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Abstract

The liver, the largest organ with multiple synthetic and secretory functions in mammals, consists of hepatocytes,
cholangiocytes, hepatic stellate cells (HSCs), sinusoidal endothelial cells, Kupffer cells (KCs), and immune cells,
among others. Various causative factors, including viral infection, toxins, autoimmune defects, and genetic disorders,
can impair liver function and result in chronic liver disease or acute liver failure. Mesenchymal stem cells (MSCs)
from various tissues have emerged as a potential candidate for cell transplantation to promote liver regeneration.
Adipose-derived MSCs (ADMSCs) with high multi-lineage potential and self-renewal capacity have attracted great
attention as a promising means of liver regeneration. The abundance source and minimally invasive procedure
required to obtain ADMSCs makes them superior to bone marrow-derived MSCs (BMMSCs). In this review, we
comprehensively analyze landmark studies that address the isolation, proliferation, and hepatogenic differentiation
of ADMSCs and summarize the therapeutic effects of ADMSCs in animal models of liver diseases. We also discuss
key points related to improving the hepatic differentiation of ADMSCs via exposure of the cells to cytokines and
growth factors (GFs), extracellular matrix (ECM), and various physical parameters in in vitro culture. The optimization
of culturing methods and of the transplantation route will contribute to the further application of ADMSCs in liver
regeneration and help improve the survival rate of patients with liver diseases. To this end, ADMSCs provide a
potential strategy in the field of liver regeneration for treating acute or chronic liver injury, thus ensuring the
availability of ADMSCs for research, trial, and clinical applications in various liver diseases in the future.

Introduction
The liver, the largest organ with multiple synthetic and
secretory functions in mammals, consists of hepatocytes,
cholangiocytes, hepatic stellate cells (HSCs), sinusoidal
endothelial cells, Kupffer cells (KCs), and immune cells,
among others [1]. Hepatocytes and cholangiocytes con-
stitute the majority of liver parenchymal cells and play
critical roles in maintaining liver function and biliary
secretion; thus, the liver participates in the regulation of
energy metabolism and detoxification. Under physio-
logical conditions, HSCs, or fat-storing cells, are located

in the parasinusoidal space; they mainly store retinoids
and produce extracellular matrix (ECM) that is used in
the generation of the basement membrane [2]. Liver
sinusoidal endothelial cells are known to secrete several
growth factors that promote hepatocyte proliferation,
and they are responsible for forming new vasculature
[3]. Liver KCs represent approximately 20% of the non-
parenchymal cells in the liver and serve as an immune
barrier for liver tissue; the activation of Kupffer cells acts
as the priming force for hepatocyte proliferation [4].
Natural killer (NK) cells, natural killer T (NKT) cells,
eosinophils, and other cells constitute the majority of
cells associated with innate immunity in the liver and
contribute to liver regeneration [5, 6]. Various causative
factors, including viral infection, toxins, autoimmune
defects, and genetic disorders, can impair liver function
and result in chronic liver disease or acute liver failure.
Although liver tissue has a remarkable ability to
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regenerate after injury, orthotopic liver transplantation
(OLT) is still required to rescue patients with end-stage
liver disease or liver failure involving large numbers of
necrotic and apoptotic hepatocytes at the irreversible
stage [7]. However, the application of OLT is limited by
donor scarcity, the side effects of immunosuppressants,
and ethical issues [8, 9]. A potential alternative to OLT,
hepatocyte transplantation (HT), is simpler, less invasive,
and safer; however, the application of HT is limited by
the finite proliferation capacity and limited liver func-
tions of primary hepatocytes [10]. Fortunately, mesen-
chymal stem cells (MSCs) from various tissues have
emerged as potential candidates for cell transplantation
to promote liver regeneration [11]. These multipotent
cells are fibroblast-like and can differentiate into adipo-
cytes, osteocytes, chondrocytes, hepatocytes, and other
types of cells [12].
Bone marrow-derived MSCs (BMMSCs) have become

