Skip to main content


Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Fig. 5 | Stem Cell Research & Therapy

Fig. 5

From: Interaction with hyaluronan matrix and miRNA cargo as contributors for in vitro potential of mesenchymal stem cell-derived extracellular vesicles in a model of human osteoarthritic synoviocytes

Fig. 5

CD44 is involved in ASC-EVs uptake in FLSs. a Representative cytogram of CD44 expression in ASCs grown with (ASC01HA) or without (ASC01) HA coating of culture flask. b Representative CD44 cytogram of ASC-EVs obtained from “non-primed” ASCs (ASC-EV) or “HA-primed” ASCs (ASCHA-EV) for 24 h. P2 represents CD44-positive particles, after gating on CFSE-positive events as explained in Fig. 1e. c Ratio of EV incorporation in FLS between “CD44-boosted” EVs (ASCHA-EV) and “normal” EVs (ASC-EV), after 24 h (100,000 EVs per FLS, n = 3 independent experiments, each FLS incubated with a mix of ASC-EVs or ASCHA-EVs from three independent ASCs). Data are presented as mean ± SD. **p < 0.01, *p ≤ 0.05, ns > 0.05). d Representative cytogram of FLSs incubated with ASC-EVs (FLS + EV) or with ASC-EVs pre-treated with aCD44 Ab (FLS + EVCD44), and FLSs co-cultured with ASCHA-EVs (FLS + EVHA) or ASCHA-EVs blocked with aCD44 Ab (FLS + EVHACD44)

Back to article page