Skip to main content
Fig. 6 | Stem Cell Research & Therapy

Fig. 6

From: Transcriptional factor FoxM1-activated microRNA-335-3p maintains the self-renewal of neural stem cells by inhibiting p53 signaling pathway via Fmr1

Fig. 6

NSC self-renewal and differentiation were regulated by FoxM1-mediated miR-335-3p/Fmr1/p53 signaling pathway. NSCs were treated with DMSO, PFT-α, oe-FoxM1 + oe-Fmr1, miR-335-3p mimic + oe-Fmr1, oe-FoxM1 + oe-NC, miR-335-3p mimic + oe-NC, or miR-335-3p mimic + oe-FoxM1. a Fmr1 expression in NSCs detected by RT-qPCR and Western blot analysis. b Expression of p53 signaling pathway-related genes in NSCs determined using RT-qPCR and Western blot analysis. c The quantitative analysis for number and size of neurospheres. d NSC cell cycle measured by flow cytometry. e Expression of self-renewal-related and differentiation-related genes in NSCs examined by RT-qPCR. The measurement data were expressed as mean ± standard deviation. Differences among multiple groups were analyzed by one-way ANOVA, followed by Tukey’s post hoc test. *p < 0.05 versus treatment of DMSO, oe-FoxM1 + oe-NC or miR-335-3p mimic + oe-NC. The experiment was carried out in triplicate

Back to article page