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Intramuscular transplantation of bone
marrow cells prolongs the lifespan of
SOD1G93A mice and modulates expression
of prognosis biomarkers of the disease
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Abstract

Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive
muscle weakness, paralysis and death. There is no effective treatment for ALS and stem cell therapy has arisen as a
potential therapeutic approach.

Methods: SOD1 mutant mice were used to study the potential neurotrophic effect of bone marrow cells grafted
into quadriceps femoris muscle.

Results: Bone marrow intramuscular transplants resulted in increased longevity with improved motor function and
decreased motoneuron degeneration in the spinal cord. Moreover, the increment of the glial-derived neurotrophic
factor and neurotrophin 4 observed in the grafted muscles suggests that this partial neuroprotective effect is mediated
by neurotrophic factor release at the neuromuscular junction level. Finally, certain neurodegeneration and muscle
disease-specific markers, which are altered in the SOD1G93A mutant mouse and may serve as molecular biomarkers for
the early detection of ALS in patients, have been studied with encouraging results.

Conclusions: This work demonstrates that stem cell transplantation in the muscle prolonged the lifespan, increased
motoneuron survival and slowed disease progression, which was also assessed by genetic expression analysis.

Background
Amyotrophic lateral sclerosis (ALS) is the most frequent
adult-onset motoneuron degenerative disease, character-
ized by degeneration of upper and lower motoneurons,
which leads to progressive paralysis and death from respira-
tory failure within 3–5 years of symptom onset [1–3]. The
ALS prevalence is 4-6 per 100,000 people [4] and approxi-
mately 90% of ALS cases are sporadic (SALS) while the
remaining 10% are generally inherited, known as familial
ALS (FALS) [5]. The pathogenesis remains unclear but sus-
ceptibility to FALS is associated with mutations in various

genes, like TARDBP, FUS, OPTN, VCP, UBQLN2, C9orf72,
TBK1 and the most common SOD1 [6], for a total amount
of 20 genes [7]. These genetics causes have allowed cre-
ation of transgenic mouse models of FALS. These animal
models develop pathological and clinical features closely
resembling human ALS, the most frequently used ALS
model being a transgenic mouse overexpressing human
SOD1 with a G93A mutation (SOD1G93A) [8, 9]. Because
familial and sporadic ALS share clinical and pathological
signs, SOD1G93A mice provide a good model to investigate
the pathogenesis of ALS and to test a wide range of
potential therapeutic molecules and approaches [10].
There are currently no efficient treatments for this

fatal disease, with riluzole being the only medication
prescribed, although with slight results [11, 12]. Because
of this, different experimental therapies have been tested
[13, 14] and among all of them cell therapy has been

* Correspondence: dpastor@umh.es
†Equal contributors
2Centro de Investigación Deporte, Universidad Miguel Hernández de Elche,
Alicante, Spain
3Instituto de Neurociencias de Alicante, UMH-CSIC, Universidad Miguel
Hernández de Elche, Alicante, Spain
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Rando et al. Stem Cell Research & Therapy  (2018) 9:90 
https://doi.org/10.1186/s13287-018-0843-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s13287-018-0843-z&domain=pdf
http://orcid.org/0000-0002-2884-6580
mailto:dpastor@umh.es
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


raised as a promising approach for treating ALS [15, 16].
Different types of stem cells and ways of administration
have been tested in experimental models of ALS, and
based on these results [17] clinical trials have been con-
ducted with slight but promising outcomes [18–22].
As ALS is a distal axonopathy [23, 24] in which neuro-

muscular degeneration precedes the onset of clinical symp-
toms and motor neuron (MN) death [25], some studies
have changed their target from the spinal cord to the skel-
etal muscle, to protect the neuromuscular junctions (NMJs)
and reduce MN degeneration by retrograde neurotrophism
through axonal projections. In this sense, different strat-
egies such as gene or cell therapy have been used to deliver
growth factors into skeletal muscles of animal models of
ALS [26, 27]. This type of approach may be considered
more feasible due to the accessibility of skeletal muscle and
more efficient, where both the MNs and NMJs are pro-
tected, preserving the function of the treated muscle [28].
Moreover, skeletal muscle is an accessible tissue that has a
direct connection with the nervous system and plays an im-
portant role in ALS pathophysiology [29, 30]; therefore, it is
possible to carry out studies in this tissue to find molecular
markers that could help in establishing diagnosis and prog-
nosis. In a recent study, Calvo et al. [31, 32] showed that
different degenerative biomarkers and genes involved in
muscle metabolism, maintenance and regeneration are al-
tered in skeletal muscle of SOD1G93A mice, and may serve
as genetic biomarkers for monitoring disease progression
after experimental therapies.
In the present study we evaluate the efficacy and feasi-

