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Abstract

Background: Recent studies have shown that deficiency in the Fanconi anemia (FA) DNA repair pathway enhances
the error-prone non-homologous end-joining (NHEJ) repair, leading to increased genomic instability, and that genetic
or pharmacological inhibition of the NHEJ pathway could rescue the FA phenotype.

Methods: First, we exposed LSK cells from WT and Fanca™™ mice to DNA-PKcs inhibitor NU7026 or Ku70 knockdown
to examine whether inhibition of NHEJ sensitizes Fanca”~ HSPCs to PARP inhibitor (PARPI)- or interstrand crosslinking
(ICL)-induced cell death and genomic instability. We then generated DNA-PKcs™**Fanca™™ mice to investigate the
effect of specific inactivation of NHEJ on fetal HSCs. Lastly, we used two p53 mutant models to test whether specific

Fanca”~ DNA-PKcs™* mice.

DNA-PKcs™3* mice.

end joining (NHEJ)

inactivation of the p53 function in apoptosis is sufficient to rescue embryonic lethality and fetal HSC depletion in

Results: Inhibition of NHEJ sensitizes HSPCs from Fanca™~ mice to PARP inhibition- and ICL-induced cell death and
genomic instability and further decreases Fanca™~ HSPC proliferation and hematopoietic repopulation in irradiated
transplant recipients. Specific inactivation of NHEJ activity by the knockin DNA-PKcs
models, Fanca™~ and Fancc™~, leads to embryonic lethality. DNA-PKcs
Fanca™~ embryos due to increased HSC apoptosis and cycling. Both p53~~ and a knockin p53°"°“ mutation, which
selectively impairs the p53 function in apoptosis, can rescue embryonic lethality and fetal HSC depletion in Fanca™~

Conclusion: These results demonstrate that the NHEJ pathway functions to maintain Fanconi anemia fetal HSCs.

Keywords: Fanconi anemia (FA), Hematopoietic stem cells (HSCs), Homologous recombination (HR), Non-homologous

FA3A mutation in two FA mouse

VA causes fetal HSC depletion in developing

Background

Fanconi anemia (FA) is a genetic disorder associated
with bone marrow (BM) failure and malignancies includ-
ing leukemia and solid cancers [1-4]. Mutations in any
of the 22 FA genes (FANCA-W) lead to clinical manifes-
tations characterized by developmental abnormalities,
progressive bone marrow failure (BMF), and a high risk
of developing cancer including leukemia [5-8]. At the
cellular level, FA is characterized by chromosomal

* Correspondence: Qishen.Pang@cchmc.org

'Division of Experimental Hematology and Cancer Biology, Cincinnati
Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH
45229, USA

“Department of Pediatrics, University of Cincinnati College of Medicine,
Cincinnati, OH 45229, USA

B BMC

instability and DNA cross-linker sensitivity, which
serves as a clinical diagnostic hallmark of FA [1-4]. At
the molecular level, eight FA proteins (FANCA, -B, -C,
-E, -F, -G, -L, and -M), along with other associated fac-
tors, form the FA core complex in response to DNA
damage or replicative stress, which acts in part as an
ubiquitin ligase. This FA core complex monoubiquiti-
nates two downstream FA proteins, FANCD2 and FANCI,
which then recruit other downstream FA proteins inclu-
ding several key proteins involved in homologous re-
combination (HR) repair, and possibly other DNA repair
factors, to nuclear loci containing damaged DNA and
consequently influence important cellular processes such
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as DNA replication, cell-cycle control, and DNA damage
response and repair [9-11].

Recent studies suggested that the FA pathway promotes
the error-free HR repair pathway while suppressing the
error-prone non-homologous end-joining (NHE]) path-
way [12—15]. Using FA-deficient Caenorhabditis elegans,
chicken and human cells, two studies demonstrated that
FA deficiency enhanced the error-prone NHE] repair,
leading to increased genomic instability [12, 15]. These
studies also showed that genetic or pharmacological inhi-
bition of the NHE] pathway could rescue the FA pheno-
type. Another similar study showed that inhibition of the
NHE] ligase, LIG4, ameliorated the FA phenotype, but
had no effect on BRCA1 deficiency [16]. It appears the FA
pathway may act to prevent inappropriate recruitment of
NHE] factors to sites of DNA damage. However, the exact
mechanism by which the FA pathway counteracts the
NHE] pathway is largely unknown.

