Skip to main content
Fig. 5 | Stem Cell Research & Therapy

Fig. 5

From: Directly induced human Schwann cell precursors as a valuable source of Schwann cells

Fig. 5

Effects of transplanted iSCs on a sciatic nerve injury model in vivo. a The rotarod tests consisted of an accelerated rotarod phase (4 rpm to 40 rpm/3 min) and a fixed speed rotarod phase (40 rpm/2 min) and were conducted at four-weeks intervals. b Three tests were performed per test on the day of the test, with an interval of 10 min per test. The time to fall off the rotarod was recorded in Matrigel-treated groups (Con), iPSC-SC-treated groups (iPSC-SCs), and iSC-treated groups (iSCs). c The length of the resected sciatic nerve was measured using a caliper at 16 weeks after injury. Mean ± S.E.M. (n = 6 mice per group). d Eight weeks later the regenerated sciatic nerve region was excised and immunostained with anti-S100 (green) and anti-MBP (red) antibodies. Scale bars, 200 μm. e Evaluation of iSC-transplanted gastrocnemius muscle atrophy. f Macroscopic views of gastrocnemius muscles at 12 and 16 weeks after surgery. Scale bars, 1 cm. g The volume of gastrocnemius muscles at 12 and 16 weeks after surgery. h Quantitative analysis of weight and wet weight ratios of gastrocnemius muscles at 12 and 16 weeks after surgery. i Masson’s trichrome staining of cross-sections of gastrocnemius muscles at 12 and 16 weeks after surgery. Scale bars: 100 μm j The mean cross-sectional area (CSA) of gastrocnemius muscle fibers in the control and iSC-transplanted groups (n = 5). *p < 0 .05, **p < 0.01, ***p < 0.001. Control, no-cell transplanted mouse group; iPSC-SC, iPSC-SC-transplanted mouse group; iSC, iSC-transplanted mouse group

Back to article page