Skip to main content
Fig. 5 | Stem Cell Research & Therapy

Fig. 5

From: High-efficiency generation of induced pluripotent mesenchymal stem cells from human dermal fibroblasts using recombinant proteins

Fig. 5

In-vitro neurogenic and pancreatic differentiation potential of induced stem cells. iPMSCs can be induced into neuron by defined media. a Induced cells showed typical neuron morphology with soma, dendrites, and axons. GFAP, Nestin, MAP2, and β-Tubulin III marker proteins were identified by immunofluorescence staining. b GFAP, Nestin, MAP2, and β-Tubulin III in protein expression in differentiated iPMSCs. c iPMSCs were induced into islet cells. d Typical endocrine aggregates and expressed pancreatic specific markers such as Pdx1, glucagon and insulin are shown. Pdx1 was detected by anti-Pdx1 antibody whereas glucagon and insulin were stained. e Gene expression of Pdx1, glucagon, and insulin in induced cells (pancreatic iPMSCs) and control group before induction (fibroblasts) (left panel). Note that total RNA was extracted from a mixed population of cells with ~30 % displaying stem cell characteristics. *p < 0.01 between control IPMSCs before differentiation (fibroblasts) and after pancreatic conversion (pancreatic induced IPMSCs). f Insulin secretion from induced pancreatic cells in response to various concentration of glucose. Bars represent an average of three reads. *p < 0.01 compared with 3.3 mM glucose induction. GFAP glial fibrillary acidic protein, IPMSC induced pluripotent mesenchymal stem cell, MAP2 microtubule-associated protein 2, Pdx1 pancreatic and duodenal homeobox 1

Back to article page