A clinical application of HR-NHE] interaction is syn-
thetic lethality induced by poly (ADP-ribose) polymerase
(PARP) inhibition in BRCAI1/2-mutated cancer [17, 18].
Since PARP functions as a critical sensor of single-strand
breaks (SSBs) in base-excision repair, as a mediator for
restarting stalled replication forks of HR-mediated double-
strand break (DSB) repair, and as a means of preventing
the binding of Ku proteins to DNA ends in NHE] pathway
[19-22], therefore, blocking the ADP-ribosylation activity
with small molecules can achieve synthetic lethality with
DNA-damaging agents in the treatment of certain cancers
[23-29]. It has been shown that PARP inhibitors could
selectively target cancer cells with a defective HR repair of
DSB [25]. For example, BRCA1-, BRCA2-, and ATM-defi-
cient cells show hypersensitivity to PARP inhibitors,
leading to genomic instability and eventual cell death
due to the development of non-viable genetic errors
generated by the error-prone NHE] repair [26—28].

In the current study, we show that inhibition of NHE]
sensitizes Fanca '~ HSPCs from mice to PARP inhibition-
induced cell death and genomic instability and leads to a
further decrease in the proliferation and hematopoietic
repopulation of the Fanca™~ HSPCs. We also show that
simultaneous inactivation of DNA-PKcs and Fanca or
Fancc causes embryonic lethality in mice, which can be
rescued by the apoptosis-defective p53 mutation. Further-
more, using the knockin DNA-PKes**** model, which
specifically inactivates the NHE] activity of DNA-PKcs, we
demonstrate that the NHE] activity of DAN-PKcs is
required for FA fetal HSC maintenance.

Methods

Mice and treatment

Fanca™~ and Fancc™™ mice [30, 31] were generated by
interbreeding the heterozygous Fanca®~ (Dr. Madeleine

/-
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*~ mice (Dr. Manuel

515C/515C
53

Carreau at Laval University) or Fancc
Buchwald, University of Toronto), respectively. p
mice (provided by Dr. Guillermina Lozano at University of
Texas M.D. Anderson Cancer Center) [32] or DNA-
PKcs**** mice (provided by Dr. Benjamin P. C. Chen
at University of Texas Southwestern Medical Center) [33]
were generated by interbreeding heterozygous p537*'°¢
or DNA-PKcs*"** mice, respectively. All the animals
including Boy] mice were maintained in the animal barrier
facility at Cincinnati Children’s Hospital Medical Center.
All animal experiments were performed in accordance
with the institutional guidelines and approved by the Insti-
tutional Animal Care and Use Committee of Cincinnati
Children’s Hospital Medical Center (IACUC2018-0006).

Isolation of bone marrow cells and flow cytometry
analysis

The femora and tibiae were harvested from the mice
immediately after their sacrifice with CO,. Bone marrow
(BM) cells were flushed from bones into Iscove’s modified
Dulbecco’s medium (IMDM; Invitrogen) containing 10%
ECS, using a 21-gauge needle and syringe. Low-density
BM mononuclear cells (LDBMMNCs) were separated by
Ficoll Hypaque density gradient (Sigma-Aldrich, St. Louis,
MO) and washed with IMDM medium.

For flow analysis and cell sorting, the lineage marker
(Lin) mixture (BD Biosciences, San Jose, CA) for BM
cells from treated or untreated mice included the follo-
wing biotinylated antibodies: CD3e (145-2C11), CD11b
(M1/70), CD45R/B220 (RA3-6B2), and mouse erythroid
cells Ly-76 (Ter119), Ly6G, and Ly-6C (RB6-8C5). Other
conjugated antibodies (BD Biosciences, San Jose, CA)
used for surface staining included CD45.1 (A20), CD45.2
(A104), Scal (D7), c-kit (2B8), CD48 (HM48-1), and
CD150 (9D1). Biotinylated primary antibodies were
detected by incubation of antibody-coated cells with
streptavidin-PerCP or FITC (BD Biosciences, San Jose,
CA) in a two-step staining procedure. For the detection
of fetal liver HSCs, whole fetal liver cells were incubated
with FITC-conjugated antibody to CD41 (MWReg30),
CD48 (HM48-1-PE), Terll9 (Ter119), PE-conjugated
antibody to CD150 (26D12:DNAX), APC-conjugated
Macl (M1/70), and biotin-conjugated Scal (Ly6A/E-bio-
tin), followed by staining with streptavidin conjugated to
APC-Cy7 (PharRed, PR; Becton Dickinson). For BM
transplantation experiments, pacific blue-conjugated
CD45.2 (A104, BioLegend, San Diego, CA) was used to
determine donor-derived cells. For cell sorting, lineage-
negative cells were enriched using lineage depletion
reagents (StemCell Technologies) according to the
manufacturer’s instruction. The Lin-negative and LSK
populations were acquired by using the FACSAria II
sorter (BD Biosciences).
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In vitro cell culture and treatment

