Skip to main content
Fig. 6 | Stem Cell Research & Therapy

Fig. 6

From: The osteogenic differentiation of human adipose-derived stem cells is regulated through the let-7i-3p/LEF1/β-catenin axis under cyclic strain

Fig. 6

Modulation of LEF1 on the osteogenic differentiation of hASCs under cyclic strain (*p < 0.05, significant differences existed between these two groups). a Transfection efficiency detected by qPCR. The expression of LEF1 in the EX-LEF1 group was increased 3.37 ± 1.24-fold (p = 0.009) compared to that in the EX-Ctrl group. The expression of LEF1 in the siLEF1 group was significantly decreased 2.56 ± 0.03-fold (p < 0.001) compared to that in the siR-Ctrl group. b The effect of LEF1 overexpression on the osteogenic differentiation of hASCs under cyclic strain as determined by qPCR. Compared to those in the EX-Ctrl group, the levels of the following mRNA markers in hASCs transfected with EX-LEF1 under cyclic strain for 6 days were significantly increased: RUNX2 (4.54 ± 2.64-fold, p < 0.001), ALP (3.38 ± 0.64-fold, p = 0.002), SPARC (2.07 ± 0.35-fold, p = 0.008), LEF1 (4.67 ± 0.47-fold, p = 0.008), and β-catenin (2.33 ± 0.39-fold, p = 0.023). c Effect of LEF1 suppression on the osteogenic differentiation of hASCs under cyclic strain as determined by qPCR. Compared to those in the miR-Ctrl inhibitor group, the levels of the following mRNA markers in hASCs transfected with EX-LEF1 under cyclic strain for 6 days were significantly decreased: RUNX (2.11 ± 0.33-fold, p < 0.001), ALP (1.65 ± 0.68-fold, p = 0.044), SPARC (3.04 ± 1.38-fold, p = 0.039), LEF1 (3.40 ± 1.18-fold, p = 0.001), and β-catenin (2.72 ± 0.44-fold, p = 0.003)

Back to article page