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Abstract

Background: The applications for fat grafting have increased recently, within both regenerative and reconstructive
surgery. Although fat harvesting, processing and injection techniques have been extensively studied and
standardised, this has not had a big impact on the variability of outcome following fat grafting. This suggests
a possible larger role of patient characteristics on adipocyte and adipose-derived stem cell (ADSC) viability
and function. This systematic review aims to collate current evidence on the effect of patient factors on
adipocyte and ADSC behaviour.

Methods: A systematic literature review was performed using MEDLINE, Cochrane Library and EMBASE. It
includes outcomes observed in in vitro analyses, in vivo animal studies and clinical studies. Data from basic
science work have been included in the discussion to enhance our understanding of the mechanism behind
ADSC behaviour.

Results: A total of 41 papers were included in this review. Accumulating evidence indicates decreased
proliferation and differentiation potential of ADSCs with increasing age, body mass index, diabetes mellitus
and exposure to radiotherapy and Tamoxifen, although this was not uniformly seen across all studies. Gender,
donor site preference, HIV status and chemotherapy did not show a significant influence on fat retention.
Circulating oestrogen levels have been shown to support both adipocyte function and graft viability. Evidence
so far suggests no significant impact of total cholesterol, hypertension, renal disease, physical exercise and
peripheral vascular disease on ADSC yield.

Conclusions: A more uniform comparison of all factors highlighted in this review, with the application of a
combination of tests for each outcome measure, is essential to fully understand factors that affect adipocyte
and ADSC viability, as well as functionality. As these patient factors interact, future studies looking at adipocyte viability
need to take them into consideration for conclusions to be meaningful. This would provide crucial information for
surgeons when deciding appropriate volumes of lipoaspirate to inject, improve patient selection, and counsel patient
expectations with regards to outcomes and likelihood for repeat procedures. An improved understanding will also
assist in identification of patient groups that would benefit from graft enrichment and cryopreservation techniques.
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Background
Autologous fat grafting has become a standard treat-
ment for volume and contour defects in reconstructive
surgery [1]. In 1983, Illouz and Sterodimas first de-
scribed fat grafting, where the graft was obtained from a
donor site through liposuction and re-injected immedi-
ately into the region of interest through syringes [2, 3].
Stem cells isolated from bone marrow (BM-MSCs) are
the most characterised and clinically studied stem cell
source to date [4]. Passage number, expansion medium,
culture conditions and stem cell source all influence
mesenchymal stem cell (MSC) characteristics [5–7].
The painful isolation and low yield associated with

BM-MSCs has prompted research into other stem cell
sources. In 2001, Zuk et al. [8] isolated MSCs from adi-
pose tissue with the same potential as BM-MSCs to dif-
ferentiate not only into mesenchymal lineages, such as
adipogenic, chondrogenic [9, 10], osteogenic [11, 12],
myogenic [13] and cardiomyogenic [14] lines, but also
into neurogenic [15], angiogenic [16, 17] and hepatic line-
ages [18]. Adipose-derived stem cells (ADSCs) also display
immunosuppressive, anti-inflammatory and angiogenic
properties through the release of soluble mediators in a
paracrine fashion [19]. This together with the ease of iso-
lation and abundant supply makes ADSCs attractive not
only in the regenerative field but also as a tool to enhance
the survival of fat grafts [20]. However, fat grafting has
two main limitations, inconsistency with fat graft survival
and poor reliability [21, 22].
Although fat harvesting, processing and injection tech-

niques have been extensively studied and standardised,
this has not had a big impact on the variability of out-
come following fat grafting [23]. This suggests a possible
larger role of patient characteristics on ADSC number,
viability and functionality. This systematic review aims
to collate evidence on the effect of patient factors on
adipocyte and ADSC viability and functionality.
The isolation procedure for adipose tissue results in a

