing studies have shown that co-
culturing ADSCs with syngeneic islets in vitro can sig-
nificantly increase the level of insulin release compared
to islets cultured alone. These pre-cultured pancreatic
islet transplants have a higher success rate during trans-
plantation and significantly improve the hyperglycemic
condition in diabetic mice [54, 55, 76—79]. Eotaxin [54],
VEGF [54, 77], TIPP-1 [54], extracellular matrix (ECM)
components, annexinA1l [78] and fibroblast growth fac-
tor 2 expression [77] in ADSCs seem to be upregulated as
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a result of paracrine communication between pancreatic
islets and ADSCs.

In addition to pre-treating pancreatic islet grafts, stud-
ies have attempted co-transplantation of ADSCs and
islets to explore the effectiveness of this approach [55,
76, 80—82]. Adipose-derived stem cells (ADSCs) can pro-
mote the generation of a new vascular network within
the co-transplanted islets by secreting various angiogenic
factors, including VEGF [77, 83], hepatocyte growth
factor [83], kinase insert domain receptor [83], trans-
forming growth factor-beta (TGF-f) [78], and IL-8 [84].
ADSCs can also significantly inhibit the production of
pro-inflammatory cytokines such as IFN-y [78], TNF-a
[76, 85], IL-6P [76], and IL-17 [78]. ADSCs can sup-
press the infiltration of CD4" and CD8* T cells [80] and
macrophages [85], thereby reducing the inflammatory
response within the co-transplanted islets. Co-transplan-
tation of ADSCs and islets into STZ-induced diabetic
mice significantly increased vascularization of the trans-
planted islets and significantly suppressed infiltration of
inflammatory cells, resulting in increased survival time of
the co-transplanted islets [80].

Successfully differentiating ADSCs into IPCs requires a
specific combination of culture media, including insulin,
transferrin supplement, and nicotinamide. This means
that in clinical applications, a feasible method needs to
be found to provide these media components. Although
ADSCs can differentiate into IPCs, their insulin secretion
capacity is still relatively low. Therefore, further optimi-
zation of the differentiation process is needed to improve
the efficiency and functionality of ADSCs differentiating
into IPCs. Further research is also needed to determine
the transplantation method and the number of trans-
planted cells, which will contribute to the translation of
ADSCs into a clinical therapeutic approach.

Application of ADSCs in type 2 diabetes mellitus
T2DM is distinguished by insulin resistance in insulin-
responsive tissues and impaired insulin secretion by pan-
creatic [ cells. This type of diabetes accounts for 85-95%
of all DM cases [86]. Additionally, excessive nutrition can
lead to inflammation in adipose tissue, affecting multiple
tissues and worsening insulin sensitivity and f cell func-
tion [86, 87].

Currently, there are few clinical trials on the treat-
ment of T2DM with ADSCs. Most applications are still
being tested in animal experiments, which indicate that
injecting ADSCs through the tail vein, peritoneum, and
renal capsule of mouse can improve hyperglycemia by
restoring pancreatic B cells, reducing inflammation, and
increasing insulin sensitivity [88, 89]. The exploration of
some of these mechanisms has provided new directions
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for the clinical application of ADSCs [90—93]. See Table 3
for details.

Mechanism of action of ADSCs in T2DM
Improvement of insulin resistance

Transplantation of ADSCs in vivo was discovered to
restore the count of glucose transporter 4 and insu-
lin receptors on the cell membranes of skeletal muscle,
liver, and adipose tissue, and increase the phosphoryla-
tion of insulin receptor substrate 1 in a high-fat diet/
STZ-induced T2DM rat model. Consequently, this alle-
viated the state of hyperglycemia and insulin resistance
[89]. Insulin resistance may be linked to systemic chronic
inflammation related to obesity, where inflammatory fac-
tors can impede the phosphorylation of the insulin recep-
tor substrate and PI3K in the insulin signaling pathway,
resulting in obstructed signal transduction and insulin
resistance [96]. Studies have shown that after ADSCs are
injected, TNF-«a, IL-6, and IL-1p in T2DM rats are sig-
nificantly reduced [89]. Injection of ADSCs reduces liver
weight and fat degeneration by inhibiting the expres-
sion of pro-inflammatory genes and reduces the level of
insulin resistance by increasing the expression of insu-
lin receptor substrate [88], indicating that injection of
ADSCs has a favorable effect on liver fat degeneration.