bility of intramuscular transplantation of total bone mar-
row cells (BMCs) in SOD1G93A mice. BMC grafts
prolonged survival, ameliorated MN degeneration and
slowed the clinical course of the disease. In parallel, a
downregulation in the expression of genetic biomarkers
also demonstrated the therapeutic benefit of BMC grafts.
We hypothesized that BMCs increased the bioavailability
of the neurotrophic factors glial-derived neurotrophic
factor (GDNF) and neurotrophin 4 (NT4) in the skeletal
muscle, preserving the integrity of the NMJs.

Methods
Animal care
All experimental procedures were approved by the Ethics
Committee of the University of Zaragoza and followed the
international (Directive 2010/63/EU) and national (RD
53/2010) guidelines for the use of laboratory animals.
Transgenic B6SJLTg(SOD1-G93A)1Gur/J mice expressing
a high copy number of the G93A mutant form of human
SOD1 (SOD1G93A) [8] and the green fluorescent protein
(GFP) (C57Bl/6-Tg(ACTB-EGFP)1Osb/J) were housed
under a 12-h light/12-h dark cycle at 21–23 °C with a rela-
tive humidity of 55% in the animal facilities of the institu-
tion. Food and water were available ad libitum. When

necessary, euthanasia was performed by CO2 inhalation
and anesthesia was induced by isoflurane inhalation.

Locomotor behavioral assays
At 70 days of age, balanced male and female SOD1G93A

mice were treated blindly by injecting in both hind limbs
either BMCs (n = 20) or fresh medium (n = 20). The
onset and progression of the disease was analyzed using
rotarod and treadmill tests. Mice were trained 2 weeks
before injection, allowed 1 week to recover and then the
tests were performed weekly [33].
The rotarod test was performed on an 8500 Rotarod

(Leica Scientific Instruments). The time an animal could
remain on the rotating cylinder which uniformly in-
creased speed from 4 to 40 rpm over a 5-min period was
measured. Animals were tested eight times in each ses-
sion and the best performance was recorded.
For the treadmill test, the LE 8700 model was used

(Leica Scientific Instrument). The runway, when in move-
ment, pushes the animal to the shock grid, set at 0.4 mA.
The treadmill is uniformly accelerated until the mouse
reaches the shock grid, which corresponds with the max-
imum speed the mouse can attain. Each mouse was placed
in the treadmill eight times per session and the maximum
speed obtained was recorded. With this assay it is possible
to measure the maximum speed attained by mouse dis-
ease models, including neurodegenerative models [34].

Lifespan analysis method
For the lifespan study, mice were sacrificed when they
were unable to right themselves within 30 s after being
placed on their side; this point was considered as the
survival endpoint according to the guidelines for preclin-
ical testing and colony management [35, 36].

Separation method of BMCs from GFP mice
Femurs were dissected from GFP-positive mice 6–8
weeks old, sacrificed by cervical dislocation. Bone mar-
row was extracted by pressure with a 30G syringe, and
single-cell suspensions were obtained by mechanical dis-
sociation. The cells were then counted using a Neubauer
camera and resuspended in fresh medium (D-MEM;
Invitrogen) at the adequate concentration.

Cell transplantation
Cell transplantation was performed as described previously
[37]. Briefly, bone marrow cells were isolated from GFP
mice and immediately 10 μl of medium containing 300,000
BMCs was injected into 70-day-old SOD1G93A quadriceps
femoris. After visualizing the muscle, the cells were
inoculated at two different points of inoculation. A negative
control group was similarly injected with 10 μl of fresh
medium (D-MEM; Invitrogen). SOD1G93A mice
transplanted with total BMCs obtained from GFP mice
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were designated BMC-transplanted mice and those injected
with culture medium were designated sham-injected mice.

Tissue preparation and immunohistofluorescence
Five weeks after injection, the mice were anesthetized
and then perfused with 4% paraformaldehyde in phos-
phate buffered saline (PBS). For immunofluorescence,
spinal cords and quadriceps femoris muscle were cryo-
preserved and embedded in tissue freezing medium and
quickly frozen (n = 6). Then, transverse spinal cord sec-
tions (20 μm) and longitudinal muscle section (20 μm)
were obtained serially with a cryostat. Skeletal muscle
inmunofluorescence was performed to detect the grafted
cells as described previously [37]. Histological samples
were observed using a fluorescence microscope (Leica
DMR; Leica Microsystems) and micrographs were taken
with a confocal microscope (Leica DMR).

