Skip to main content
Fig. 6 | Stem Cell Research & Therapy

Fig. 6

From: A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors

Fig. 6

RNA-Seq analysis of transplanted CoMo-NSCs in immunodeficient rats at 2 and 6 months post-transplantation using bioinformatics-based species splitting. a Generalized schematic of RNA-Seq analysis pipeline using bioinformatics-based species splitting. Following analyses were conducted using the resulting human-specific transcripts only, reflecting expression profiles of the human CoMo-NSCs. b Principal components analysis (PCA) of three populations: CoMo-NSCs pre-transplantation (black dots, n = 2), CoMo-NSCs 2 months post-transplantation (red dots, n = 3), and CoMo-NSCs 6 months post-transplantation (blue dots, n = 3). The plot depicts principal components 1 (PC1) and 2 (PC2) with the percent of variance for each component. c, d Differential gene expression plot comparing CoMo-NSCs 2 months post-transplantation to CoMo-NSCs pre-transplantation (c) and 6 months post-transplantation to 2 months transplantation (d) as depicted as log2 average gene expression levels versus log2 fold change. Black dots represent genes that are significantly differentially expressed (p < 0.05). e Heat map of gene expression of canonical cell-type specific genes across the pre-transplanted and post-transplanted samples. f Gene ontology network of gene ontology terms overrepresented by genes enriched in the CoMo-NSCs pre-transplantation (e). Gene ontology groups: (1) mRNA processing, splicing, export; (2) RNA, DNA binding, repair; (3) Cell division, cell cycle; (4) Adherens junction; (5) Mismatch, double-strand break repair; (6) Ribosome biogenesis; (7) Proteoglycans and microRNAs in cancer; (8) RNA transport, processing, splicing; (9) Organ regeneration; (10) Regulation and localization; (11) Viral process; (12) Activity; (13) Assembly; (14) Gene expression; (15) Liver development; (16) ATP-dependent chromatin remodeling; (17) Translational initiation. g Gene ontology network of gene ontology terms overrepresented by genes enriched in the CoMo-NSCs post-transplantation (e). Gene ontology groups: (1) Circadian entrainment; (2) Synaptic transmission, long-term memory; (3) Signaling pathways; (4) Neuroactive ligand-receptor interaction; (5) Glutamatergic, GABAergic synapse; (6) Neurotransmitter, glutamate, dopamine secretion; (7) Membrane potential, ion transmembrane transport; (8) Morphine, nicotine addiction; (9) Locomotory behavior; (10) Action potential, excitatory postsynaptic potential; (11) Calcium ion-regulated exocytosis of neurotransmitter; (12) Ion transmembrane transport, channel activity; (13) Response to amphetamine; (14) Cardiac conduction; (15) Sensory perception of pain

Back to article page