Skip to main content
Fig. 3 | Stem Cell Research & Therapy

Fig. 3

From: SiRNA in MSC-derived exosomes silences CTGF gene for locomotor recovery in spinal cord injury rats

Fig. 3

Exo-siRNA could effectively inhibit the expression of CTGF gene in astrocytes and upregulate the secretion of neurotrophic factors and anti-inflammatory factors in the impaired spinal cord segments. a The WB of CTGF, BDNF, and TGF-β1 after Exo-siRNA co-culture for 72 h was determined, n = 3, data are represented as mean ± SD, *p < 0.05, **p < 0.01 vs control. b The proteins relative expressions of CTGF, BDNF, and TGF-β1 at 72 h after Exo-siRNA treatment were detected. n = 3, data are represented as mean ± SD, *p < 0.05, **p < 0.01 vs control. c Living and death staining patterns of LPS/hypoxia-treated DRGs were analyzed at 24 h after co-culture with Exo-siRNA, siRNA, Exo, and PBS, respectively. Living and dead cells were stained with calcein-AM (green) and propidium iodide (red), while the control group did not receive any treatment. Scale bar =100 μm. d Cell survival rate of LPS/hypoxia-treated DRGs was calculated by CCK-8 at 24 h after co-culture with Exo-siRNA, siRNA, Exo, and PBS. n = 3, data are represented as mean ± SD, *p < 0.05, **p < 0.01 vs LPS/hypoxia. e, f qRT-PCR analysis was performed for mRNA expressions and ELISA analysis for secretion of e M1-related pro-inflammatory cytokines and f markers of M2 macrophage phenotypes in LPS/hypoxia-treated NR8383 macrophages at 48 h after Exo-siRNA, siRNA, Exo, and PBS administrations. n = 3, data are represented as mean ± SD, *p < 0.05, **p < 0.01 vs LPS/hypoxia

Back to article page