Motoneuron counting
At 70 days, transplanted mice received total BMCs in
one of their hind limbs and cell culture medium in the
other. Sham-injected mice received cell culture medium
in both hind limbs. Four weeks later, 10 μl of 1,1′-dioc-
tadecyl-3,3,3′,3′-tetramethylindocarbocyanineperchlo-
rate (DiI) dissolved in 80% ethanol was injected into
both quadriceps femoris. After a survival period of 5
days, which is required for complete retrograde MN la-
beling, spinal cord sections from L1 to S2 were checked
every 100 μm for the number of stained neurons. Only
neurons located in the ventral horn that were DiI-
positive and presented a distinct nucleus were counted.
Stained neurons from the right and left ventral horns
were counted separately and compared between BMCs
of transplanted and sham mice. Results were expressed
as total number of MNs stained in the selected sections.

Gene expression
At the age of 120 days, quadriceps femoris muscles from
mice grafted with BMCs in both hind limbs (n = 6) and
from sham-injected mice (n = 6) were dissected and imme-
diately frozen in liquid nitrogen. Each muscle was pulver-
ized using a Frozen Cell Crasher and half of the power was
kept for protein extraction. Prior to being processed ac-
cording to the TRIzol Reagent protocol (Invitrogen) for
RNA extraction, powered muscle was further homoge-
nized using a PRO200 homogenizer (PRO Scientific Inc.).
Genomic DNA was eliminated using the Turbo DNA-free
Kit (Ambion) and cDNA was synthesized from 1 μg for
RNA using the Superscript II First Strand kit (Invitrogen),
all according to the manufacturer’s instructions. The pres-
ence of engrafted GFP cells in muscle tissue was confirmed
by reverse transcriptase PCR (RT-PCR). RT-PCR was per-
formed as described previously [38]. Quantitative real-time
PCR (qRT-PCR) for ALS biomarkers was performed using

TaqMan® primer/probe mixtures. Reactions were run using
the StepOne Plus Real-Time PCR System (Applied Biosys-
tems) according to the manufacturer’s instructions. For
neurotrophic factors, qRT-PCR was performed using
Power SYBR Green Master mix (Applied Biosystems). The
primers [39] and TaqMan® primer/probe mixtures used are
presented in Tables 1 and 2. Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) and beta actin (β-actin) were
used for normalization [40] and relative gene expression
compared with sham-injected mice was determined using
the 2–ΔΔCT method [41].

Western blot assay
Powdered tissue was homogenized in RIPA lyses buffer
with protease inhibitors (Complete; Roche); the hom-
ogenate was centrifuged at 10,000 × g for 10 min at 4 °C
and the resulting supernatants were collected. Next, the
protein concentration was determined by BCA method
(Sigma Aldrich). Then, 40 μg of total protein was sub-
jected to SDS/PAGE and transferred to PVDF mem-
branes (Amersham Biosciences). For inmunodetection,
membranes were incubated in blocking solution (5%
nonfat milk) overnight at 4 °C and then incubated for 1
h with primary antibodies against NT-4 (1:500; Santa
Cruz), brain-derived neurotrophic factor (BDNF) (1:500;

Table 1 Primer sequences used for gene expression analysis

Gene 5′ → 3′ Primer sequence

NT4 Forward TGAGCTGGCAGTATGCGAC

Reverse CAGCGCGTCTCGAAGAAGT

NGF Forward GCACTACACCCATCAAGTTCA

Reverse TCCTGAGTCATGCTCACAAGT

BDNF Forward TCATACTTCGGTTGCATGAAGG

Reverse GTCCGTGGACGTTTACTTCTTT

NT3 Forward AGTTTGCCGGAAGACTCTCTC

Reverse GGGTGCTCTGGTAATTTTCCTTA

GDNF Forward CGCCGGTAAGAGGCTTCTC

Reverse CGTCATCAAACTGGTCAGGATAA

VEGF Forward GCCAGACAGGGTTGCCATAC

Reverse GGAGTGGGATGGATGATGTCAG

IGF1 Forward CTGGACCAGAGACCCTTTGC

Reverse GGACGGGGACTTCTGAGTCTT

EGF Forward AGCATCTCTCGGATTGACCCA

Reverse CCTGTCCCGTTAAGGAAAACTCT

GAPDH Forward AGGTCGGTGTGAACGGATTTG

Reverse GGGGTCGTTGATGGCAACA

β-actin Forward AGAGGGAAATCGTGCGTGAC

Reverse CAATAGTGATGACCTGGCCGT

GFP Forward CTG CTG CCC GAC AAC CA

Reverse GAA CTC CAG CAG GAC GAC CAT GTG
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Santa Cruz), GDNF (1:500; Santa Cruz) and GAPDH (1:
1000; Santa Cruz). After incubation with HRP-
conjugated secondary antibodies (Santa Cruz), bands
were visualized by enhanced chemiluminescent reagent
(GE Healthcare Life Science). Immunoblots were ex-
posed and scanned, and, finally, densitometry was mea-
sured with AlphaEaseFC software (Bonsai).