stromal vascular fraction (SVF) layer that is composed of
a host of cells, including stem cells, pericytes, monocytes,
macrophages and capillary endothelial cells. Dominici et
al. [24] provided the criteria to identify MSCs, which in-
clude plastic adherence, the expression of CD105, CD73
and CD90, a lack of expression of CD45, CD34, CD14 or
CD11b, CD79alpha or CD19 and HLA-DR surface mole-
cules and the ability to differentiate into osteoblasts, adi-
pocytes and chondroblasts in vitro.
To avoid confusion through terminology, we refer to

multipotent precursor cells from adipose tissue stroma
as adipose-derived stem cells (ADSCs) [25].

Methods
An electronic search of the MEDLINE through PubMed
and EMBASE databases was performed to identity all

original clinical papers from 1959 to 2016 that described
effects of patient factors, medication or systemic condi-
tions on adipocyte viability, proliferation and differenti-
ation potential (reviewed by two independent reviewers,
J.V. and M.G.). For the same time period, all in vitro
studies that assessed the effect of patient factors on adi-
pocyte and ADSC function were identified. Keywords
with Boolean operators used in the search included the
following: “adipocyte” or “stem” or “ADSC” or “lipoaspi-
rate” and “age” or “BMI” or “radiotherapy” or “diabetes”
or “menopausal status” or “donor sites” or “HIV” or
“cardiovascular disease” or “renal disease” or “gender”.
The full search strategy is provided in Additional file 1:
Table S1 and Fig 1.
Articles were considered eligible if they met the fol-

lowing inclusion criteria: (1) clinical, in vitro and ani-
mal studies that evaluated the effect of patient factors
on adipocyte or ADSC yield and or function; (2) the
outcome measures included adipocyte or ADSC or
SVF yield and/or function (differentiation and prolif-
eration capacity).
Articles were excluded if they were: (1) papers describ-

ing effects of patient factors on stem cells of other ori-
gin, such as BM-MSCs; (2) studies not published in
English, as the reviewers could not fully understand the
manuscript; (3) editorials, publications on congress meet-
ings, unpublished data or letters to the editor. Review arti-
cles were only used to contribute to the “Discussion”
section and identify any other relevant articles.

Fig. 1 Flow chart to demonstrate paper selection in this study
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A variety of names were used in the included studies to
describe the plastic-adherent cell population isolated from
collagenase digests of adipose tissue. These included
adipose-derived stem/stromal cells (ASCs), adipose-derived
adult stem (ADAS) cells, adipose-derived stromal cells
(ADSCs), adipose stromal cells (ASCs), adipose mesenchy-
mal stem cells (AdMSCs), lipoblasts, pericytes, preadipo-
cytes and processed lipoaspirate (PLA) cells. To avoid
confusion we decided to adopt the term “adipose-derived
stem cells” (ADSCs) to identify the isolated, plastic-
adherent, multipotent cell population as recommended by
the International Fat Applied Technology Society.
Studies were assigned a Level of Evidence (LOE)

adapted from the Oxford Centre for Evidence Based
Medicine (http://www.cebm.net/index.aspx?o=1025) to
establish whether valid and reliable evidence is present
for effects of patient factors on adipocyte viability. These
levels, ranging from LOE-1 to LOE-5, are based on
methodology and study design. In brief, LOEs were
assigned as follows: LOE 1 = randomized control trial;
LOE-2 = cohort study or cross-sectional study in consecu-
tive participants; LOE-3 = case–control study; LOE-4 =
case series study; LOE-5 = animal studies, expert opinion
or case report [26].

Results
The search for patient factors that affect SVF, adipo-
cyte or ADSC yield and/or function led to the identi-
fication of the following factors described in the
following sections: age, body mass index (BMI), gen-
der, menopausal status, donor sites, HIV status and
cancer treatments, including radiotherapy, chemother-
apy and tamoxifen usage.

