Skip to main content
Fig. 6 | Stem Cell Research & Therapy

Fig. 6

From: Exploiting tumor-intrinsic signals to induce mesenchymal stem cell-mediated suicide gene therapy to fight malignant glioma

Fig. 6

hAMSC-SBE4-TRAIL injection by intracranial and intrathecal approaches improves survival in GBM bearing mice. a Schematic of hAMSC-SEB4-TRAIL by different injection approach (hAMSC naive injection, control; intracranial injection, intracranial; intracardiac injection, intracardiac; and intrathecal injection, intrathecal) for GBM animal models. b Representative pictures showed bioluminescence for the GBM bearing mice on days 1, 10, 20, and 30 (n = 4 per group). c–f Bioluminescence signal radiance was significantly decreased in the intracranial group on days 10, 20, and 30 when compared with the control group. Meanwhile, there was also displayed inhibited effective on GBM growing in intrathecal group at days 20 and 30 as compared with control group. g–j Representative images showed the staining of GBM tumor mass (td-tomato, red) and the hAMSCs (GFP, green). Scale bar, 1 mm. k Analysis of post-mortem tissue sections confirmed the tumor volume decreased in the intracranial and intrathecal injection groups when compared with control group (n = 6 per group). l Kaplan-Meier survival analysis identified a significant median survival benefit in mice receiving hAMSC-SBE4-TRAIL by intracranial (p = 0.0003) and intrathecal (p = 0.0015) injection relative to the control group (n = 10 per group). Error bars represent SEM. *p < 0.05, **p < 0.01, ***p < 0.001. NS not significant

Back to article page