Skip to main content
Fig. 4 | Stem Cell Research & Therapy

Fig. 4

From: Myocardial repair of bioengineered cardiac patches with decellularized placental scaffold and human-induced pluripotent stem cells in a rat model of myocardial infarction

Fig. 4

BCP improved heart function 4 weeks after transplantation. a Left ventricular (LV) ejection fraction (LVEF), b fractional shortening (FS), c left ventricular end-diastolic diameter (LVEDD), and d left ventricular end-systolic diameter (LVESD) were measured by echocardiogram to show that transplantation of hiPSC-CMs or BCP after MI significantly increased LVEF and FS, and decreased LVEDD and LVESD compared with MI group. e Maximal positive derivatives of LV pressure (± dP/dtmax), f end-systolic pressure-volume relationship (ESPVR), g LV end-systolic pressure (ESP), and h LV end-diastolic pressure (EDP) were evaluated by invasive hemodynamic assessment to show that transplantation of hiPSC-CMs or BCP significantly increased + dP/dtmax, ESPVR, and ESP and decreased EDP compared with the MI group. Moreover, transplantation of a BCP further increased ESPVR as compared with transplantation of DP or hiPSC-CMs alone (P < 0.05). Data are shown as mean ± SEM. n = 9, Five-group comparisons were performed using one-way ANOVA followed by Tukey’s post hoc test. *P < 0.05 compared with MI group

Back to article page