Age
Sixteen LOE-2 in vitro studies of human ADSCs and
three LOE-5 animal studies reported on the effect of age
on ADSC viability and function (Table 1). Twelve of
these studies did not identify any effect on adipocyte
yield [27–36]. However, more recent studies using gene
expression measurements of senescence have shown a
significant decrease in overall yield of nucleated cells
with increasing age [37, 38] and, more potently, a signifi-
cant decrease in the proliferative and differentiation
capacities of ADSCs [35, 38–41]. Madonna et al. [42]
compared omental ADSCs between ‘young’ (n = 18, 40–
54 years) and ‘elderly’ (n = 22, 66–92 years) and reported
significant decreases in ADSC yield and angiogenic cap-
acity with increasing age. While Zhu et al. [43] did not
find a significant effect on the adipogenic potential of
ADSCs, advancing age significantly reduced osteogenic
potential. This is supported by other studies that have
reported similar age-dependant decreases in the osteo-
genic potential of ADSCs [9, 44]. Such age-dependency

of differentiation capacity has also been observed in rat
ADSCs [45–47].

Body mass index
Fourteen LOE-2 studies investigated the effect of BMI
on adipocyte viability. Eight studies demonstrated an
effect of increasing BMI on adipocyte viability and func-
tion [28, 34, 48–52] (Table 2). In the largest study to
date (n = 189), with 30 women within the ‘obese’ cat-
egory (BMI >30 kg/m2), van Harmelan et al. [34] re-
ported a significant reduction in the number of viable
mature adipocytes per gram of adipose tissue and in the
differentiation capacity of ADSCs with increasing BMI.
This finding is supported by five other in vitro studies
that also showed decreases in both differentiation and
proliferation capacities of adipocytes with increasing
BMI [28, 34, 48, 49, 51] (Table 2). Frazier et al. re-
ported ADSCs from obese individuals were compro-
mised in early adipogenic and osteogenic potential and
correlated this with their potential to form colonies in
vitro, which was inversely proportional to the individual’s
BMI.
In addition to the reduced capacity for differentiation

and migration and angiogenic and proliferative abilities
of ADSCs from obese humans [50, 52, 53], Perez et al.
[51] also noted changes in telomerase activity and DNA
telomere length, suggesting a decreased self-renewal
capacity and early apoptosis. Isakson et al. [49] and
Tang et al. [54] showed that this reduction in differenti-
ation of enlarged ADSCs may be related to increased
mitogen-activated protein 4 kinase 4 (MAP4K4) expres-
sion, which inhibits peroxisome proliferator–activated re-
ceptor (PPAR)-γ activation and thereby adipogenesis.
It has been reported that after massive weight loss,

subcutaneous adipose tissue returns to a non-inflammatory
state with a significant decrease in cytokines [55]. Mitter-
berger compared ADSCs from ‘formerly obese’ patients
who had undergone bariatric procedures to ‘obese’ and
‘normal weight’ individuals. They showed that bariatric
surgery and diet-induced long-term calorie restriction
substantially reprogrammed ADSCs, with reduced DNA
damage, improved viability and extended replicative life-
span [56]. ADSCs isolated from ex-obese patients attained
a mature adipocyte phenotype faster than those obtained
from non-obese patients [57], suggesting an enrichment
of cells in the ADSC population that are ‘more prepared’
for adipogenic differentiation.
Interestingly, six studies (LOE-2) reported no significant

association with increasing BMI [27, 29, 31, 32, 35, 36].
Mojallal et al. reviewed in a prospective study 42 women
with varying BMI. After dividing the patients into two
groups (BMI ≤25 or >25 kg/m2), they did not find a statis-
tically significant correlation between BMI and prolifera-
tion [31]. Similarly, Faustini et al. [29] analysed data from
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125 subjects stratified by gender and did not see an associ-
ation among increasing donor BMI and ADSC yield or
function (Table 2).