Promotion of insulin production

In addition to insulin resistance, the dysfunction of pan-
creatic [ cell also plays a crucial role in the development
of T2DM. Animal experiments have shown that after
different sources of ADSCs are transformed into IPCs
in vitro and transplanted into mice, they can effectively
reduce the blood glucose levels compared with inject-
ing undifferentiated ADSCs and blank groups [91, 94].
ADSCs can facilitate the restoration of remaining pan-
creatic islet function and enhance the quantity of pan-
creatic islet B cells. They repair pancreatic islet cells by
decreasing caspase-3 activity and promote pancreatic
islet vascularization by secreting angiogenic factors such
as VEGE, insulin-like growth factor 1, hepatocyte growth
factor (HGF), and vWF, thus contributing to the regen-
eration of pancreatic islet  cells [89].

Regulating liver glucose metabolism

Within 24 h after infusion of ADSCs, the hyperglycemic
state of a T2DM rat model can be quickly relieved. This
rapid action cannot be fully explained by improving f3 cell
function and insulin resistance. The liver maintains nor-
mal blood glucose levels by regulating glycogen metab-
olism and gluconeogenesis. A 24-h period after ADSC
infusion, T2DM rat models’ liver enzyme levels increased
related to glucose metabolism, suggesting that ADSCs
have a rapid effect on glucose homeostasis [93]. However,
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only this one research has reported similar phenom-
ena, and the specific mechanism has not been clearly
expounded.

However, it is worth noting that the clinical application
of ADSCs in T2DM treatment is still in its early stages
and requires further research to fully understand their
safety and efficacy. Many technical and regulatory issues
still need to be addressed. Despite these challenges, the
potential benefits of ADSCs in T2DM treatment are sig-
nificant, and their use represents a promising direction
for future research and development in the field of regen-
erative medicine.

The potential mechanisms of ADSCs application in
DM are summarized in Fig. 1.

Application of ADSCs in DM complications

Diabetic wounds

Diabetic wounds are a chronic complication of DM,
which severely affect the quality of life of patients with
diabetes. Diabetic foot ulcer is the most serious form of
diabetic wounds [97], which is clinically manifested as
peripheral neuropathy and lower limb ischemia, lead-
ing to sensory disorders, muscle atrophy, rest pain, and
necrosis [98]. Moreover, if diabetic wounds are not
treated properly, they may lead to amputation or even
death [99]. Peripheral neuropathy can decrease the skin
elasticity and secretion function of diabetic wounds,
making patients with diabetes more prone to form
wounds on the skin [100]. At the cellular level, DM dam-
ages macrophage function and prevents keratinocytes
and fibroblasts from playing their roles in epithelial heal-
ing [101]. In addition, hyperglycemia causes endothe-
lial damage in peripheral blood vessels, which further
reduces skin perfusion and promotes the formation of
skin ulcers [101].

Currently, numerous animal and clinical human experi-
ments have been carried out on the application of ADSCs
in the treatment of diabetic wounds, as shown in Table 4
and Table 5.