Statistical analysis
Data are expressed as mean ± SEM. Statistical analysis for
behavioral assays was performed by means of one-tailed
Student’s t test; for both protein and gene expression quan-
tification, two-tailed Student’s t test was used. Nonparamet-
ric Mann–Whitney test was used for cross-sectional areas.
Kaplan–Meier survival curves and the Mantel–Cox log-
rank test were used to analyze disease onset and lifespan.
Values were considered statistically significant at p < 0.05.
Tendency was assumed when 0.1 > p > 0.5.

Results
Bone marrow transplant improved evolution and
prolonged survival of SOD1G93A mice and
downregulated the expression of genetic markers of ALS
Immunofluorescence and RT-PCR revealed the presence of
GFP-positive cells in the skeletal muscle of SOD1G93A mice
35 days after transplantation
We first assessed whether the transplanted cells were
able to survive in the host skeletal muscle. To this aim,
quadriceps femoris muscle was tested for the presence of

GFP-positive cells. Five weeks after transplantation, im-
munofluorescence against GFP demonstrated the pres-
ence of GFP-positive cells in BMC-transplanted mice (Fig.
1a). Furthermore, RT-PCR also revealed the expression of
GFP in the quadriceps femoris of BMC-transplanted mice
but not in the muscle of the sham-injected mice (Fig. 1b).
From the microphotography it can be observed that GFP-
positive cells remain in the skeletal muscle 35 days after
transplantation, but in a low concentration; in fact, it was
difficult to find them, probably produced by cell death
after transplant, as Gubert et al. [42] found in other tissue.
The image corresponds to a longitudinal section close to
one of the inoculation points as the cells are not able to
migrate through the tissue.

Bone marrow grafts significantly improved disease clinical
outcomes and prolonged survival of SOD1G93A mice
BMC transplants did not significantly delay disease onset
as compared to the sham-injected group (Fig. 1c, d). How-
ever, the duration of symptomatic phase was prolonged in
the BMC-transplanted group (Fig. 1c, e). Regarding the
lifespan, the BMC-transplanted mice showed significantly
longer survival rates compared to the sham-injected mice
(143 ± 13 and 137 ± 7 days respectively; log-rank test, p <
0.005) (Fig. 1c, e). The beneficial effect of BMC transplants
on motor function and coordination was assessed by
rotarod and treadmill tests. Concerning the rotarod test,
BMC transplants did not delay the appearance of the first
signs of motor deficiency. However, the average rotarod
performance of the BMC-transplanted mice from 120 to
140 days was significantly improved (p < 0.05) (Fig. 1f).
Similarly, from 110 to 140 days, the BMC-transplanted
mice performed better in the treadmill test than did the
sham-injected mice (Fig. 1g).

Bone marrow grafts induced downregulation of genetic
biomarkers of ALS
The transcript levels of five potential ALS longevity bio-
markers recently described by our group were quantified
[31] (Fig. 2a). Specifically, transcripts of collagen, type XIX,
alpha 1 (Col19a1), glutathione reductase (Gsr) and sorting
nexin 10 (Snx10) were significantly reduced in the BMC
transplant mice (Fig. 2a) (p < 0.05). As the expression of
these genes negatively correlates to longevity, the downreg-
ulation observed agrees with the lifespan extension in
BMC-transplanted mice. Surprisingly, no differences were
found in Calmodulin 1 (Calm1) and myocyte enhancer fac-
tor 2C (Mef2c) transcripts, involved in muscle damage and
myogenic pathways respectively (Fig. 2a).
Subsequently, we analyzed the expression profile of

several genes involved in different pathways of muscle
metabolism and structure maintenance that have been
described to be significantly upregulated in skeletal
muscle of SOD1G93A at late symptomatic phases of the