the most common source of multipotent cells for trans-
plantation in experimental studies and clinical trials
since they were first isolated in 1970 by Friedenstein et
al. [13]. To standardize MSCs, the International Society
for Cell Therapy suggests the following minimal criteria
[14]: adherence to plastic in conjunction with a fibro-
blastoid phenotype; expression of CD105, CD73, and
CD90 and lack of expression of CD45, CD34, CD14 (or
CD11b), CD79α (or CD19), and HLA-DR surface mole-
cules; and the capacity to differentiate into chondrocyte,
adipocyte, and osteocyte lineages. The low rate of im-
munological rejection of such cells makes it possible to
use them in both autotransplantation and allogeneic
transplantation applications [15]. MSCs have been re-
ported to participate in repairing tissue or organ injury
mainly through their paracrine effects, namely, stimula-
tion of angiogenesis, protection of other cells from apop-
tosis, and recruitment of host MSCs or other progenitor
cells and stimulation of their proliferation and differenti-
ation [16]. MSCs also have anti-oxidative capacity that
helps protect tissues against reactive oxygen species
(ROS)-induced injury [17]. Moreover, cell fusion of
MSCs also contributes to the repair of tissues and organ
function [18]. These advantages allow MSCs to be used
in the treatment of various diseases and to be clinically
applied in the field of regenerative medicine.
The use of the iliac crest for bone marrow extraction

is painful, and there is high risk of infection following
this procedure [19]. Adipose-derived MSCs (ADMSCs)
are collected from adipose tissue by liposuction,
washing, collagenase digestion, and centrifugation in a
process that is less invasive and easier than the harvest-
ing of bone marrow cells; this permits wide use of
ADMSCs [20]. The isolated stromal vascular fraction
(SVF) of adipose tissue contains circulating blood cells,
fibroblasts, pericytes, endothelial cells, and ADMSCs

[21]. SVF is reported to contain 0.02 to 0.06% ADMSCs,
whereas bone marrow mononuclear cells consist of only
0.001 to 0.01% BMMSCs [22]. The isolated undifferenti-
ated ADMSCs express MSC surface markers and liver-
specific genes including alpha fetoprotein (AFP),
cytokeratin (CK)-18, CK-19, and hepatocyte nuclear fac-
tor (HNF)-4; moreover, they also weakly express albumin
(ALB), glucose-6-phosphate, and α1-antitrypsin [23].
ADMSCs effectively maintain endothelial and vascular
function via the secretion of vascular endothelial growth
factor (VEGF) and nitric oxide (NO) [24, 25], and they
exert an anti-oxidative effect via the upregulation of
superoxide dismutase (SOD) and malondialdehyde
(MDA) [26]. ADMSCs also participate in the stimulation
of regulatory T cells (Tregs) and in the simultaneous
suppression of Th1, Th2, and Th17 cells via the upregu-
lation of immunomodulatory factors including IL-10,
TGF-β, indolamine 2, and 3-dioxygenase and the down-
regulation of inflammatory factors such as IL-4, IL-12,
IL-17, tumor necrosis factor (TNF)-α, interferon (IFN)-
γ, t-bet, CD80, CD83, and CD86 [27, 28]. It is worth
noting that IL-4 is primarily known for its anti-
inflammatory effects due to its capacity to suppress Th1
responses and induce protective immunity against intra-
cellular pathogens [29], while IL-4-producing Th2 cells
directly mediate tissue destruction and can cause auto-
immune disease if transferred to an immune-deficient
host [30]. Intriguingly, ADMSCs were shown to survive
for up to 4 months after transplantation in vivo [31].
Although ADMSCs share some of the biological proper-
ties of BMMSCs, they also have some distinct properties.
For example, CD106, which is also known as vascular
cell adhesion molecule 1 and is involved in cell migra-
tion, is expressed at significantly lower levels in
ADMSCs than in BMMSCs [32]. On the other hand,
both ADMSCs and BMMSCs express high levels of
OCT4, NANOG, SOX2, alkaline phosphatase (ALP),
and SSEA4 [33]. BMMSCs from aging donors demon-
strated lower cell activity and differentiation capacities,
whereas the cell activity of ADMSCs from aging donors
is not limited [34, 35]. ADMSCs are superior in immune
regulation compared to BMMSCs [36]; ADMSCs were
shown to secrete higher levels of interleukin (IL)-6, IL-8,
interleukin 1 receptor alpha (IL-1Rα), granulocyte
colony-stimulating factor (G-CSF), granulocyte macro-
phage colony-stimulating factor (GM-CSF), monocyte
chemotactic protein 1, nerve growth factor (NGF), and
hepatocyte growth factor (HGF) than BMMSCs for elim-
ination of liver injury [37]. Although ADMSCs secreted
more NGF and transforming growth factor (TGF)-β1
than BMMSCs, they inhibited the proliferation and acti-
vation of HSCs to a comparable degree while promoting
the apoptosis of HSCs for eliminating liver fibrosis [38].
In addition to a paracrine pathway, ADMSCs possess
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hepatogenic differentiation potential similar to that of
BMMSCs as shown by their similar levels of expression
of CK-18, CK-19, AFP, ALB, cytochrome (CYP), and
other liver-enriched transcription factors but can be cul-
tured for a longer period and have higher proliferation
capacity [39, 40]. After transplantation in vivo into mice
with acute liver failure (ALF), ADMSCs decreased the
levels of alanine transaminase (ALT) and aspartate ami-
notransferase (AST) and improved liver histopathology
more effectively than BMMSCs [41].
Given that ADMSCs are superior to BMMSCs in some

