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Single cell transcriptomics suggest that
human adipocyte progenitor cells
constitute a homogeneous cell population
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Abstract

Regulation of adipose tissue stem cells (ASCs) and adipogenesis impact the development of excess body fat-related
metabolic complications. Animal studies have suggested the presence of distinct subtypes of ASCs with different
differentiation properties. In addition, ASCs are becoming the biggest source of mesenchymal stem cells used in
therapies, which requires deep characterization. Using unbiased single cell transcriptomics we aimed to characterize
ASC populations in human subcutaneous white adipose tissue (scWAT). The transcriptomes of 574 single cells from
the WAT total stroma vascular fraction (SVF) of four healthy women were analyzed by clustering and t-distributed
stochastic neighbor embedding visualization. The identified cell populations were then mapped to cell types present
in WAT using data from gene expression microarray profiling of flow cytometry-sorted SVF. Cells clustered into four
distinct populations: three adipose tissue-resident macrophage subtypes and one large, homogeneous population of
ASCs. While pseudotemporal ordering analysis indicated that the ASCs were in slightly different differentiation stages,
the differences in gene expression were small and could not distinguish distinct ASC subtypes. Altogether, in healthy
individuals, ASCs seem to constitute a single homogeneous cell population that cannot be subdivided by single cell
transcriptomics, suggesting a common origin for human adipocytes in scWAT.
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Introduction
White adipose tissue (WAT) dysfunction is central to
the pathologies associated with overweight/obesity such
as insulin resistance, type 2 diabetes, dyslipidemia, and
atherosclerosis. Obesity and insulin resistance are char-
acterized by increased fat cell size, changes in lipid/glu-
cose metabolism, as well as increased infiltration of
leukocytes, primarily macrophages [1, 2].
Adipocytes develop from adipocyte stem cells (ASCs) in

a process termed adipogenesis. Given that ~ 10% of the
adipocyte pool is renewed annually in adult humans, al-
tered adipogenesis might impact on adipose tissue function
[3, 4]. This notion is supported by the observation that
hypertrophic WAT (few, large fat cells), in comparison to a

hyperplastic phenotype (many small fat cells), is closely
linked to low adipocyte turnover and a pernicious meta-
bolic profile [3–5]. The current view is that hypertrophic
obesity develops when ASC differentiation is attenuated,
leading to ectopic lipid deposition in peripheral tissues
such as the liver, muscle, and vessels [6]. Recent data in
humans confirm that adipogenic markers in the entire
ASC population correlate with fat cell size and poor meta-
bolic measures [7]. Altogether, dysregulation of ASCs and
adipogenesis appear important in the development of
metabolic complications to excess body fat.
ASCs are the most abundant cell type in the stroma

vascular fraction (SVF) of WAT, and murine studies
have suggested the presence of several ASC populations
displaying different capacities to undergo adipogenesis
[8, 9]. Some markers that enrich for ASCs with marked
differentiation capacity have also been identified in
humans, including CD34 [10] and CD36 [11]. However,
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it is still unknown whether different populations of hu-
man ASCs are present in vivo.
In addition, ASCs are becoming an important source

of mesenchymal stem cells (MSCs) used in allogeneic
cellular therapeutics [12]. Therefore, characterization of
heterogeneity of human ASCs is of great importance
even for cellular therapies.
We aimed to map ASC populations in human sub-

cutaneous WAT by single cell RNA sequencing of the
total SVF of healthy individuals.

Materials and methods
Human subjects and adipose tissue dissociation
For single cell RNA sequencing, the SVF from subcuta-
neous (sc) WAT of four healthy individuals (Table 1)
was isolated as described previously [13]. For flow
cytometry sorting, SVF from scWAT of six healthy indi-
viduals (Table 2) was isolated and prepared as described
previously [7]. The study was approved by the regional
ethics board and all subjects provided their written in-
formed consent.

Single cell capture and imaging
Loading of SVF samples on a C1 Single-Cell AutoPrep
IFC microfluidic chip as well as imaging/cell selection
were performed as described previously [14] and in Add-
itional file 1: Supplemental methods.

Amplification, tagmentation, and sequencing
RT and PCR mixes were added to the chip and samples
were further processed using the C1 instrument script,
which included lysis, reverse transcription, and amplifi-
cation. cDNA quality was analyzed with an Agilent
BioAnalyzer. All procedures including tagmentation and
sequencing were as described previously [14] and in
Additional file 1: Supplemental methods.