Table 2 TaqMan® probe and primer mixtures used in gene
expression assays

Gene Part number

Ankrd1 Mm00496512_m1

Calm Mm00486655_m1

Col19a1 Mm00483576_m1

Gsr Mm00833903_m1

Impa1 Mm00497770_m1

Mt2 Mm00809556_s1

Mef2c Mm00600423_m1

Myod1 Mm00440387_m1

Myf5 Mm00435125_m1

Myog Mm00446194_m1

Nnt Mm00435154_m1

Pax7 Mm00834079_m1

Rrad Mm00451053_m1

Rtn4 Mm00445861_m1

Sln Mm00481536_m1

Snx10 Mm00511049_m1

β-actin 4352933E

GAPDH 4352932E
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disease [31]. The transcriptional level of sarcolipin (Sln),
involved in calcium homeostasis, showed a robust
downregulation (p < 0.001) (Fig. 2b). Three genes related to
metabolic processes, inositol(myo)-1(or 4)-monophosphatase
1 (Impa1), mitochondrial nicotinamide nucleotide
transhydrogenase (Nnt) and metallothionein 2 (Mt2), were
strongly downregulated as well, this reduction being
especially remarkable in the case of Mt2 (Student’s t test:
Impa1 and Nnt, p < 0.01; Mt2, p < 0.001) (Fig. 2b).
Surprisingly, the expression of Ankyrin repeat domain 1

(Ankrd1), a muscle plasticity and injury marker [43], was not
modified. Although a tendency for downregulation can be
appreciated in the graph, it was not statistically significant
due to a large intragroup variability (Fig. 2b). Previous
studies have demonstrated that transcriptional levels of
paired box 7 (Pax7) and myogenic regulatory factors
myogenic differentiation 1 (Myod1), myogenic factor 5 (Myf5)
and myogenin (Myog) are dramatically upregulated in the
muscle of SOD1G93A mice at a late symptomatic stage of the
disease (120 days) compared with aged wild-type littermates

Fig. 1 Effect of BMC transplantation into skeletal muscle of ALS transgenic SOD1G93A mice. a Representative longitudinal section of quadriceps femoris
muscle showing immunohistochemical labeling for GFP cells (green). Nuclei stained with DAPI (blue). b Effect of BMC transplant on course of disease in
SOD1G93A mice. BMC-treated mice are shown in dark gray and sham-injected mice in light gray. RT-PCR amplification for the detection of GFP expression
in mouse quadriceps femoris after intramuscular BMC transplantation (T treated mice, P GFP cells used as positive control, B Black control, M RNA Marker).
c Onset of symptoms and mortality of BMC-treated and sham-injected mice presented by days. d, e Cumulative probability of d onset of disease symp-
toms and e survival. f, g Motor functions assessed by rotarod and treadmill tests. f Latency of fall when submitted to rotarod test. g Maximum speed
attained as measured on the treadmill. n = 20 sex-balanced animals per group. ^p < 0.10; *p < 0.05. Error bars indicate SEM. BMC bone marrow cell
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[44]. We analyzed Pax7 and MRF transcripts and detected a
significant and strong reduction in the RNA level of MRFs
in the BMC-transplanted mice (Fig. 2c) (p < 0.05 for Myf5
and p < 0.01 for Myod and Myog). However, no differences
were observed in Pax7 expression (Fig. 2c).
Overall, these results would evidence muscle metabolic

restoration after muscle BMC engraftment in the
SOD1G93A mice model—the mechanism underlying the

observed motor function improvement and prolonged
lifespan of the mice.

BMC graft improved maintenance of NMJs and increased
survival of motoneurons in the spinal cord in SOD1G93A
mice, and these effects are mediated by neurotrophic
factor release
BMC transplant increased the survival of motoneurons in
the spinal cord of SOD1G93A mice
DiI was injected into both quadriceps femoris of BMC-
transplanted and sham-injected mice, and after 5 days the
mice were perfused and spinal cords extracted for immuno-
histochemical analysis. Since DiI is transported retrogradely
from the muscle to the body of the MN, only the surviving
MN that still innervated those muscles was stained and con-
sidered for quantification (Fig. 3a). In the case of BMC-
transplanted animals, the left ventral horn, linked with the
treated limb, presented a higher number of retrogradely la-
beled MN compared to the right ventral horn, correspond-
ing to the nontreated limb (right, treated side 63.66 ± 9.75;
left, contralateral side 45 ± 5.95; p < 0.05) (Fig. 3c). In the
sham-injected mice, no significant differences were found in
the number of stained MNs between the right and left sides
of the spinal cords (SH left 40.67 ± 17.95, SH right 36.5 ± 7.
95; p = 0.83) (Fig. 3c). These results indicate that the mice
treated in one limb with BMCs presented a higher number
of surviving MNs innervating that limb compared to the
contralateral side. Interestingly, fluorescent cellular debris
was abundant in the nontransplanted limb, in some cases
around the remaining innervating MNs (Fig. 3a), indicating
that retrograded labeled MNs have suffered cell death dur-
ing the 5 days after DiI labeling. In contrast, almost no fluor-
escent cellular debris was observed in the transplanted side,
suggesting a less active degenerative process.