In one study, at 6 months, the diabetic foot ulcer clo-
sure rate was 100% for 51 subjects and >75% for 8 sub-
jects. At 12 months, 100% of the DFUs in 50 subjects
had healed, and >85% had healed in 4 subjects [122]. In
another study, 59 patients with diabetic foot ulcers were
randomly divided into an ADSCs treatment group and a
polyurethane film control group. At week 8, the complete
closure rate of wounds in the ADSCs treatment group
was 73%, while in the control group was 47%. At week
12, the complete closure rate of wounds in the ADSCs
treatment group was 82%, while in the control group was
53%. The median time for wound closure in the ADSCs
treatment group and the control group was 28.5 days and
63.0 days, respectively [125]. The healing time of wounds



Page 10 of 32

(2024) 15:3

Yan et al. Stem Cell Research & Therapy

201w Ul

S|9A9] 9500N|H POO|Q 9dNPal pue 90U '€
ulinsul pue apndad-o) 912195 01 Lunnsup g sy
3| [|11S S4SM SDIU IO UDXe) S| lepndad-) ¢ 01 Aep 00Z1-0001 7
‘uoneluejdsuel) Ja)e $3aaM JNO4 £3500N[9 | UONIS(UI A1IARD [RRUOINRY "L +1£adD7,501dD "4+€£AdD ',06AD SOSAV 1IN [L6] 931w padnpul-Z|S
S1eJ D130eIP Ul AUAIISUSS
uljnsul paaoiduwil uoisnjul DSAY €
uondNJIISUODl
JejnoseA 1owold ued sHSAy eyl
Bunesipur ‘sdnoib (013u0d jew
-JOU puUe [0JIUOD S213qRIP Y3
40 1Y} UrY) Jaybly sem dnoib uols
-NJUEDSAY U3 JO [9AS] JMA 9YL T
dnolib
|0J3UOD [eWIOU 343 JO 1eY) UeY} Lunsug
13yb1y (1S Inq ‘dnoib [01uod MYBISM P
$9190eIP 91 JO 1BU1 UBL1 JOMO|  fulgojBoway pa1ejAsodA|D ¢ dUQ ¢
Apuedyiubis sem dnoib uoisnjul Jopndad-) ¢ SDSAVPN (0L XT T _S¥AD'_#EAD [68] siel
DSQV 241 Jo Anande g-asedsed sy 'L A9S0ON|9 °| uoId3(Ul UIRA o) | '1€/0D",060D',501AD "4¥¥AD $DSAY uI04b siey Asimeg-anbeids paonpul-z1s
pul
-pa3) g4H Ag pasned ss1ko0dipe Jo
9IS 94} padNpal sHSAY JO UoISnyU|
W NGz LUl s|[ed
¢} pai031sal pue s19|sI pabewep sy}
panoidwi sHSAY JO UoIsnyu| 'g
paseadUl AUAILISUSS UlNSU| ¢
dnoib
WQdz1 2y} 03 paredwod | | 94| buunp
APMdInb a1ow 3502n16 poojq pases)d 2DUQ €
$DSAY buAe1 W NJZL S|192 JO Jopndad-D ¢ SDSAVPN 0L XS T
UoISNJuI 3Y) J91Je SHo9M OM[ *| Juinsup | uond8ful UlRA 1oL | #€dD"_SPAD",6¢AD,S0LAD  $DSAY [PwApIpide 21 [88] @21W p2dNpuU-Z1S
|eAsdyul/(s[|3d jo
syuawanoadwi| suoieldg  Jaqunu) abesop/uiwpy s|j@> jo adA) $324n0S ]|

INAZL Ul SDSAY Jo uonedydde Jo syuswiliadxe [ewiuy € ajqeL



Page 11 of 32

(2024) 15:3

Yan et al. Stem Cell Research & Therapy

uoIssaIdxa

2Uab UBWINY OU PIMOYS NSSIY
ASUPIY 9SNOWI [BULIOU 3|IYM QU
-1e311 Jaye sAep 01z pue 09 yioq 1e
SDOSAY YUM paleall 921w Jo ans