Briefly, LSK cells were maintained in StemSpan medium
supplemented with 50 ng/ml murine rTpo (Preprotech,
Rocky Hill, NJ), 50 ng/ml murine rSCF (Preprotech,
Rocky Hill, NJ), and 1% BSA at 37 °C in normoxia (21%
0, 5% CO,). Cells with the indicated genotype were
treated with increasing doses of DNA-PKcs inhibitor
NU7026 (0-100 pM; Sigma-Aldrich, St Louis, MO), PARP
inhibitor KU58948 (1 ptM; Axon Medchem), or mitomycin
C (0-1.0puM; Sigma-Aldrich, St Louis, MO) for 36h
followed by survival and chromosomal breakage analyses.

Ku70 knockdown by lentiviral short hairpin RNA

Hairpin sequence for scramble control (CTCGCTTGG
GCGAGAGTAA) or Ku70-1 (CCCAGAGTGTGTAC
ACCAGTAA), Ku70-2 (CCGTCAGATTGTGCTGGAG
AAA), and Ku70-3 (ACGACACAGGTGGAGAATA
TAA) was cloned into SFLV-eGFP-shRNA vector
(Dr. Lenhand Rudolph (Institute of Molecular Medicine
and Max-Planck-Research, Germany). The plasmids (10 pg
each) were used to produce retroviral supernatant. LSK
cells were transduced with the lentiviral supernatants in
various volumes (5, 10, 20, 40, and 80 pL). Protein was
harvested 48 h after transduction and used for Western
blot analysis of Ku-70 using anti-Ku70 mouse monoclonal
antibody (mab-Ku70, 3114-500, Abcam).

Chromosomal breakage analysis

Chromosome breakage analysis was performed on LSK
cells as previously described [34]. Briefly, cells were
treated with 0.05 mg/ml colcermid (Gibco, Grand Island,
NY, USA) for 90 min, followed by 0.4% KCl hypotonic
solution at 37° for 20 min, fixed with methanol and
acetic acid at 4° for 15 min, and dropped onto micro-
scope slides. The cells were then rinsed with isoton,
stained with Giemsa for 5min, and rinsed with Gurr
Buffer (CTL Scientific, Deer Park, NY, USA) and
Milli-Q-filtered deionized water. A total of 50 cells from
each sample were scored for chromosome aberrations.

Bone marrow transplantation (BMT)

One thousand to 2000 LSK cells (CD45.2%), along with
200,000 c-Kit-depleted protector cells, were transplanted
into lethally irradiated Boy] (CD45.1%) mice. The reci-
pients were subjected to flow cytometric analysis for
donor-derived LSK cells 16 weeks after BMT. In other
experiments, 2000 GFP-sorted scramble shRNA or Ku70
shRNA lentiviral vector-transduced LSK cells, along with
200,000 c-Kit-depleted protector cells, were transplanted
into lethally irradiated Boy] mice. The recipients were
subjected to flow cytometric analysis for donor-derived
LSK cells 16 weeks after BMT.
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Cell-cycle and apoptosis analysis

To analyze the cell-cycle status of the HSC subsets, bone
marrow cells were initially stained with antibodies against
Lin" cells, C-KIT, SCA-1, CD150, and CD48 as described
above. After incubation with these cell surface antibodies,
the cells underwent fixation and permeabilization with
transcription factor buffer set (BD Biosciences, #562725)
according to the manufacturer’s instruction. After fixation,
cells were incubated with APC-anti-Ki67 (BD Biosciences,
#558615), washed and stained with PI. Cells were analyzed
by flow cytometry. For the apoptosis detection, bone mar-
row cells were stained with the antibodies for the HSC sur-
face markers and then stained with APC-Annexin V (BD
Biosciences, #550474) and 7 AAD. Annexin V-positive
populations were determined as apoptotic cells using the
FACS LSR II (BD Biosciences).