respects, including ease of manipulation, abundance,
and potentially higher stemness, herein we comprehen-
sively analyze landmark studies of the isolation, prolifer-
ation, and hepatogenic differentiation of ADMSCs and
summarize the therapeutic effects of ADMSCs in animal
models with liver diseases. We also discuss key points
for improving the hepatic differentiation of ADMSCs via
exposure to cytokines and growth factors (GFs), extra-
cellular matrix (ECM), and physical parameters in in
vitro culture. The optimization of culturing methods
and transplantation route will contribute to the further
application of ADMSCs in liver regeneration and help
improve the survival rate of patients with liver diseases
in the near future.

The source of ADMSCs
Adipose tissue can be collected from subcutaneous
tissue [42], viscera [43], omentum [44], inguinal fat pads
[45], peritoneal fat [46], and other sources. Although
ADMSCs isolated from visceral adipose tissue appeared
larger than those isolated from subcutaneous adipose
tissue, both sets of ADMSCs showed similar pluripo-
tency and plasticity and expressed MSC markers
(CD105 and CD13) as well as other markers (SOX2,
OCT4, LIF, and NANOG) [43]. ADMSCs isolated from
human liver falciform ligaments showed higher levels of
hematopoietic- and mesenchymal-epithelial transition
(MET)-related surface markers than ADMSCs obtained
from human abdominal subcutaneous adipose tissue,
whereas both groups of cells display similar proliferation,
multi-lineage capacity, and hepatic induction [47]. Con-
sidering that ADMSCs from visceral and subcutaneous
tissues are comparable in pluripotency, plasticity, and
hepatogenic differentiation, the ease of acquisition
currently makes subcutaneous adipose tissue the optimal
source of ADMSCs.
Allogeneic ADMSCs are isolated from a cell donor

other than the cell recipient, while autologous ADMSCs
are isolated from the cell recipient. Autologous
ADMSCs serve as the ideal source since their use in-
volves no ethical issues and they display high histocom-
patibility and low immune rejection [48]. Strong et al.
demonstrated that ADMSCs isolated from animals with