-S13 AUpIY 3} Ul PAAISSGO Sem
uolssaldxa ausb uewnH ‘¢

dnoub pareanun ayl 01

pasedwod Jamo| Apuedyiubis aiom
921U Jo dnoib pales-dsay 2yl Ul
S|9A3] 9-7] pue apURdAIBUI Y] T
dnoub pareanun ayl 01

paJeduwlod Jaybiy Ajpuedyiubis a1am
ao1W Jo dnoib paleain-sHsAay oy ul
s|aA9] apidad-D pue ulnsul ay] "|

uonejfioydsoyd

MY pasealoul ybnoaya Ajqissod
'SOWAZUS pajefal-wsijogeiawl
9502N|6 J9AI| JO UOISSIAXD YL
paie|nbal sHSAY JO uondaful ¢
3seaI9p P

pamoys |yy-d/Meld JO uols

-s21dxa ay3 pue ‘dnolb |01U0d 3y3 0}
pasedwod s|9A3| 3502N|6 Poo|g Ul
9SPAIDSP MO|S B SeM I3 'sDSAY JO
uond3(ul IS Y 7—€ Wol{ 7

dnoib [013u0d 3yl 01

pasedwod s|aA3| 3502N|6 Poo|g Ul
95P2.I29p JUEdYIUDIS B SEM 21941
'sDSAY JO uondaful Jaye skep om| °|

£8500N|9) ¢ DUQ '€
Julnsule SOSAVPN 0L XG'L°¢
lapndad-) | 9|nsded |eual Japun ‘| WN

2DUQ €
SOSAVPN 0L X €T
£9500N|9 °| [Vl EI VNNV WN

$JSAY PIRAS urWINH

$OSayv siey

[¥6] @21W padNpul-Z1S

[€6] S1ed
A3|meq—anbeids paanpul-7Z1S

syuawanosdw

|eAsL1ul/(s[]9d jo
suonaaleg Jaquwnu) abesop/ulwpy s|1@> jo adA)

s924nog

I9POW

(panunuod) € 9qel



Page 12 of 32

(2024) 15:3

Yan et al. Stem Cell Research & Therapy

pauOIUBW JOU ‘YN 40328} PURIGR||IM UOA 444 'SOSAY PRIRIUIBYIPUN SHSYPN ‘snijjdw sa1aqelp g 9dA} @z, ‘uipojozoidais 71§ ‘aseuni-¢ [ousouljApireydsoyd yg/d ‘pauoiusw
JOU YN 1353} 3dUeI3|0} 3500N|6 [eauolSdRIIUL [ [ D] UINN3ISIUL 7/ ‘s21e6166R |13 9X11-13|SI SYD/ 331P 384-YBIY g ‘UORIIUSISHIP JO 433SN|D @D ‘Dseury uiioid pareAnde-dINY YdY ‘s||92 wals paaLp-asodipe Jsay

Apoq 2y ul

SpIoe A11ej 9314 pue ‘saplIadA|6LI ‘97|
padNpal SH| Jo uoneuedsuesl sy}
‘dnolb jue|q ay3 01 pasedwod 7
$|9A9] 9500N|D

poo|q bupnNpal ‘s|aA3| 9500N|H
poo|q o1 buipiodde spndad-o pue
UlNSuUl Pa121235 s d| paiueldsuel] |

syel uoned|dwod

INQZL Wi1-buoj ul suoned)dwod
J1agelp Jo sueblio 19biey ayy Ul
sabeydoiew jo sadAiouayd aya
pabueyd pue UoBWWER[UI P18
-nuale suoisnyul DSAy a|diNN €
syel uoned|dwod

INQZL Wi1-buoj up sabueyd delp
-1ed pue 3seasip bun| ‘aseasip JaAl|
‘abewep AsuUpp| padNPUI-NQZL pPaie
-nuane suoisnjul DSAY AN ¢
s1el uonedl|dwod NJzL Wik
-buoy ur £19n023119)s1 diEaDURd
Bupowold pue AJARISUSS UlNsul