Colony-forming unit assay

For the in vitro colony-forming unit (CFU) assay, 1000
sorted LSK cells were seeded in MethoCult GF M3434
(STEMCELL Technologies) according to the manufac-
turer’s recommendations. Colonies were visualized and
counted at day 7. The experiment was performed in
triplicate for each sample.

Statistical analysis

Student’s ¢ test was performed using GraphPad Prism v6
(GraphPad software). Comparison of more than two
groups was analyzed by one-way ANOVA test. Values of
p <0.05 were considered statistically significant. Results
are presented as mean = SD. “*”
p <0.01; and “***”, p <0.001.

Uspspn

indicates p < 0.05; ,

Results

Inhibition of NHEJ sensitizes Fanca™~ HSPCs to PARPi-
induced cell death and genomic instability

To understand the mechanism by which the FA pathway
counteracts NHE] in genomic maintenance in HSPCs,
we exposed BM LSK (Lin"Scal*c-kit"; Fig. 1a) cells from
WT and Fanca™~ mice to DNA-PKcs inhibitor NU7026
or Ku70 knockdown in the presence of PARP inhibitor
KU58948. The reason for PARP inhibition was that we
and others have shown that PARP inhibition could
greatly boost NHE] activity in HR-deficient cells inclu-
ding FA HSPCs [28, 29, 35]. Both WT and Fanca™~ LSK
cells were not sensitive to the PARP inhibitor (Fig. 1b).
However, treatment with the DNA-PKcs inhibitor NU7026
sensitized the Fanca™™ LSK cells to PARPi-induced cell
death at low doses (0.1-1 uM), which had no effect on WT
cells (Fig. 1b). Furthermore, inhibition of DNA-PKcs exac-
erbated genomic instability (chromosome and chromatid
breaks, and radial chromosomes) in Fanca™~ LSK cells
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Fig. 1 Inhibition of NHEJ sensitizes Fanca™”~ HSPCs to PARPi-induced cell death and genomic instability. a Gating strategy for sorting HSPCs
(Lin~Scal*c-kit*; LSK). b Inhibition of DNA-PKcs further sensitizes Fanca™~ HSPCs to PARPi-induced cell death. BM LSK cells isolated from wild-
type (WT) or Fanca™~ mice were treated with increasing doses of DNA-PKcs inhibitor NU7026 in the presence of PARP inhibitor KU58948 (1 pM;
Axon Medchem) for 36 h. Cell viability was determined by trypan blue assay. Percentages of viable cells were normalized to that of WT control at
dose 0 pM. *p < 0.05, **p < 0.01, or **p < 0.001 vs WT control at dose 0 pM. ¢ Inhibition of DNA-PKcs exacerbates genomic instability in Fanca™~
LSK cells. BM LSK cells isolated from WT or Fanca™~ mice were treated with DNA-PKcs inhibitor NU7026 (10 uM), or vehicle control, in
the presence of PARP inhibitor KU58948 (1 uM) for 36 h. The cells were subjected to chromosomal breakage analysis. Quantification of
chromosomal aberrations in 50 cells in random fields is shown. **p <0.01 vs WT vehicle control. d Knockdown of Ku70 increases cell
death in Fanca™~ HSPCs. BM LSK cells from WT or Fanca”~ mice were transduced with lentiviruses co-expressing eGFP and scramble
shRNA or shRNA targeting Ku/0. Transduced cells were sorted for eGFP expression and treated with PARP inhibitor KU58948 (1 uM) for
36 h. Cell viability was determined by trypan blue assay. Percentages of viable cells were normalized to that of WT cells transduced with
the scramble shRNA control. Insert: Ku70 expression in cells expressing Ku70 shRNAs. *p <0.05 or **p <0.01 vs WT scramble shRNA
control. e Knockdown of Ku70 exacerbates genomic instability in Fanca™~ LSK cells. The cells described in ¢ were subjected to chromosomal breakage
analysis. Quantification of chromosomal aberrations in 50 cells in random fields is shown. *p <0.05 or **p <0.01 vs WT scramble shRNA
control. f Knockdown of Ku70 increases MMC-induced cell death in Fanca™~ HSPCs. WT and Fanca™~ or Fanca™”~ LSK cells expressing
Ku70 shRNA (Fanca ™ /Ku70) were treated with increasing doses of MMC (0-1.0 uM) for 36 h. Cell viability was determined by trypan blue
assay. Percentages of viable cells were normalized to that of WT cells transduced with the scramble shRNA control. *p < 0.05, **p <0.01,
or **p <0.001 vs WT scramble shRNA control. g Knockdown of Ku70 exacerbates MMC-induced genomic instability in Fanca™”~ HSPCs.
The cells described in f were treated with MMC (0.2 uM) for 36 h and then subjected to chromosomal breakage analysis. Quantification of
chromosomal aberrations in 50 cells in random fields is shown. **p <0.01 or ***p <0.001 vs WT scramble shRNA control
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(Fig. 1c). We also genetically inhibited NHEJ by knocking  Inhibition of NHEJ further decreases Fanca™~ HSPC

