Skip to main content
Fig. 1 | Stem Cell Research & Therapy

Fig. 1

From: Transplantation of human induced pluripotent stem cell-derived cardiomyocytes improves myocardial function and reverses ventricular remodeling in infarcted rat hearts

Fig. 1

Left ventricular function following human iPSC-CM therapy. a Representative images of hearts at baseline (before MI model established), D0 (10 days after LAD coronary artery ligation and before iPSC-CM grafting) and D28 (4 weeks after iPSC-CM grafting) with administration of 5% albumin solution (CTL group) (upper) versus iPSC-CMs (iPS-CM group) (lower). b Quantification of left ventricular ejection fraction (EF) and change of EF (D28-D0/D0) demonstrated a trend toward improved functional recovery at 4 weeks after the second thoracotomy in the iPS-CM group compared with the CTL group. c Quantification of left ventricular fractional shortening (FS) and change of FS (D28-D0/D0) demonstrated a trend toward improved functional recovery at 4 weeks after the second thoracotomy in the iPS-CM group compared with the CTL group. d–i Quantification of left ventricular end-systolic diameter (LVESD), left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic volume (LVESV), left ventricular end-diastolic volume (LVEDV), end-systolic and end-diastolic left ventricular anterior wall (LVAW) thickness and changes in these indicators. iPSC-CMs induced pluripotent stem cell-derived cardiomyocytes, MI myocardial infarction, LAD left anterior descending, CTL control, LVAW(s) left ventricular anterior wall thickness (end-systolic), LVAW(d) left ventricular anterior wall thickness (end-diastolic). (CTL group: n = 8; iPS-CM group: n = 9). Unpaired two-tailed t-test with * vs CTL P < 0.05, n.s. = not significant

Back to article page