Junnsul g
apndad-5 ¢

4os00N5 |

Jinsupe

DUO €
SOdI 0L XG'L ¢
3|nsded jeual Japun “|

SYOMYZ 10} Y2M B 2DUQ '€

-980D -08AD “WA-V1H “4a-VH

SOSav [vel
pl[9AS uewINH 9DIW JU3IDYap-aunuwwll pue 71§

Buinoidwi Ag siseisoswioy 950on|6 AS[2A3] pidij winias 'z SDSAVPN 0L XE T
panoldw suoisnjul DAY d|dniNA ‘L $9500NIS °| uond3(ur UIdA flef | AN SOSAy siey [Selrel S pednpul-Z1S
|eAsL1ul/(s[]93 jo
syuswanosdwi suond9leq Jaquwnu) abesop/ulwpy s|j@> jo adA) $321nos I9PON

(panunuod) € 9qel



Yan et al. Stem Cell Research & Therapy (2024) 15:3

~a

ADSCs directly injected into
animal/human body or differentiated to
IPCs then inject into animal/human body
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ADSCs co-cultured or co-transplanted
with islets into animal/human body

elmproved the function of residual islets
elmproved islets vascularization
eRepaired the function of pancreas
eincreased the level of insulin and C-
peptide and decreased the level of
glucose

eMaintain the function of co-transplanted
pancreatic islets

eMaintain the function of pancreatic islets
transplants

Fig. 1 The application and mechanism of ADSCs in Diabetes Mellitus. ADSCs adipose-derived stem cells, IPCs insulin-producing cells. All
of the elements in the diagram were provided by Figdraw (http://www.fgdraw.com)

in the group receiving allogeneic ADSC injection was
31 days, which was significantly shorter than that of the
control group [126].

According to existing research, there are several pos-
sible mechanisms proposed for ADSCs therapy in the
treatment of diabetic wounds. ADSCs have paracrine
function and can secrete various cytokines, such as
VEGE, fibroblast growth factor2, keratinocyte growth
factor, TGF-f, platelet-derived growth factor, HGF, and
collagen [127]. ADSCs also have the ability to directly
differentiate into epithelial components and endothelial
cells, playing an important role in dermal remodeling and
wound healing [128]. In addition, ADSCs can inhibit the
inflammatory response in diabetic wounds through par-
acrine function. After applying ADSCs, the expression of
IL-6, IL-8 [129], and TNF-a [112] in diabetic wounds is
significantly downregulated, and inflammatory cell infil-
tration is reduced [102].

Existing studies have confirmed that ADSCs can pro-
mote regulation, neovascularization, and fibrosis, and
can be used as a potential therapy for the treatment of

diabetic wounds. However, there are still relatively few
clinical experiments on the application of ADSCs in the
human body [122-126]. Further research is needed to
determine more efficient methods of utilizing ADSCs for
the treatment of trauma or surgical wounds in diabetic
patients, in order to achieve the goal of treating diabetic
wounds.

Diabetic retinopathy

Diabetic retinopathy is a microvascular disease of the ret-
ina caused by retinal ischemia [130]. Increasing evidence
suggests that diabetes-related neurodegeneration occurs
prior to retinal vascular endothelial changes, indicating
that diabetic retinopathy should be considered a neuro-
vascular degenerative disease [131, 132].

The self-renewal ability of pericytes and endothelial
cells in the eyes of patients with diabetes is impaired, and
the repair ability of these two cell types is continuously
depleted [133]. Subsequently, the blood flow of capillar-
ies decreases, resulting in hypoxia in adjacent areas of the
retina. This hypoxic environment causes upregulation of
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VEGE, leading to increased vascular permeability [134]
and the development of diabetic macular edema, ulti-
mately resulting in loss of visual function [135]. Con-
tinuous hyperglycemia leads to abnormal function of
ganglion cells, resulting in changes in retinal electrical
activity before vascular endothelial changes occur [136].
In addition, hypoxia-inducible factor-la is induced by
hypoxia in the retina, which increases the expression of
VEGF regulated by hypoxia, causing intraretinal micro-
vascular abnormalities in the retina [137]. Proliferation
and migration of vascular endothelial cells can eventually
lead to the formation of neovascularization in the retina,
characterized by proliferative diabetic retinopathy.