Data analysis
Single cell RNA-sequencing data from 574 cells were ana-
lyzed in a custom Python environment. The data analysis
workflow was as described in detail previously [15]. In
brief, the following steps were performed: cell selection;
clustering of all cells (first-level clustering); t-distributed
stochastic neighbor embedding (t-SNE) visualization of all
cells; identification of differential expressed genes in cell

populations using negative binominal regression; clustering
of ASCs (second-level clustering); rare cell detection; and
pseudotemporal modeling. All procedures are described in
detail in Additional file 1: Supplemental methods. The
expression data were corrected for batch effects using
ComBat [16] and normalized according to total molecule
number before cubic spline fitting.

Flow cytometry sorting and RNA expression profiling by
microarray
Flow cytometry sorting of human WAT SVF was per-
formed as described previously [7]. RNA was prepared
from eight different cell WAT cell types (ASCs, total adi-
pose tissue macrophages (ATMs), M1 ATMs, M2 ATMs,
total T cells, CD4+ T cells, CD8+ T cells, and mature adi-
pocytes). Ten nanograms of RNA was amplified using
four cycles and loaded onto Clariom™D microarray chips.
For details see Additional file 1: Supplemental methods.
Microarray data have been published in GEO (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100795;
token qxuxgcoojfwdpgd).

Results
To identify ASC subpopulations in human scWAT, we
sequenced SVF-derived single cells; 574 cells passed
quality control. Subsequently, most variable genes were
selected (Additional file 2: Table S1). Cell and gene clus-
tering, as well as heatmap analysis, could separate the
cells into four groups, which were present in all individ-
uals (Fig. 1a). t-SNE visualization also suggested four
major cell populations (Fig. 1b). We identified the genes
that best characterized these cell groups (Fig. 1c) and ex-
amined their expression in microarrays from FACS-
sorted SVF of scWAT obtained from six different pa-
tients (Fig. 1d). This showed that the largest t-SNE
population represented ASCs while the remaining three
populations mapped to ATMs of M1, M2, and an inter-
mediate subtype (Fig. 1d). Analysis of the single cell
transcriptome for established markers specific for ASCs
and macrophages confirmed the predicted populations
(Fig. 1e).

Table 1 Characterization of patients: single cell sequencing

Patient ID Gender Age (years) BMI

2014-36 Female 61 26.6

2014-37 Female 46 33.6

2014-39 Female 47 30.1

2014-124 Female 36 24.3

BMI body mass index

Table 2 Characterization of patients: fluorescence-activated cell
sorting microarray

Patient ID Gender Age (years) BMI

2016-76 Female 39 31.2

2016-83 Female 67 23.8

2016-86 Female 35 21.0

2016-89 Female 64 28.1

2016-96 Female 43 23.4

2016-98 Female 60 29.2

BMI body mass index
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Although the single cell transcriptomics revealed distinct
ATM subtypes, the ASC cluster appeared homogeneous.
To identify distinct ASC subtypes we selected the most
variable genes within the ASC population (n = 381 cells,
genes listed in Additional file 2: Table S2) and performed

cell and gene clustering analysis summarized as a heatmap
(Fig. 2a) and a t-SNE plot (Fig. 2b). However, no distinct
clusters were found using these approaches. Furthermore,
analysis designed to search for rare cell types [17] could
also not reveal any subtypes (data not shown).
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Fig. 1 a First-level clustering of SVF cells from scWAT. Left: cell–cell (upper) and gene–gene (lower) distance matrices of cells and genes ordered
according to cluster membership determined by first-level clustering. Pearson correlation used as distance metric. Right: heatmap showing normalized ex-
pression of genes (rows) over all cells (columns) in the dataset. Cells and genes ordered as shown on the left. Upper panel shows Patient ID membership
of cells, while lower panel shows cluster membership. b t-SNE plot showing visualization of WAT cells in 2-dimensional space. Cells colored according to
cluster membership introduced in (a). c Violin plots showing the most differentially expressed genes in each WAT cluster based on negative binominal
regression analysis. A gene is defined as differentially expressed in a population if its posterior probability (PP) exceeds the PP of all other populations with
at least 99% probability. Genes shown were selected from all significant differentially expressed genes according to distance between the median
expression in the relevant population (colored violin) compared to second highest median expression in any other population (gray violin). d Expression of
two top genes representing each cluster/t-SNE population (c) in flow cytometry-sorted WAT cell populations. Expression measurement performed by
Affymetrix Clariom™D microarray, normalized values compared (n= 6). e t-SNE plots showing expression of selected WAT marker genes over the dataset.
ATM adipose tissue macrophage, FACS fluorescence-activated cell sorting, t-SNE t-distributed stochastic neighbor embedding, hWAT human white
adipose tissue
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We considered that even though no specific ASC pop-
ulations were detected, the cells might represent a gradi-
ent of differentiation stages. Therefore, we placed
individual cells along a pseudotemporal trajectory in t-
SNE space (Fig. 2b) and screened for pseudotime-
dependent genes (n = 70 genes over significance cutoff
point). Gene expression was visualized using a rolling-

