Skip to main content
Fig. 8 | Stem Cell Research & Therapy

Fig. 8

From: EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling

Fig. 8

Working model of EGFL6-mediated signaling, illustrating the coupling of angiogenesis and osteogenesis in the rat DO model. During the consolidation phase of bone remodeling, type H vessels form alongside newly developing bone and extend toward the distraction gap. In the bone marrow microenvironment, multiple cell types secrete angiogenic factors to support type H vessel formation. Osteoblast-lineage cells and ECs secrete VEGF-A. EGFL6 secreted by osteoblasts enhances VEGF-A expression in ECs to promote cell migration, tube formation, and branching, which further stimulates the formation of type H vessels during early consolidation phase. As a key regulatory factor, EGFL6 also promotes osteogenic differentiation of BMSCs into osteoblast-lineage cells, activated by the Wnt/β-catenin signaling pathway. EGFL6 also increases expression of the osteogenic proteins RUNX2, BMP2, and OCN, leading to faster restoration of the bone defect in the DO model. Abbreviations: ECs, endothelial cells; BMSCs, bone marrow mesenchymal stem cells; EGFL6, epidermal growth factor-like domain-containing protein 6; VEGF-A, vascular endothelial growth factor; RUNX2, Runt-related transcription factor 2; BMP2, bone morphogenetic protein 2; OCN, osteocalcin

Back to article page