Currently, the primary treatment for diabetic retinopa-
thy is still aimed at controlling blood sugar to slow down
the progression of the disease [138—141]. When the dis-
ease progresses to macular edema or proliferative dia-
betic retinopathy that threatens vision, laser therapy can
be used clinically to destroy the surrounding retina and
reduce oxygen demand to help alleviate the disease [142];
however, laser therapy may cause many complications,
such as decreased visual acuity, thickening of the retina,
and loss of visual field [143].

Recently, some studies explored a new method for
treating diabetic retinopathy by using ADSCs. This
method is based on the ability of ADSCs to differentiate
into pericytes, which can prevent neurovascular dam-
age and promote the regeneration of damaged retinas,
thereby achieving treatment for diabetic retinopathy
[144, 145].

Thomas A. Mendel et al. founded in animal experi-
ments that ADSCs injected into the vitreous body of
OIR mice can differentiate into pericytes and integrate
into retinal blood vessels, delaying the breakdown of
the blood-retinal barrier. After two months of injection,
approximately 80% of capillary loss can be prevented.
Injection of ADSCs before vascular instability in OIR
mice can reduce capillary loss by approximately 50%
[146]. In another study, the histopathology of retinal tis-
sue in T1DM nude mice showed a significant reduction
in vascular leakage and apoptosis of retinal vascular cells
around the eyes that received ADSCs injection compared
to those that received saline injection. Additionally, the
expression of inflammatory genes related to diabetic
retinopathy was downregulated. Furthermore, in vitro
experiments confirmed that co-culturing ADSCs with
retinal endothelial cells can improve the survival rate of
endothelial cells. These findings suggest that ADSCs have
a protective effect against retinal damage caused by dia-
betes [147].

Overall, based on current perspectives, ADSCs can
be a potential method for the future treatment of dia-
betic retinopathy. However, determining the optimal
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transplantation method and localization of ADSCs
remains a challenge. Current research mainly focuses
on local or intravenous injection of ADSCs, and further
studies are needed to ensure the accurate location of cells
in the damaged retinal area after injection into the eye.
Additionally, although current research suggests that adi-
pose-derived stem cells can protect retinal blood vessels,
the specific therapeutic mechanisms are still unclear and
require further investigation. Furthermore, the current
research on the use of ADSCs for the treatment of dia-
betic retinopathy is limited to animal experiments, and
there is still a long way to go before ADSCs can be used
as an actual treatment method.

Diabetic nephropathy

Diabetic nephropathy (DN) is the leading cause of end-
stage renal disease and the main cause of death for
patients with TIDM and T2DM [148]. The main feature
of DN is the abnormality of kidney function and mor-
phology. Abnormalities in the morphology of glomer-
uli include increased glomerular size, podocyte injury,
gradual accumulation of ECM, mesangial matrix expan-
sion, thickening of the glomerular basement membrane,
and the appearance of glomerulosclerosis and interstitial
fibrosis. Functional abnormalities include proteinuria,
decreased glomerular filtration rate, and increased glo-
merular perfusion and filtration [149]. Long-term high
blood sugar, high blood pressure, and local inflammation
can lead to progressive and irreversible damage to the
glomeruli and renal tubulointerstitium, ultimately result-
ing in renal dysfunction and eventually progressing to
renal failure [148].