Gender
Ogawa et al. [58] showed in a LOE-5 study that PPAR-
[gamma]2 expression levels (marker of adipogenesis)
were 2.89 times greater in ADSCs harvested from female
mice compared to male mice, raising the possibility of a
significant role of gender. In vitro LOE-2 studies of
human ADSCs, however, have so far not shown any
difference in ADSC yield and proliferation by gender
[29, 30, 59]. Faustini et al. [29] studied 37 males and 88
females and reported that the best donor site among
men in terms of yield was the abdomen. Aksu et al. [60]
studied abdominoplasty tissue from three males and
three females and reported that ADSCs from males
showed more effective osteogenic differentiation com-
pared to those from females.

Menopausal status
Three LOE-2 in vitro and one LOE-5 in vivo study in
mice investigated the effect of menopausal status or
oestrogen on adipocyte viability. Geissler et al. [27] re-
ported increased adipocyte viability using lower abdominal
fat from younger, presumably pre-menopausal women
(<45 years) compared to from older women, suggesting a
modulatory role of circulating oestrogen levels. However,
information regarding hormonal status or supplements
was not gathered.
To further examine the effect of circulating oestrogens

on fat graft outcomes, the same group later harvested
adipose tissue from inguinal pads of mice that under-
went either ‘sham’ or ‘ovariectomy’ operations, which
was then injected into another set of mice [61]. The fat
grafts from mice that had the ‘sham’ procedure, and
therefore circulating oestrogen, were softer and showed
higher capillary density and higher expression of proan-
giogenic factors.
Interestingly, transfer of lipoaspirate into ‘sham’ or

‘ovariectomy’ recipients did not alter the weight or vas-
cular density 45 days after transplantation, suggesting a
smaller role of circulating oestrogen post-fat transfer
[61]. Addition of 17β-oestradiol to ADSCs has been
shown to significantly improve adipogenic differentiation
with enhanced survival of fat transfer by reducing apop-
tosis in nude mice [62, 63].

Donor site
The search for the ideal donor site for fat harvest is on-
going. So far ten LOE-2 in vitro studies using human
ADSCs and one LOE-5 animal study have investigated
donor site as a potential influence on adipocyte behav-
iour. Of the ten studies of human ADSCs, only three

found any difference in adipocyte behaviour between dif-
ferent sites (Table 3). Padoin et al. [32] (n = 25) showed
that fat from the lower abdomen and medial thighs has
higher ADSC yield compared to the upper abdomen,
trochanteric region, knees and flanks. Jurgens et al. [64]
(n = 22) also reported significantly higher ADSC yield
from abdominal aspirate with no significant differences
in differentiation capacity. Geissler et al. [27] (n = 24) re-
ported greater adipocyte viability in lipoaspirates from
lower abdomen compared to from flanks and inner
thighs, evident only in a subset of younger women
(<45 years). There is some evidence to suggest higher
ADSC yields from abdominal tissue compared to back
and knee among men [29]. However, this difference was
not seen among women. This is in agreement with pre-
vious studies suggesting that the choice of donor site has
little effect on fat graft outcomes [32, 65–68]. Within
the abdomen, fat superficial to the Scarpas layer displays
increased multipotency and stemness features compared
to a deep abdominal depot [33, 69].

Radiotherapy, chemotherapy and tamoxifen
A LOE-5 study by Poglio et al. [70] investigated mice after
whole body radiation and reported that adipose tissue can
be deeply damaged by radiotherapy, significantly reducing
both the number and proliferation capacity of ADSCs.
Administration of immunosuppressive medications

such as anti-lymphocyte treatment and alemtuzumab (lytic
monoclonal antibodies) and tacrolimus for lymphocyte de-
pletion following composite tissue transplantation have
been shown to decrease both the viability and proliferative
capacity of ADSCs in a dose-dependant manner [71].
In vitro exposure of human ADSCs to increasing doses

of tamoxifen, a selective oestrogen receptor modulator
used in breast cancer treatment, resulted in apoptosis,
inhibition of proliferation and differentiation in a dose-
and time-dependent manner [72]. Interestingly, Liang et
al. [73] reported no difference in differentiation potential
of ADSCs in vitro when exposed to three commonly
used chemotherapeutic agents: cisplatin, comptothecin
and vincristine.