BMC grafts improved maintenance of NMJs
To determine the effect of BMC grafts on the NMJs, we
quantified transcript levels of Ras-related associated with
diabetes (Rrad), cholinergic receptor, nicotinic, alpha 1
(Chrna1) and Reticulon-4 (NogoA), a well-known inhibitor
of axonal regeneration and promoter of NMJ destruction
[30, 45]. Rrad is an early marker of muscle injury, correlat-
ing its expression positively with ALS both in patients and
animal models from the presymptomatic stages of the
disease [40, 46]. Similarly, the denervation rate was assessed
by Chrma1 transcript levels, as the expression of its recep-
tor is modulated by electrical activity [47–49]. In 120-day-
old SOD1G93A mice, Rrad, Chrna1 and NogoA transcripts
exhibited a considerable reduction in the BMC-
transplanted group (Fig. 3d). These observations supported
the idea that BMC transplant improves NMJ stability and
may lie behind the observed motor function improvement
and prolonged lifespan of the mice.

Fig. 2 Quantification of transcript levels of genes described to be
significantly upregulated in skeletal muscle of SOD1G93A mice at late
phases of the disease (120 days). a Fold-change in expression of Col19a1,
Gsr, Snx10, Calm1 and Mef2c. b Downregulation of Sln, Impa1, Nnt, Mt2
and Ankrd1. c Transcript levels of Pax7 and myogenic regulatory factors
(Myod, Myf5, Myog). Results shown as fold-change in BMC-treated
SOD1G93A mice muscles (dark gray bars) relative to sham-injected
muscles (light gray bars). *p < 0.05; **p < 0.01; ***p < 0.001
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Fig. 3 Spinal cord motoneuron (MN) counting and neuromuscular state after BMC transplantation (at 120 days). a DiI-labeled MNs (red) in the spinal
cord, nuclei stained with DAPI (blue). b 40× image of DiI-stained MN. c Right: number of MNs in mice treated with bone marrow on one hind limb
versus the contralateral limb. *p < 0.05. Error bars indicate SEM. n = 6 mice. Left: number of MNs in the spinal cord of sham-injected mice. Error bars
indicate SEM. n = 5. d Chrna1, Rrad and NogoA transcript levels in BMC-treated mice relative to sham-injected mice. SH = Sham-operated; TR =
Treated. *p < 0.05; **p < 0.01
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The therapeutic effect of BMC grafts was mediated by
neurotrophic factor release
Mesenchymal stem cells from the bone marrow are
known to secrete different trophic factors involved in
neuroprotection [50]. Therefore, the transcription levels
of GNDF, epidermal growth factor (EGF), vascular endo-
thelial growth factor (VEGF), insulin-like growth factor
(IGF), nerve growth factor (NGF), neurotrophin 3 (NT3)
and NT4 were analyzed in the BMC-grafted muscles
compared to sham-injected muscles (Fig. 4a).
Consistently, NT4 and GDNF protein levels showed a

2-fold increase (Fig. 4b). NT4 is produced by MNs and
muscle fibers, and its release by skeletal muscle is posi-
tively regulated by muscle activity [51]. GDNF is a well-
known neurotrophic factor that has been proposed as a
therapeutic agent for ALS with promising results [52].
These results support the hypothesis that the thera-

peutic effect of BM grafts is localized at the NMJs and
mediated, at least in part, by the neurotrophic factors
NT4 and GDNF through the induction of axonal sprout-
ing and continuous synaptic remodeling of NMJs, thus
enhancing neuromuscular transmission [53–55].

Discussion
Here, we demonstrated that the intramuscular transplant of
total BMCs presented some improvements in the pathology
course, prolonging the lifespan and ameliorating the disease
phenotype of SOD1G93A mice, a suitable, well-known and
deeply characterized animal model of ALS [35, 56].
Given the lack of effective treatment for ALS patients, a

wide variety of experimental therapeutic strategies have
arisen including transplantation with mesenchymal stem
cells from different origins such as adipose tissue and bone
marrow [57–60], as well as umbilical cord blood and neural
stem cells [61–64]. Traditionally, these studies have been
focused on the capability of the grafted cells to reach and
exert their beneficial effects in the central nervous system
by differentiating into nerve cells or releasing neurotrophic
factors that could improve the survival of MNs, and for
these reasons, intracerebroventricular, intrathecal, intraven-
ous and intraspinal administration have been the most fre-
quent delivery methods employed (reviewed in [17]).
However, despite ALS being considered to have a distal