chronic inflammatory diseases such as obesity and mul-
tiple sclerosis were less effective in immunomodulation
[49], while Hu et al. demonstrated that ADMSCs isolated
from ALF pigs have stem cell characteristics and cell activ-
ities similar to those of ADMSCs from control pigs;
however, ADMSCs from ALF pigs showed increased ex-
pression of several liver-specific genes [50]. Although
BMMSCs from patients with chronic hepatitis B infection
proliferated poorly and were limited to hepatogenic differ-
entiation, ADMSCs from these patients were not suscep-
tible to infection by hepatitis B virus [51]. These findings
indicate that allogeneic ADMSCs can be used in the treat-
ment of patients with liver diseases.
Although the cellular phenotype and level of apoptosis

displayed by ADMSCs obtained from infants, adults, and
elderly people are similar, ADMSCs isolated from infants
display a higher capacity for proliferation and migration.
ADMSCs derived from adults and elderly people were
significantly less efficient at suppressing T cell prolifera-
tion and showed increased production of IFN-γ and de-
creased production of IL-10 compared with infant-
derived ADSCs, indicating that an age-associated decline
in the immunomodulatory capacity of ADMSCs occurs
[52]. Sequential passage in vitro exerts a negative impact
on the multipotency of ADMSCs [53], and long-term
culture results in replicative senescence, genetic instabil-
ity, and upregulated immune responses in ADMSCs and
consequently reduces their therapeutic efficacy [54, 55].
Thus, ADMSCs isolated from infants or early-passage
cells may have greater potential to be effective in pro-
moting liver regeneration than ADMSCs obtained from
adults and elderly people and late-passage ADMSCs.

Hepatogenic differentiation in vitro and application of
HLCs in vivo
Hepatogenic differentiation in vitro
ADMSCs are easily differentiated into hepatocyte-like
cells (HLCs) as they change in morphology and cell
function after treatment with specific cytokines and
when exposed to a liver-damaged internal microenviron-
ment [56]. ADMSC-derived HLCs exhibit several liver-
specific functions, including ALB secretion, glycogen
synthesis, urea formation, low-density lipoprotein up-
take, CYP enzyme activity, and expression of carbamoyl-
phosphate synthetase [11, 57]. HLCs derived from
ADMSCs express periportal functions, including carba-
moylphosphate synthetase 1 and the entry enzyme of
the urea cycle, as well as perivenous functions, including
CYP450 subtype 3a11 and CD26 [58]. Furthermore, the
gene expression profiles of HLCs reveal a striking simi-
larity between HLCs and liver tissue in their gene clus-
ters, genes, and signaling pathways and MET transition
[59]. ADMSCs can be induced to differentiate into hepa-
tocytes by culturing for 2 weeks in hepatogenic medium
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containing dexamethasone, insulin, HGF, and epidermal
growth factor (EGF); the ADMSCs then complete the
hepatogenic differentiation process via activation of the
extracellular signal-regulated kinase (ERK)/mitogen-acti-
vated protein kinase (MAPK) signaling pathway [56].
Step-by-step hepatogenic differentiation of MSCs pro-
motes the generation of HLCs, as demonstrated by the ap-
pearance of early markers (ALB, alpha-2-macroglobulin,
complement protein C3, and selenoprotein P1) and late
markers (CYP, apolipoprotein E, acyl-CoA synthetase
long-chain family member 1, and angiotensin II receptor,
type 1). The loss of stem cell phenotype by these cells was
detected by loss of expression of THY1 and inhibitor of
DNA binding 3 [60].
Although current studies use various types of differen-

