Skip to main content
Fig. 5 | Stem Cell Research & Therapy

Fig. 5

From: EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling

Fig. 5

Locally applied EGFL6 accelerates bone formation and consolidation in a rat model of tibia distraction osteogenesis (DO). a Overall schematic diagram illustrating the study design. DO was performed in three phases as indicated. Midway through the distraction phase on day 10, recombinant EGFL6 (200 ng/ml), or an equivalent volume of sterile PBS (control), was infused into the distracted area and then infused again every 2 days until the end of the distraction phase on day 15. Distraction was performed at a rate of 0.25 mm per 12 h. Asterisk (*) in a indicates that the tibia bone fragments were distracted for a total of 5 mm over a period of 10 days. b X-ray images (lateral view) of the distracted bones from representative cases after 2, 3, and 4 weeks of consolidation. Bright white angular areas in images are the densities of the metal monolateral external fixator. c, d Three-dimensional reconstructions (c) and internal longitudinal profiles (d) derived from micro-CT of distracted tibia bones from representative cases of EGFL6-treated and control rats after 2 and 4 weeks of consolidation. Light areas show the increased bone-tissue mineralization. e, f Quantitation analysis of bone-tissue mineralization showing the mean (±SD) percentage bone volume/total tissue volume (BV/TV) and mean (±SD) bone mineral density (BMD) in EGFL6-treated and control rats. Mineralization parameters were calculated from the micro-CT image data. Significant differences were evaluated by one-way ANOVA with post hoc Dunnett’s tests. *p < 0.05

Back to article page