Under special conditions, podocytes and mesangial
cells release various mediators to promote functional
and morphological changes in glomeruli [150]. Media-
tors such as VEGFA, TGF-B1, angiotensin II, angioten-
sin-converting enzyme, inflammatory cytokines, and
glomerular capillary remodeling cytokines can induce
pathological changes in the kidneys. They activate cell
remodeling signaling pathways, increase ECM synthesis,
or activate NADPH oxidase, leading to increased oxida-
tive stress levels. These changes can alter cell morphol-
ogy and contribute to the development of kidney disease
[151]. Furthermore, persistent hyperglycemia can gener-
ate advanced glycation end products (AGEs) in plasma
and tissues, which can exacerbate DN via two mecha-
nisms. AGEs can bind to matrix proteins like laminin
and type IV collagen, inhibiting their breakdown by
matrix metalloproteinases. This leads to an accumula-
tion of excessive ECM proteins and fibrosis [152]. AGEs
can bind to receptors on podocytes and mesangial cells,
causing the secretion of fibrosis-promoting factors like
VEGE, connective tissue growth factor, and TGF-$1, and
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an increase in NADPH oxidase expression. These factors
promote the proliferation, expansion, and hypertrophy of
glomerular cells [153]. Inflammation plays a significant
role in the development of DN. As glomerular function
deteriorates, inflammatory cells infiltrate the renal inter-
stitium and release factors that worsen the progression
of DN, including TNF-«, IFN-y, IL-1, IL-6, and MCP-1.
Inflammatory cells can also activate NADPH oxidase,
leading to local oxidative stress responses [154].
Increasing evidence suggests that exosomes derived
from stem cells are relatively safe and effective in treat-
ing kidney diseases in rat or mouse models [155]. The
exosomes secreted by MSCs play a significant protec-
tive role in acute kidney injury and chronic kidney dis-
ease [156]. Exosomes are nanoscale membrane vesicles
released by various types of cells, including mesenchy-
mal stem cells [157]. The microRNAs can be enclosed
in exosomes and serve as potential paracrine regula-
tory factors involved in the regulation of many diseases,
such as ischemic diseases and degenerative eye diseases
[158, 159]. The microRNAs produced by MSCs, such as
miR-150 and miR-134, play a crucial role in the treat-
ment of DN [160]. Exosomes secreted by human urine-
derived stem cells alleviate DN and high glucose-induced
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podocyte injury through the transfer of miR16-5p [161].
Therefore, some researchers have attempted to use
ADSCs-Exos to achieve the goal of treating DN, and have
successfully improved the functional impairments of foot
cells and symptoms of DN to varying degrees.

In vivo studies have also shown that ADSC-Exo can
inhibit high glucose-induced podocyte apoptosis in
mice [162]. According to the research of Duan Y et al,
exosomes produced by ADSCs contain miR-26a-5p,
which can be transferred to glomerular podocytes
and improve DN in diabetic mice. In vitro studies have
shown that ADSCs-Exo-miR-26a-5p can prevent podo-
cyte apoptosis caused by high glucose by targeting TLR4,
reducing the expression of VEGFA, inhibiting the path-
way of NF-«B, and suppressing oxidative stress reac-
tions [163]. In the experiment conducted by Jin et al.
ADSC-Exo-miR-486 can inhibit high glucose-induced
podocyte apoptosis by targeting Smadl, downregulat-
ing its expression, and suppressing the mTOR pathway
which promotes autophagy flux and reduces podocyte
apoptosis [162]. Besides they also founded that ADSCs-
Exo-miR-215-5P can inhibit the expression of zinc finger
E-box-binding homeobox 2, alleviate the progression of

e ®e
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eReduced podocyte
apoptosis and migration
eReduced Epithelial-
Mesenchymal Transition

Fig. 2 The application and mechanism of ADSCs in the complications of Diabetes Mellitus. ADSCs adipose-derived stem cells. All of the elements

in the diagram were provided by Figdraw (http://www.fgdraw.com)
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epithelial-mesenchymal transition, and foot cell migra-
tion [164].