down Ku70 expression using lentiviral shRNAs (Fig. 1d). renewal and repopulation

We found that knockdown of Ku70 caused much We next determined the effect of NHE] inhibition on
higher levels of cell death (Fig. 1d) and chromosome the proliferation of Fanca™~ HSPCs using the in vitro
aberrations (Fig. le) in Fanca™’~ LSK cells than in WT  colony-forming unit (CFU) assay and the in vivo
cells. Furthermore, we treated BM LSK cells from WT  hematopoietic repopulation assay. Inhibition of NHE] by
and Fanca™~ mice with DNA cross-linker mitomycin ~ the DNA-PKcs inhibitor NU7026 further reduced the
C (MMC), which induces interstrand crosslinking capacity of Fanmca™~ LSK cells to produced colony
(ICL), and found that knockdown of Ku70 caused formation units when plated in methylcellulose supple-
much higher levels of cell death (Fig. 1d) and chromo- mented with hematopoietic cytokines (Fig. 2a) and de-
some aberrations (Fig. le) in Fanca™’~ LSK cells com- creased the potential of these cells to proliferate in
pared to Fanca™’~ mock control cells. Together, these irradiated transplant recipients (Fig. 2b). Similar results
results suggest that the NHE] pathway actually contri-  were obtained with the Fanca™™ LSK cells that had been
butes to cell survival and genomic maintenance in  subjected to knockdown of Ku70 (Fig. 2c, d). Specifically,
Fanca™~ HSPCs. knocking down Ku70 further compromised the ability of
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Fig. 2 Inhibition of NHEJ further decreases Fanca™~ HSC renewal and repopulation. a Inhibition of DNA-PKcs further decreases Fanca™~ HSPC
proliferation. BM LSK cells isolated from WT or Fanca™~ mice were treated with DNA-PKcs inhibitor NU7026 (10 uM) for 36 h and then plated in
cytokine-supplemented methylcellulose medium. Colonies were enumerated on day 7 after plating. Results are means + standard deviation (SD)
of three independent experiments. *p < 0.05 or ***p < 0.001 vs WT vehicle control. b Inhibition of DNA-PKcs further compromises the
repopulating capacity of Fanca™~ HSPCs. BM LSK cells isolated from WT or Fanca™”~ mice were treated with DNA-PKcs inhibitor NU7026 (10 M)
for 36 h. Two thousand LSK cells, along with 200,000 c-Kit-depleted protector cells, were then transplanted into lethally irradiated BoyJ mice. The
recipients were subjected to flow cytometric analysis for donor-derived LSK cells 16 weeks after BMT (n =9-12 per group). *p < 0.05 or **p < 0.01
vs WT vehicle control. ¢ Knockdown of Ku70 further decreases Fanca™~ HSPC proliferation. BM LSK cells from WT or Fanca™~ mice were
transduced with lentiviruses co-expressing eGFP and scramble shRNA or shRNA targeting Ku/0. Transduced cells were sorted for eGFP expression
and then plated in cytokine-supplemented methylcellulose medium. Colonies were enumerated on day 7 after plating. Results are means +
standard deviation (SD) of three independent experiments. *p < 0.05, **p < 0.01, or ***p < 0.001 vs WT scramble shRNA control. d Knockdown of
Ku70 compromises the repopulating capacity of Fanca”~ HSPCs. Two thousand LSK cells described in ¢, along with 200,000 c-Kit-depleted
protector cells, were then transplanted into lethally irradiated BoyJ mice. The recipients were subjected to flow cytometric analysis for donor-
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Fanca™"~ LSK cells to form colony in the absence of stro-
mal support (Fig. 2c) and to repopulate the transplant re-
cipient mice (Fig. 2d). Taken together, these results
indicate a crucial role of NHEJ in maintaining Fanca ™~
HSPC proliferation.