tiation protocols, ADMSC-derived HLCs have immature
hepatocyte functions; thus, specialists have attempted to
develop new methods to improve the functions of HLCs.
Serum from rats that underwent 70% partial hepatec-
tomy (PH) promoted the hepatogenic differentiation of
ADMSCs in vitro by upregulating the secretion of IL-6
and HGF [61]. In addition, ADMSCs exhibited more
rapid changes in cellular morphology and expressed
higher levels of AFP and ALB after incubation with liver
extract than after culture in the presence of chemicals
including HGF, fibroblast growth factor (FGF), and
oncostatin M [62]. Trichostatin A, a specific histone
deacetylase inhibitor, significantly enhanced the hepato-
genic differentiation of ADMSCs by upregulating the ex-
pression of miR-122, ALB, HNF4α, and HNF6 while
downregulating the AFP level [63]. Dimethyl sulfoxide, a
common cryoprotectant, accelerated the hepatic differ-
entiation of ADMSCs as shown by rapid changes in cell
morphology, increased expression of ALB, CK18,
HNF4α, and HNF6 and greater glycogen storage in the
differentiated ADMSCs [64]. After incubation with acti-
vin A and FGF4 for 3 days and subsequent incubation
with HGF, FGF1, FGF4, oncostatin M, dexamethasone,
insulin–transferrin–selenium, dimethyl sulfoxide, and
nicotinamide for 10 days, ADMSCs acquired the func-
tional properties of primary human hepatocytes in vitro
[65]. Using a three-step protocol involving incubation
with IDE1 and CHIR99021; incubation with IDE1, FGF4,
and HGF; and a final step that included exposure of the
cells to HGF, EGF, oncostatin M, dexamethasone, and
insulin–transferrin–selenium, Xu et al. induced
ADMSCs to transform into HLCs with the functions of
mature hepatocytes within 9 days [66]. In addition to
culture in hepatic medium, gene modification also con-
tributes to promotion of the hepatogenic differentiation
of ADMSCs. Overexpression of OCT4 and SOX2 did
not alter the expression of MSC markers or morphology
in ADMSCs but did enhance the expression of ALB,
urea, and glycogen in hepatogenic ADMSCs [67].

MicroRNAs (miRNAs) are small noncoding RNAs that
help regulate diverse biological processes such as metab-
olism, proliferation, the cell cycle, and differentiation.
The possible mechanism through which this occurs may
be microRNA-mediated expression of GFs and cyto-
kines, as miR-122 and miR-27b have been reported to
play a critical role in the hepatogenic differentiation of
ADMSCs [68, 69]. ADMSCs can be differentiated into
HLCs by stable miR-122 overexpression and let-7f
silencing without other stimulation. These genetically
modified ADMSCs showed significantly increased
expression of hepatocyte markers including ALB, AFP,
CK-18, CK-19, and HNF-4a and upregulated urea, ALB,
and glycogen production [70].
In recent years, the biochemical and mechanical sig-

nals provided by the ECM have been shown to effect-
ively enhance the proliferation and differentiation of
ADMSCs. When cultured on spots containing HGF and
collagen I, ADMSCs showed significantly upregulated
expression of ALB, AFP, and α1-antitrypsin compared to
ADMSCs cultured on spots containing only collagen I
[71]. Fabricated gelatin scaffolds with high biocompati-
bility promoted the adhesion and proliferation of
ADMSCs without any adverse effects and significantly
enhanced the hepatogenic differentiation of ADMSCs
compared to culture on two-dimensional tissue culture
polystyrene [72]. Furthermore, ADMSCs cultured on a
three-dimensional scaffold consisting of gelatin cryogel
and laminin displayed increased attachment and im-
proved liver functions similar to those of HepG2 cells
[73]. In the presence or absence of GFs, a liver decellu-
larized matrix enhanced the hepatic differentiation of
ADMSCs into mature hepatocytes significantly more
effectively than other coating matrices including colla-
gen, fibronectin, and Matrigel [74]. The ultimate aim of
in vitro hepatogenic differentiation of ADMSCs is the
acquisition of functional mature hepatocytes for HT in
vivo; the safety of using modified cell culture microenvi-
ronments and of using the ADMSCs themselves should
also be a matter of concern (Fig. 1).

