Skip to main content
Figure 3 | Stem Cell Research & Therapy

Figure 3

From: Decellularized silk fibroin scaffold primed with adipose mesenchymal stromal cells improves wound healing in diabetic mice

Figure 3

Ad-MSCs-SF and D-Ad-MSCs-SF enhance genes involved in angiogenesis and ECM remodeling. On day 7, specimens of skin tissue were excised and analyzed for gene profile. A significant increment of genes involved in angiogenesis and in tissue regeneration such as Vegfa, Egf and Pdgfa, Wnt5α, Wisp1 and Tgfβr3 and ECM remodeling (Mmp2, Itgβ6, Col5α1, Col5α2, Col4α1 and Tagln) were observed in Ad-MSCs-SF compared to SF treated mice (A). Although less than in Ad-MSCs-SF, the RT2 gene profiler analysis of D-Ad-MSCs-SF treated mice revealed an increment of some genes involved in angiogenesis (Wnt5α, Egf), ECM deposition and remodeling (Col4α1, Tagln), as well as a down-modulation of genes involved in cytoskeleton organization (Itgα6, Itgβ1, Actα2). In general, in mice treated with D-Ad-MSCs-SF, inflammatory genes were not up-modulated and Mif was significantly down-regulated (B). The RT2 Profiler™ array for mouse wound healing was performed in triplicate. Bars in the figure show the relative gene expression increment or decrement that was calculated using RT2 Profiler™ PCR Array Data Analysis. *P <0.05; **P <0.01 versus untreated SF patches. Ad-MSCs-SF, silk fibroin patch cellularized with human adipose-derived mesenchymal stromal cells; D-Ad-MSCs-SF, silk fibroin patch after human adipose-derived mesenchymal stromal cells removal (decellularization); ECM, extracellular matrix; SF, silk fibroin.

Back to article page