Diabetes mellitus
A LOE-2 study compared gene expression profiles of
ADSCs in diabetic patients to those in age- and BMI-
matched controls. They reported a significant decrease
in ADSC differentiation capacity and up-regulation of
genes involved in inflammation and apoptosis in the dia-
betic patients [74]. Harris et al. [30] reported a trend of
lower yields of ADSCs in diabetics (n = 18) which was
not statistically significant.
Three LOE-5 animal studies investigated the effect of

fat grafting in a diabetic setting. Choi et al. [75] demon-
strated a higher resorption in rats with diabetes over
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90 days. This was supported by Jung et al. [76] with re-
ports of significantly lower weights, volumes and vascular-
ity in the diabetic group compared to the control group.
Ferrer-Lorente et al. [77] used a different approach and
analysed gene expression in subcutaneous adipose tissue
from Zucker diabetic fatty rats and their non-diabetic con-
trols. The subcutaneous adipose tissue of diabetic rats dis-
played widespread downregulation of markers of stemness
and differentiation and angiogenic potential.

Discussion
This review aims to identify patient characteristics that
may influence adipocyte and ADSC viability and behav-
iour in order to have a greater understanding of how to
improve fat graft retention rates. Peer first postulated
the ‘Cell Survival’ theory, suggesting the number of viable
cells within the graft correlated with the long-term sur-
vival of grafts [78, 79]. The restorative and reconstructive
qualities of fat grafting have been attributed to ADSCs
within the graft [80]. Moreover, addition of ADSCs to
transplanted fat was reported to support the formation of
new vasculature and promote graft retention [20, 41, 81].
A total of 41 papers were included in this review. Most

were in vitro studies on human tissue (LOE-2) and used
similar in vitro techniques to analyse the effects of differ-
ent patient factors on adipocyte and ADSC count as well
as function. However, it is difficult to make conclusive
recommendations as it is not clear whether the in vitro
findings translate to clinically significant differences.
Methods of adipocyte isolation and processing protocols
also varied among the studies and this is known to affect
yield [82, 83]. The included studies mostly had modest
sample sizes and consisted of healthy patients undergoing
elective plastic surgery procedures; therefore, the homo-
geneity in the sample may have reduced the power. Most
studies did not report on other ADSC functions such as
immunodulatory or angiogenic properties.
With an aging population, fat transfer procedures, par-

ticularly for regenerative properties, are becoming more
relevant. Age-related changes in fat tissue inflammatory
profiles resemble those in obesity, in which senescent
stem cells and endothelial cells accumulate along with
an increase in circulating pro-inflammatory cytokines,
including TNFα and IL-6 [84, 85]. This increased cyto-
kine release by ADSCs activates adjacent cells into a
pro-inflammatory state, impeding adipogenesis and pro-
moting fat cell lipolysis [86].
Advanced age is known to have detrimental effects on

blood and BM-MSCs [87–89]. In contrast, ADSC yield
seemed to be stable across age groups in 12 of 16 LOE-2
studies included in this review (Table 1). The subjects in
most of these studies were having elective cosmetic pro-
cedures and therefore the homogeneity of subjects, with
very few subjects being elderly (>70 years), may have

reduced the power to detect an effect. However, it is re-
assuring to know that ADSC yield appears relatively stable
across age groups. Similarly, BMI was also found to have
little effect on ADSC yield in 12 LOE-2 studies. Although
the absolute yield of precursor cells per gram of adipose
tissue was reduced in some studies, this can be explained
by the initial increase in adipocyte size seen with weight
gain [90, 91]. These findings demonstrate the reproducibil-
ity of adipose tissue as a consistent and abundant source of
ADSCs across a spectrum of ages and BMI values.
Unsurprisingly there is evidence to support reduced