Inactivation of the NHEJ activity of DNA-PKcs in Fanca™~
or Fancc™™ mice leads to embryonic lethality

The observation that inhibition of NHE] exacerbated
genomic instability in Fanca™~ HSPCs appears to be
conflict with previous reports that inhibition of the key
NHE] factors such as Ku, Lig4, or DNA-PKcs could
ameliorate the sensitivity of FA cells to interstrand

crosslinking agents [12, 15]. This prompted us to deter-
mine the in vivo effect of NHEJ inhibition in Fanca™~
mice. We crossed the Fanca™~ mice with a strain
carrying the knockin DNA-PKcs**”** mutation, which
selectively inactivates the NHE] activity but does not
affect the kinase activity of DNA-PKcs [33]. To
exclude the probability that the identified phenotypes
might be due to a specific effect of a particular FA
complementation group, we also employed an add-
itional FA (Fancc™~) mouse model. Screening more
than 160 E10.5 embryos and 270 pups showed that
while we were able to obtain DNA-PKcs***Fanca™~
and DNA-PKcs™?*Fancc™~ pups, we found that
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DNA-PKes**3AFanca™~ or DNA-PKcs****Fancc™~
double-deficient mice did not survive to birth (Tables 1
and 2). Thus, these results indicate that simultaneous
inactivation of DNA-PKcs and Fanca or Fancc causes
embryonic lethality in mice.

DNA-PKcs**?4 causes fetal HSC depletion in Fanca™
embryos due to increased HSC apoptosis and cycling

We next investigated the effect of DNA-PKcs-Fanca defi-
ciencies on fetal hematopoiesis by examining the fre-
quency of fetal HSCs (CD150"CD48 Lin Mac-1"Sca-1%)
in the E14.5 fetal liver of the mice, which has been
shown to include all fetal liver HSC activity and are
highly enriched for HSCs [36]. As shown in Fig. 3a, the
frequency of fetal HSCs was more than four- to fivefold
lower in DNA-PKcs*3*Fanca™" fetal livers compared to
control samples from WT or single-deficient (Fanca ™~ or
DNA-PKcs*”**) mice (Fig. 3a), indicating a phenotype of
fetal HSC depletion.

Because we observed exacerbated cell death in Fanca™
LSK cells upon NHE] inhibition (Fig. 1b, d), we wondered
if increased apoptosis played a causal role in the depletion
of fetal HSCs in DNA-PKcs*V**Fanca™™ mice. To exa-
mine this possibility, we measured the apoptosis of fetal
liver cells in WT, Fanca”’~, DNA-PKcs****, and DNA-
PKcs*V*4Fanca™~ embryos at E14.5 by Annexin V
staining. Low levels (approximately 5%) of apoptotic cells
were observed in the livers of both WT and Fanca™~
embryos (Fig. 3b). Whereas there was a significant
increase in apoptotic fetal HSCs in DNA-PKcs**34
embryos compared to WT and Fanca™~ embryos, this in-
crease was greatly exacerbated in DNA-PKcs**** Fanca™~
fetal livers (Fig. 3b). These results suggest that fetal HSC
depletion observed in DNA-PKcs*Y**Fanca™~ mice may
be caused by increased apoptosis. We also performed
cell-cycle analysis to evaluate the effect of DNA-PKcs**34
on quiescence of Fanca~ fetal HSCs. We observed a
statistically significant reduction of quiescent fetal HSCs
in DNA-PKcs*3* and Fanca™~ embryos compared with
WT embryos (Fig. 3c). Interestingly, a more dramatic
decrease in quiescent fetal HSCs was detected in
DNA-PKcs***Fanca™~ embryos compared with the
other three groups (Fig. 3c). These results suggest that the

/-

Table 1 Survival of Fanca™™ DNA-PKcs*** embryos and pups
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NHE] activity of DNA-PKcs and Fanca may play a quanti-
tative or collaborative functional role in the cell cycle of
fetal HSCs.