In summary, according to the current results, ADSCs-
Exo have potential therapeutic effects in the treatment
of diabetic nephropathy, and in the future, they may be
a relatively good choice for the treatment of DN. How-
ever, there are still some issues that need to be addressed,
such as optimizing the preparation methods of ADSC
extracellular vesicles, determining the active molecules
in the extracellular vesicles, and exploring methods to
accurately deliver the extracellular vesicles to the kid-
neys. These will contribute to the translation of adipose-
derived stem cells into clinical applications.

Recent studies have shown that liver changes is another
complication of DM [165]. Hyperglycemia caused by DM
increases the risk of liver damage and liver fibrosis [166],
severely affecting the health and quality of life of patients.
DM is closely associated with liver diseases [165, 167],
but the pathological and physiological basis and progres-
sion of liver changes in DM are not yet fully understood,
and effective early intervention is lacking. Some stud-
ies have attempted to transplant ADSCs into animals to
alleviate diabetes-induced liver damage and fibrosis, and
have achieved certain positive results [168, 169]. This
provides an important theoretical and experimental basis
for further research and development of ADSCs for the
treatment of DM-related liver diseases. However, clinical
trials have not yet been conducted, and the explanation
of the therapeutic mechanisms and pathways of ADSCs
is not sufficiently detailed, requiring further research for
clarification.

The potential mechanisms of ADSCs application in
complication of DM are summarized in Fig. 2.

Current challenges

Although ADSCs have broad prospects for application in
disease treatment and tissue engineering, their applica-
tion still faces some challenges. The following are some
possible issues:

Complications issues There are certain difficulties and
risks in obtaining and processing adipose tissue, such as
the risk of wound infection due to improper handling and
the possibility of blood clots from excessive intravenous
infusion of ADSCs. Further research and clinical obser-
vation are needed to ensure the long-term effectiveness
and safety of ADSCs therapy.

Standardization issues ADSCs are derived from vari-
ous tissues, such as subcutaneous adipose tissue, breast
tissue, and bone marrow. The differences in prepara-
tion and culture conditions of ADSCs mean that it is not
guaranteed to obtain the same cell population in different
laboratories. ADSCs from different sources have differ-
ences in biological characteristics, differentiation ability,
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and immunogenicity, which poses a challenge to the sta-
bility of ADSCs application. ADSCs have different abili-
ties and functions, and standardized methods have not
been established. More researches are needed to develop
good quality control standards to ensure the consistency
and stability of cells and achieve the desired therapeutic
effects. In addition, it is also necessary to determine the
number of cells needed for transplantation to cure diabe-
tes mellitus and its complications in order to reduce the
number of transplantations and patient suffering.

Transplantation efficiency issues During the in vitro
culture process, some ADSCs may be lost, and similarly,
some ADSCs may be lost during the transplantation pro-
cess, which may affect the transplantation effect. The
survival rate of adipose-derived stem cells after trans-
plantation is an important issue, and optimization of
long-term preservation and storage conditions of ADSCs
needs to be addressed. More effective methods need to
be explored to ensure the purity and stability of cells dur-
ing the cell culture and expansion process.

Plasticity issues ADSCs need to undergo differentiation
to generate insulin-secreting cells. ADSCs may be unsta-
ble during the differentiation process, leading to incon-
sistent results in differentiation products. The efficiency
and stability of the differentiation process are key issues,
therefore, further research and exploration are needed to
optimize the stability of ADSCs differentiation.

It should be noted that the above issues are just some
potential challenges mentioned in this article, and there
may be other issues in actual applications.

Conclusions

In summary, an increasing amount of research suggests
that ADSCs may serve as a new therapeutic approach for
DM. Treatment with ADSCs has the potential to improve
high blood glucose levels and alleviate symptoms of
related complications in both animals and humans. How-
ever, there is still much work to be done in order to trans-
late ADSCs into practical clinical applications. Further
research and clinical observation are needed to assess
the long-term effects of ADSCs treatment and minimize
potential risks associated with their usage, in order to
achieve more reliable and effective benefits in future clin-
ical applications.
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