proliferative and differentiation capacities with increas-
ing age [30, 34, 37, 38], which is likely related to the de-
creased susceptibility of precursor cells to respond to
extracellular signals. Similarly, increasing BMI, particu-
larly within the obese category (BMI >30 kg/m2), was
observed to negatively impact ADSC functional capaci-
ties, with implications for their use in cellular therapies
and reconstructive surgery (Table 2). Although larger in
size, these adipocytes in obese individuals have been
shown to be deficient in perilipin phosphoproteins,
which are found on the cell surface and act as gate-
keepers preventing lipases from hydrolyzing triacylglyc-
erol [92]. This deficiency may contribute to fragile cell
membranes, thereby potentially increasing the basal rate
of lipolysis [93]. Another important consequence of
adipocyte enlargement is the development of local in-
flammation with infiltration of monocytes/macrophages
that act as scavengers of the remaining debris and lipids
[94] and higher expression of pro-inflammatory pro-
teins, including TNF-α, IL-6 and factor VII, affecting
adipocyte survival and functional capacities in recipient
sites [51, 95]. So far no clinical studies have investigated
if these cellular changes translate into clinical differ-
ences. Graft enrichment through supplementation of
ADSCs may be relevant for this cohort, along with weight
reduction interventions.
No clinical studies have yet set out to address associa-

tions between gender, menopausal status and hormone re-
placement therapies and ADSC yield. Circulating oestrogen
is a major regulator of adipose tissue, exerting its effects
primarily through two oestrogen receptors (ERs), ER-α and
ER-β. Studies have shown variable distribution of these
receptors among fat depots, affecting responses to
oestrogen signalling [96, 97]. Depletion of oestrogen
levels, for instance in post-menopausal women or in
ovariectomised mice, have been associated with an in-
crease in lipolytic activity, adipocyte diameter, oxidative
stress and inflammation [98].
In a questionnaire study among 508 surgeons practis-

ing in the US, the most preferred site for fat harvest was
the abdomen (89%), followed by thighs (34%) [99]. So
far, clinical studies have not yet been able to identify an
ideal donor site. Therefore, when used as fillers, site
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choice may be made on ease, safety of access, fat abun-
dance and patient preference. Nevertheless, application
of grafts harvested from a single depot has been advised,
especially for treatment of mirror zones (e.g. nasolabial
folds, cheeks ) as there is in vitro evidence that adipo-
cytes from different anatomical depots exhibit different
morphology and functional capacity [33, 100]. For ex-
ample, the distributions of adrenergic receptor subtypes
on adipocytes vary between depots, with abdominal sub-
cutaneous depots showing higher concentrations of
adrenergic receptors than gluteo-femoral adipose tissue
[101]. Therefore, abdominal depots in general are char-
acterized by a higher lipid turnover and undergo in-
creased lipolysis in response to adrenergic stress stimuli.
In comparison, lower-body fat stores have reduced

lipid turnover, retain the capacity to recruit additional
adipocytes as a result of weight gain, demonstrate fewer
signs of inflammatory insult and tend to be more resist-
ant to TNFα-induced apoptosis than abdominal ADSCs
in in vitro studies [100, 102, 103]. New data suggest that
these profound functional differences between upper-
body and lower-body tissues are controlled by site-
specific expression of developmental genes that direct
both the degree of adipocyte proliferation and aspects of
differentiation [65, 100, 104]. It is accepted, therefore,
that adipocytes from different subcutaneous depots (ab-
dominal versus gluteal) are developmentally distinct and
are cell autonomous, which means that even after trans-
plantation during fat transfer procedures, they can be
expected to have distinct phenotypes [105, 106]. How
they interact with the microenvironment in recipient
sites has not yet been studied in detail. It is possible gene
regulation determines depot-specific properties during
development and sex steroids play a modulatory role [27].
Additional data are required to determine whether