Inactivation of the p53 function in apoptosis is sufficient
to rescue embryonic lethality and fetal HSC depletion in
Fanca™~ DNA-PKcs**** mice

Elevated p53 activation has been reported in the
DNA-PKcs*?* HSCs and FA HSPCs [33, 37]. We
thus asked whether p53-dependent apoptosis played a
role in embryonic lethality and fetal HSC depletion in
Fanca™~DNA-PKcs**?* mice. To this end, we bred
Fanca™ " DNA-PKcs™?* mice to p53~ animals and
assessed the viability and development of the fetal
HSCs. Because we observed increased HSC cycling in
DNA-PKcs***Fanca™~ embryos (Fig. 3c), we also
crossed Fanca® DNA-PKcs™?* mice to a mutant pS3
mouse strain harboring a separation-of-function mutation
in p53, p53°*°C, in which its apoptotic function is abo-
lished but its cell-cycle checkpoint activities remain intact
[32]. The viability of DNA-PKcs** Fanca™™ mice was
rescued by both p53-null deficiency and the p53°° allele
Fig. 4a, c). Furthermore, both the p53-null and the
p53°"°€ allele were able to rescue fetal HSC depletion in
Fanca™’~DNA-PKcs**** embryos (Fig. 4b, d). Therefore,
the p53-dependent apoptosis plays a causal role in
embryonic lethality and fetal HSC depletion in
Fanca™’~DNA-PKcs**** mice.

Discussion

In the present study, we used multiple mouse models of
closely related DNA damage response (FA, NHE], p53)
pathways to show that inhibition of NHE] sensitizes
Fanca™’~ HSPCs to PARPi-induced cell death and gen-
omic instability. This surprising finding prompted us to
propose that inhibition of the NHE] pathway in FA
HSPCs might actually exacerbate their sensitivity to
DNA damage, which is the cellular hallmark of FA. In
support of this notion, we showed that specific inacti-
vation of the NHE] activity of DNA-PKcs caused em-
bryonic lethality in mice deficient for two components
of the FA core complex Fanca and Fancc. Our results
are in strike contrast to the studies reported by Adamo
et al. [12] and Pace et al. [15] that hypersensitivity of

DNA-PKcs™?* Fanca™~ x DNA-PKcs™?* Fanca™ ™ intercross

DNA-PKcs™* Fanca™* or DNA-PKcs™ DNA-PKcs™* Fanca™~ or DNA-PKcs” DNA-PKcs™ Other

*A Fanca®’~ A Fanca™~ Fanca™~ genotypes
E10.5 embryos (96 Expected 24 24 6 42
screened) Observed 22 21 5 48
Live pups (170 Expected 42 42 10 76
screened)

Observed 35

36 0 99
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Table 2 Survival of Fancc™”~ DNA-PKcs™?* embryos and pups
DNA-PKcs™? Fancc™™ x DNA-PKcs™** Fancc™™ intercross
DNA-PKcs™* Fancc™* or DNA-PKes™  DNA-PKcs™* Fancc™™ or DNA-PKcs™ DNA-PKcs™>4 Other

# Fancc?” # Fancc”” Fancc™”~ genotypes
E10.5 embryos (56 Expected 14 14 3 25
d
screened) Observed 12 13 2 29
Live pups (106 Expected 26 26 6 48
screened
) Observed 19 22 0 65
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Fig. 3 Inhibition of NHEJ causes fetal HSC depletion in Fanca™~ embryos. a DNA-PKcs** induces fetal HSC depletion in Fanca™~ embryos. Fetal
liver cells from E14.5 embryos with the indicated genotype were subjected to flow cytometric analysis for fetal HSC (CD150"CD48 Lin Mac-1"Sca-1%).
Representative flow cytometric plots (left) and quantification (right) are shown. ***p < 0.001 vs WT control. b Increased apoptosis in DNA-PKcs™
Fanca™~ fetal HSCs. Fetal HSCs from E14.5 embryos of the indicated genotype were analyzed for apoptosis by Annexin V and 7AAD. Representative
flow cytometric plots (left) and quantification (right) are shown. *p < 0.05 or ***p < 0.001 vs WT control. ¢ Decreased quiescence in DNA-PKcs™*
Fanca ™~ fetal HSCs. The percentage of quiescent (Gy) fetal HSCs in E14.5 embryos of the indicated genotype. Representative flow cytometric plots
(left) and quantification (right) are shown. *p < 0.05 or **p < 0.01 vs WT control




