Skip to main content
Fig. 5 | Stem Cell Research & Therapy

Fig. 5

From: Exploiting tumor-intrinsic signals to induce mesenchymal stem cell-mediated suicide gene therapy to fight malignant glioma

Fig. 5

hAMSC-SBE4-TRAIL inhibit growth and induce apoptosis in human GBM in vivo. a Schematic of the injection experiment where different delivery vehicles (PBS, hAMSC-vector, hAMSC-SBE4-TRAIL, or hAMSC-SBE4-TRAIL+TβR inh) were injected into the same location of tumor mass of GBM bearing mice, which sacrificed 2 weeks later. b Representative images showed the treatment efficacy of hAMSCs (GFP, green) in GBM (Td-tomato, red) bearing mice. Scale bar, 200 μm. c, d The migration of GBM cells assay showed hAMSC-SBE4-TRAIL (SBE4-TRAIL) can reduce migration number (per mm2) and distance (mm) of tumor cells when compared with PBS (control), hAMSC-vector (vector) and hAMSC-SBE4-TRAIL+TβR inh (SBE4-TRAIL+TβR inh) group. e There was also a significant decrease in the tumor bulk volume by SBE4-TRAIL treatment as compared to other groups. f Representative pictures showed cleaved caspase-8 (purple) and td-tomato (red) staining of tumor satellites. Scale bar, 50 μm. f, g The SBE4-TRAIL treatment group exhibited a higher number of positive cleaved caspase-8 in the tumor satellites (beyond border of tumor mass) when compared with SBE4-TRAIL+TβR inh group. h, i The cleaved caspase-3 staining (purple) and td-tomato (red) assay also verified hAMSC-SBE4-TRAIL can induce apoptosis of human GBM satellites in GBM bearing mice. Scale bar, 50 μm. Error bars represent SEM. *p < 0.05, **p < 0.01, ***p < 0.001

Back to article page