these findings translate into long-term retention. Most
studies have rarely considered interactions between gen-
der, BMI, menopausal status and other potential con-
founders and were of modest sample sizes (Table 3).
Nevertheless, current clinical data suggest there is no
significant difference in the volume or weight of grafted
fat from different donor sites.
Radiotherapy is increasingly being used to treat numer-

ous human malignancies [107]. Altered molecular signal-
ling and formation of reactive oxygen species cause single-
stranded DNA breaks that do not repair completely and
activate premature senescence or accelerated terminal dif-
ferentiation [108]. Despite improved resilience of ADSCs
through their superior DNA damage repair mechanisms
and reduced metabolic demands that protect them from
hypoxia and subsequent apoptosis [109, 110], studies have
demonstrated that radiotherapy adversely affects ADSCs,
necessitating the introduction of non-irradiated progeni-
tor cells from distant donor sites [70, 107].

Fat transfer in radiotherapy patients is further compli-
cated by the fact that irradiated recipient sites have un-
favourable microenvironments for graft survival because
of hypoxia and chronic inflammatory states. Furthermore,
stem cells within the injured area recruit myofibroblast-
like cells, which in turn contribute to fibrosis [111]. The
immunoregulatory capacity of transferred ADSCs to
modulate inflammation and thereby reduce fibrosis and
its normalising role in tissue regeneration have been well
documented [112, 113].
Use of tamoxifen is routinely discontinued before and

after major surgery because of the increased risk of ven-
ous thrombo-embolism with no documented effect on
increased cancer risk [114]. Given that tamoxifen has a
dose- and time-dependant detrimental effect on ADSCs,
discontinuing its use to support fat engraftment and
survival may be beneficial.
The link between chronic diseases like diabetes and im-

paired BM-MSC properties is well established [115–117].
Evidence collated from LOE-5 animal studies also sup-
ports the detrimental effects of diabetes on ADSC func-
tion, potentially limiting its potency in regenerative and
reconstructive surgery [30, 74–77]. The effect of other
common diseases and medications should also be fur-
ther investigated. Evidence so far suggests no significant
impact of total cholesterol, hypertension, renal disease,
physical exercise and peripheral vascular disease on
ADSC yield [30, 42].
Currently, surgeons aim to improve fat graft resorp-

tion by optimising the fat harvest and injection tech-
niques and preparation of the recipient bed [118]. An
improved understanding of patient factors that affect fat
viability and function would assist in the identification
of patient groups that could potentially benefit from
graft enrichment techniques. Surgeons may consider
transferring larger volumes of processed fat and adopt
techniques to boost levels of ADSCs in grafts using tech-
niques such as cell assisted lipotransfer [31, 37, 38],
where part of the lipoaspirate is used to extract ADSCs,
which are then used to supplement the cellular suspen-
sion before transplant.
Alternative strategies such as banking younger adipose

tissue when biological activity is at its greatest potential
or before chemoradiotherapy has become an option with
cryopreservation techniques [119, 120]. Transfer of
smaller fat particles and serial transfers of smaller vol-
umes at closer intervals may also support adipocyte sur-
vival within adverse microenvironments by reducing
demand [112]. The search for the ideal fat particle size
for transfer is ongoing [79].

Conclusions
Overall the literature is sparse, with varied methodolo-
gies used to compare the effects of different factors on
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adipocyte and ADSC functionality. A more uniform
comparison of all factors highlighted in this review, with
the application of a combination of tests for each out-
come measure, is essential to fully understand factors
that affect adipocyte and ADSC viability as well as func-
tion. This would be crucial information for surgeons
when deciding appropriate volumes of lipoaspirate to
inject, improve patient selection, and counsel patient
expectations with regards to outcomes and likelihood
for repeat procedures.
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