Nie et al. Stem Cell Research & Therapy (2019) 10:114 Page 8 of 10

p
A B 0.4
-y
DNA-PKcsA/3A s
L0031 R v
] e o ]
Fanca-/- £ % ?
» 0024 —o
O o
%) - v
PY *k%
DNA-PKcs***AFanca-/- g 0.01- o A
| 5);Pecte(: 32 _%
DNA-PKcs***AFanca./-p53-1- - serve 0.00 T N T T T
. . . @ uy{., 0@'\' ébx ‘;5'\.
0 20 40 60 Q.g? & myqb“ o,b.\'Q
3 o
# of Pups & 2 & ._,;Q"’Q
& vg.g?
&
D 0.04 4
> -
Kol n L]
C g 0.03 . %
c
DNA-PKcs®ARA @ 0.02] - vy
500 ¥ 2
» L] *%%
Fanca-/- % 0.01 i
o
e A
DNA-PKcs****Fanca-/- 0.00 T T T T T
mm Expected &S & P
mm Observed u & & £
DNA-PKcs*A*AFanca-/-p53915¢ & 3 &
N & P
I T T 1 g*‘ Y\qu
0 20 40 60 Ng 2
Q g
# of Pups &
N
Q
Fig. 4 Inactivation of p53 apoptosis function rescues embryonic lethality and fetal HSC depletion in Fanca™™ DNA-PKcs*** mice. a Deletion
of p53 rescues embryonic lethality and fetal HSC depletion in Fanca™~ DNA-PKcs*** mice. Graphical representation of expected vs. observed
number of pups based on Mendelian inheritance of alleles. b Deletion of p53 rescues fetal HSC depletion in Fanca™ ™ DNA-PKcs™** mice.
Fetal liver cells from E14.5 embryos with the indicated genotype were subjected to flow cytometric analysis for fetal HSC (CD150"CD48  Lin Mac-1"Sca-17).
% <0001 vs WT control. ¢ p53°"°¢ rescues embryonic lethality in Fanca™™ DNA-PKcs** mice. Graphical representation of expected
vs. observed number of pups based on Mendelian inheritance of alleles. d p53°™ rescues fetal HSC depletion in Fanca™~ DNA-PKcs™/*"
mice. Fetal liver cells from E14.5 embryos with the indicated genotype were subjected to flow cytometric analysis for fetal HSC
(CD150"CD48 Lin"Mac-1"Sca-1%). ***p < 0.001 vs WT control

human, nematode, and chicken DT40 cells to interstrand
crosslinking agents can be rescued by knockdown,
deletion, or inhibition of major NHE] proteins such as Ku,
Ligd, or DNA-PKcs. The discrepancy between these
studies and ours may be due to the difference in species
and cell types that were used in the experiments. It is
noteworthy that the human cell lines and the chicken
DT40 cells employed in the previous studies are known to
utilize the HR pathway for DSB repair; whereas HSPCs in
our study use the NHE] pathway predominantly for repair
of DSBs [38]. Interestingly, a more recent study shows
that deletion of Ku80, another NHE] factor, also causes
embryonic lethality in mice deficient for Fancd2 [39].
The cause of embryonic lethality in DNA-PKes*"
34Fanca™"~ mice may be due to fetal HSC depletion. In

support of this notion, we observed significantly in-
creased HSC apoptosis and cycling in developing
embryos of DNA-PKcs***Fanca™~ mice compared
to those of WT, DNA-PKcs*?* or Fanca™~ mice. It
is well known that aberrantly increased cell cycling can
lead to the depletion of adult HSCs, which are quiescent
under normal conditions [40—42]. Our results raise the
possibility that abnormally increased cell-cycle progres-
sion in fetal HSCs could also lead to their depletion. Inter-
estingly, both p53 null and a knockin p53°**“ mutation,
which selectively impairs only the p53 function in
apoptosis, can rescue embryonic lethality and fetal HSC
depletion in Fanca™~ DNA-PKcs**?* mice. This sug-
gests that although DNA-PKcs**** increases Fanca™~
HSC cycling, the cell-cycle activity of p53 is not the
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decisive factor in the regulation of DNA-PKcs**?* HSC
maintenance. In this context, our results are consistent
with previous studies that show p53-dependent apoptosis
in the DNA-PKcs**** HSCs and FA HSPCs [33, 37].

Conclusions

In this study, we employed multiple mouse models of
closely related DNA damage response (FA, NHE], p53)
pathways to demonstrate that the NHE] pathway is
required for cell survival and proliferation of murine
FA HSPCs. We further show that the NHE] pathway
functions to maintain Fanconi anemia fetal HSCs.
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