axonopathy component in which MN degeneration occurs
as a dying back disorder [23, 25, 65], and muscle disturb-
ance being an early event in the disease that has even been
considered a primary target in ALS pathogenesis [29, 30,
66], to our knowledge skeletal muscle has been barely pro-
posed as a target organ [27, 37, 52] and the effects of stem
cell engraftment on muscles have been poorly studied in
animal models of neuromuscular diseases and in particular
in ALS. Previous results from Pastor et al. [37] showed that
BMC grafts into quadriceps femoris muscle were capable of
improving the survival of MNs in the spinal cord and the

motor functions of mdf/ocd mice, a motoneuron degenera-
tive mouse model, through the production and secretion of
trophic factors such as GDNF. Here we employed the
SOD1G93A mouse, a more suitable murine model for ALS
[35], carried out survival studies and, remarkably, assessed
the efficiency of BMC transplant by analyzing the
expression of genetic biomarkers described previously by
our group. Total BMCs constitute a heterogeneous
population which includes both mature and immature
hematopoietic cells and mesenchymal stem cells (MSCs)
[67]. BMCs can be relatively easily and painlessly isolated
and require minimum manipulation prior to transplant,
which has facilitated their translation into clinical trials for
ALS [18] and other neurological diseases, demonstrating
that this approach is feasible and safe [68]. Thinking in a

Fig. 4 Gene and protein expression of neurotrophic factors. a qRT-PCR
analysis of EGF, IGF, NT3, NT4 and GDNF transcript levels in BMC-treated
mice (dark gray) compared to sham-injected mice (light gray). *p <
0.05; **p < 0.01; ***p < 0.001. Error bars indicate SEM. n = 6. b Fold-
changes in expression of GDNF and NT4 proteins in skeletal muscle of
BMC-treated mice (dark gray) and sham-injected mice (light gray)
assessed by western blot analysis. Quantities shown as ratios to
GAPDH. *p < 0.05. Error bars indicate SEM. n = 6 per group. No differ-
ences observed in IGF, NT3 and VEGF expression between both groups,
and no NGF detected (data not shown). However, there was a solid de-
crease in GDNF (p < 0.05) and a strong upregulation of NT4 (p < 0.01)
in BMC-treated mice. BDNF brain-derived neurotrophic factor, EGF epi-
dermal growth factor, IGF Insulin-like growth factor, NT neurotrophin,
GDNF glial-derived neurotrophic factor
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likely future translation, we simultaneously performed
BMC extraction and transplant following a protocol that
reduces the manipulation of the cells to a minimum and
highly resembles the clinical procedure used in previous
clinical trials. In addition to technical reasons, in this study
BMCs were chosen because we had observed previously
that the therapeutic effect was higher when transplanting
total BMCs instead of MSCs alone, probably due to a
synergic effect between the different bone marrow
populations and an increment in the survival rate of the
grafted cells [33]. Other cells from BMCs like monocytes or
macrophages should be related to the treatment effect. ALS
patient macrophages can contribute to MN loss and
inflammatory response is increased in muscles [69]; on the
other side, a graft of healthy MSCs modified to produce
higher volumes of GDNF reduced the local inflammatory
process in ALS muscles and improved the NMJ state [70].
The effect of external healthy macrophage graft should be
studied in future research to increase our knowledge about
its separate possible effect.
Bone marrow mesenchymal stem cells are able to syn-

thetize and secrete neurotrophic factors [50, 71, 72] and
have immunomodulatory properties. Although theoretic-
ally possible, in this study we did not observe any fusiform
GFP cell suggesting muscle differentiation. We found a
significant increase in NT4 and GDNF protein levels in-
duced by BMC grafts; and therefore we speculated that
BMCs exert their therapeutic effect by releasing neuro-
trophic factors. In agreement, previous studies showed
that BMC transplant from GDNF knock-out embryos had
no therapeutic effects [33], so it is reasonable to think that
GDNF contributes to the BMC therapeutic effect. How-
ever, we cannot rule out the possibility that these cells
may modulate the secretion activity of the skeletal muscle
toward a neuroprotective phenotype; future studies of
gene silencing with siRNA against GDNF and NT4 should
be designed to answer this question, and to clarify whether
we are showing a direct effect of BMC grafting or a para-
crine effect of the BMCs over local tissue. Regardless of
the source, both GDNF and NT4 would contribute to
skeletal muscle homeostasis and NMJ stabilization. GDNF
is important for the maintenance of NMJs and enhanced
plasticity and remodeling of NMJs after exogenous admin-
istration [55, 73]. In ALS pathology, GDNF could be pre-
venting axonal terminal degeneration and retrograde
transportation to MNs. Concerning NT4, in-vitro studies
demonstrated that NT4 potently prevented apoptotic MN
death [74] in a model of chronic MN degeneration in-
duced by malonate [75] or glutamate [74, 76], and had
trophic effects on MNs in vivo [77–79]. These trophic
properties lead us to consider NT4 as a potential candi-
date for the treatment of ALS. In ALS pathogenesis,
muscle atrophy is observed at late phases of the disease
when the denervation process is largely advanced [8, 80],

