Skip to main content
Fig. 4 | Stem Cell Research & Therapy

Fig. 4

From: Spotlight on therapeutic efficiency of mesenchymal stem cells in viral infections with a focus on COVID-19

Fig. 4

MSCs function as immunosuppression of the adaptive and innate immune system. A MSCs use various molecular pathways to inhibit innate immune cells. MSCs inhibit macrophage polarization to M1 via favors M2 polarization. MSCs suppress mast cell degranulation of histamine-comprising granules and suppress DC and NK cell activation, differentiation, and effector actions. MSC-isolated PGE2 chips in the whole of this efficacy. MSC-generated IL-6 inhibits neutrophil apoptosis and respiratory burst and helps suppress DC action. In the presence of GM-CSF and IL-6, MSCs also affect macrophage action, while IDO and TGF-β inhibit NK cell action. Moreover, MSCs favor the production of regulatory DCs. B MSCs suppress different facets of B cells acting, such as activation, reproduction, chemokine receptor expression, and differentiation to changing antibody-releasing plasma cells. Unknown soluble factors and programmed death-1 (PD-1)/PD ligand-1 (PD-L1) ligation intercede the efficacy of MSCs on B cells. MSC induced NO in reaction to inflammatory cytokine diagnosis to inhibit CD8+ T cell proliferation, cytokine generation, and cytotoxicity. In reaction to activation in a particular cytokine milieu, CD4+ T cells can differentiate into many effector crowds. MSCs generate soluble factors (IL-10, truncated CCL-2, PGE2, HGF, TGF-β, and NO) and membrane-bound molecules (PD-1 ligation) to inhibit Th cell reproduction and the polarization of CD4+ T cells to TH17 and TH1 cells. MSCs favor the growth of anti-inflammatory Treg and TH2 crowds [134]

Back to article page