wave plot (Fig. 2c). Several collagen genes, CD55, and
Thy1 were more highly expressed in the cells localizing
to the beginning of the pseudotemporal ordering, while
ribosomal genes and KLF4 were enriched toward the
end. However, these genes showed only very minor dif-
ferences in expression within ASCs (Fig. 2d). In conclu-
sion, while we were able to divide ASCs into slightly
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Fig. 2 a Second-level clustering of ASCs. Left: cell–cell (upper) and gene–gene distance matrices (lower) of cells and genes ordered according to
cluster membership determined by first-level clustering. Pearson correlation used as distance metric. Right: heatmap showing normalized expression of
genes (rows) over all cells (columns) in the dataset. Cells and genes ordered as shown on the left. Upper panel shows total number of unique molecules
per cell, while lower panel shows cluster membership. Apparent from both the heatmap and the cell–cell clustering, there were no apparent subpopula-
tions of ASCs present in the data. b t-SNE visualization of ASCs based on gene modules selected in a. A minimum spanning tree through the data and the
corresponding diameter path are shown. Cells colored according to position in pseudotime. c Rolling-wave plot showing the spline-smoothed expression
patterns of significant pseudotime-dependent genes ordered according to pseudotime point of peak expression. Upper panel shows pseudotime position
of ASCs colored according to patient ID. Lowest panel shows position of four pseudotime bins corresponding to the most prominent expression patterns.
Example genes peaking in all four bins shown on the right. d Expression patterns of example genes introduced in C projected onto t-SNE visualization of
ASCs (left) and SVF cells (right). e Position of pseudotime bins introduced in C projected onto t-SNE visualization of ASCs (left) and SVF cells (right)
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different pseudotime-related states (Fig. 2e), we found
no evidence of distinct ASC subtypes in human WAT.

Discussion
To our knowledge, this is the first study reporting single
cell transcriptomic data of total resident SVF cells from
human WAT. Our main finding is that in healthy indi-
viduals ASCs seem to constitute a single and homoge-
neous population without evidence of any distinct
subtypes, which is in agreement with earlier study using
single cell PCR of presorted ASCs [18]. In contrast, we
were able to define several ATM populations which
served as an indirect quality control for our data set.
By performing pseudotemporal ordering of the cells

we observed a significant gradient of gene expression for
70 genes. Previously characterized markers for commit-
ted adipocyte progenitors, such as CD34, PDGFRA,
CD29, and CD36 [19], were not among these. A few
other markers known to be regulated by adipogenesis or
cell commitment (CD55, SFRP4, SEMA3C) [19–21]
appeared to be differentially expressed along the pseudo-
time axis. Unfortunately, expression differences were too
small and variable to enable FACS sorting of the cells
belonging to the early versus late phase of pseudotem-
poral order.
Markers for brown (MYF5, PAX5, MYOD1 [22]) or

beige/bright (MYF11 [23]) adipocyte progenitors were ab-
sent in our data set. A few cells expressed low levels of
CD24 [8] while no cells expressed VSTM2A [9], suggest-
ing that neither of these markers label ASCs in humans.
As already mentioned, several murine studies and few

human studies have indicated that the ASC population
is heterogeneous in the adipogenic capacity [8–11]; how-
ever, entire transcriptomes of the cells purified ex vivo
have never been compared. We do not exclude that sin-
gle markers might be connected with commitment to
adipogenesis or osteogenesis. However, such commit-
ment cannot be observed on the single cell transcrip-
tome level, meaning that differences in the gene
transcription level in the human ASC population are
small. Clear detection of CD36 and CD34 expression as
well as PDGFRA and PDGFRB expression suggests that
we do not lack populations that were shown earlier to
mark cells with different adipogenic capacity/commit-
ment, but these surface markers do not correspond to
specific transcriptomes of the cells.
Although our data suggest no major differences in the

transcriptome of individual ASCs, we cannot exclude that
differences and distinct populations may be present under
specific conditions such as insulin resistance and/or
detected using other approaches than those used herein
(sequencing of SVF samples on the C1 Fluidigm system).
In this study, we aimed to visualize heterogeneity of ASCs
in healthy individuals and we cannot exclude that morbid

obesity or diabetes might induce changes in the ASC
population. Finally, because we only examined scWAT we
cannot exclude that distinct progenitor populations may
exist in visceral WAT or in brown/beige adipose tissue.
Furthermore, we cannot exclude the possibility of variabil-
ity occurring beyond the level of mRNA expression (e.g.,
epigenetics), or only being detected by gene-specific ap-
proaches. These questions were out of the scope of this re-
port and will be addressed by future studies.
Taken together, our single cell transcriptomic approach

suggests that ASCs in healthy individuals constitute a
homogeneous cell population with only small variations in
differentiation state.
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