which led us to focus on the destruction of the NMJs as
this occurs as an early pathological event [30]. Therefore,
the overexpression of NT4 at mRNA and protein levels in
BMC grafted muscles suggest an effect of BMCs in the
maintenance and stabilization of active synaptic connec-
tions that could initially compensate the denervation and
loss of motor function abilities. Supporting this idea, NT4
mRNA levels decrease after blockade of neuromuscular
transmission and increase after electrical stimulation and
during postnatal development, suggesting a role in
activity-dependent remodeling and maintenance of adult
motor innervation and neuromuscular performance [53].
In this sense, recent contributions suggest that MN loss

in ALS occurs in a dying back pattern starting from skeletal
muscle and NMJ abnormalities and progressing to the
neuronal cell body [23, 30, 65, 81]; and skeletal muscle-
derived [27, 52, 82] but not motoneuron-derived GDNF ex-
panded the lifespan of SOD1G93A mice [31, 83]. In
agreement, the transcript levels of Rrad, regulated by
oxidative stress [40, 46], Nogo-A, an axonal regeneration
inhibitor [30, 45], and Chrna1, upregulated by electrical
activity [47–49], showed a consistent downregulation in the
transplanted SOD1G93A mice skeletal muscle. These three
genes are considered neurodegenerative biomarkers and
were progressively upregulated in muscle biopsies from
presymptomatic SOD1G93A mice [84]. Surprisingly, we
observed a downregulation of GDNF mRNA expression
that may indicate a rapid translation into protein.
Moreover, GDNF mRNA levels in muscle increase as a
response to ongoing denervation [85] and correlate with
the number of partially atrophic muscle fibers [86]. The
observed downregulation in the transcript levels of GDNF
may indicate a decline in the progression of denervation
atrophy. In agreement, the expression levels of GDNF
transcripts in biopsies from ALS patients were significantly
increased compared to biopsies from healthy donors [85,
86]. As mentioned previously, diagnosis of ALS is based on
clinical and electrophysiological criteria which are difficult
to unify [87]. Hence, one of the current challenges for
researchers in ALS is to obtain reliable and easily
measurable biomarkers that would greatly facilitate early
diagnosis and monitoring of disease progression and
effectiveness of therapies. Assessments of different
parameters in cerebrospinal fluid, muscle or plasma, and
electrophysiological measurements or neuroimaging
techniques, have been proposed as potential diagnosis or
prognosis biomarkers both in animal models and ALS
patients [88]. In this sense, Calvo et al. [31] reported a set
of five candidate genes (Col19a1, Gsr, Snx10, Calm1 and
Mef2c) whose expression in skeletal muscle is upregulated
and negatively correlates with longevity in the SOD1G93A

mouse model. In agreement with the prolonged lifespan of
the BMC-transplanted mice, we found downregulation of
the expression of Col19a1, Gsr and Snx10 biomarkers.
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Therefore, the modulation of the expression of these genes
in addition to all of the evidence shown supports the idea
that BMCs exerted beneficial effects on SOD1G93A mice.

Conclusions
Overall, here we present an accurate, safe and effective
therapeutic approach to rescue the ALS phenotype,
based on BMC transplant in the quadriceps femoris
muscle. Total BMCs transplanted into SOD1G93A mice
muscle slowed the clinical course of the disease and
prolonged survival when compared to the sham-injected
mice, supporting the feasibility and efficacy of this type
of cell transplantation as a promising therapeutic strat-
egy for ALS. Moreover, we monitor the effect of the
therapy by analyzing the evolution of ALS-specific gen-
etic biomarkers which are useful in the development of
preclinical and clinical trials. Finally, we hypothesize that
NMJ stabilization by BMCs producing neurotrophic fac-
tors GDNF and NT4 may lie beneath the beneficial ef-
fects on MN rescue. However, the small number of
grafted cells found at the end of the process makes us
think that more complex therapies could improve clin-
ical results, with more than one graft, or maybe different
grafts for different objectives.
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