Application of ADMSC-derived HLCs in vivo
Transplantation of HLCs before ischemia ameliorated
hepatic dysfunction and improved liver regeneration
after extended resection-induced ALF via attenuation of
metabolic overload and normalization of amino acid,
acylcarnitine, sphingolipid, and glycerophospholipid
levels [46]. HLCs also reduced the levels of expression of
ALT, AST, and ammonia and restored liver functions, in-
cluding ammonia and purine metabolism, in ALF mice
[65]. These ADMSC-derived HLCs showed more con-
sistent gene expression and a more normal hepatogenic
differentiation profile than HLCs from BMMSCs; more-
over, transplantation of ADMSCs, BMMSCs, and HLCs
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derived from ADMSCs and of HLCs derived from
BMMSCs promoted liver regeneration in carbon tetra-
chloride (CCl4)-induced ALF mice to comparable de-
grees [75]. However, there is a debate concerning the
use of ADMSCs and HLCs in vivo. As Guo et al. demon-
strated, transplantation of ADMSCs and HLCs improved
liver function and rescued CCl4-treated mice with liver
injury, but ADMSC transplantation improved liver func-
tions more effectively than transplantation of HLCs [76].
HLCs significantly restored liver function and prolonged
the survival of mice with CCl4-induced ALF by engraft-
ment into the injured liver, but infusion of the liver with
primary hepatocytes was not effective [66]. Furthermore,
transplantation of HLCs eliminated CCl4-induced liver
fibrosis and preserved liver functions via the secretion of
TGF-β1, IL-6, and IL-10 [77]. Engineered hepatic grafts
that combined acellular human amniotic membrane with
HLCs derived from ADMSCs significantly decreased the
degree of CCl4-induced liver injury by improving the ex-
pression of ALB, HNF-4α, and CYP450 2B6 [78]. How-
ever, Bruckner et al. demonstrated that these HLCs
decreased the amount of collagen, the portal venous
pressure, and the splenic weight but had no effect on the
improvement of liver dysfunction, fibrillary collagen con-
tent, the balance of matrix metalloproteinases (MMPs)
and metalloproteinases (TIMPs), or the activation of
HSCs [79]. To this end, hepatogenic ADMSCs can be

used in the treatment of various liver diseases, but future
studies should further investigate the potential mecha-
nisms through which HLCs function in liver regener-
ation. The therapeutic effects of HLCs derived from
ADMSCs can then be further improved for application
in experimental and clinical trials.

ADMSC transplantation for liver regeneration
ADMSCs engraft in vivo and repair injured tissue via dif-
ferentiation, immunomodulatory effects, and paracrine
effects [80] (Fig. 2). Injured liver tissue and hepatocytes
secrete various inflammatory factors and chemotactic
cytokines that attract ADMSCs to the site of injury.
ADMSCs are reported to produce tonofilaments and to
then enter the injured sites after activation of the stromal-
derived factor-1 (SDF-1)/C-X-C chemokine receptor type
4 (CXCR4) axis in the injured liver [81]. Furthermore,
engrafted ADMSCs secrete various cytokines, including
HGF and FGF, that promote the regeneration of endogen-
ous hepatocytes and thereby help maintain the normal
structure of the liver [82, 83]. ADMSC transplantation sig-
nificantly increased regeneration of the remaining liver
following repeat PH, as demonstrated by upregulation of
the liver-to-body-weight ratio, HGF, and PCNA levels and
downregulation of aminotransferases, total bilirubin
(TBIL), and hepatic vacuolar degeneration at 24 h post-
hepatectomy; moreover, the liver showed complete

Fig. 1 Transplantation of HLCs and ADMSCs contributes to liver regeneration in various liver diseases
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recovery at 168 h after ADMSC transplantation [84]. MiR-
27b-overexpressing ADMSCs enhanced liver regeneration
and preserved hepatic function via the downregulation of
inflammatory cytokines and the upregulation of HGF,
HO-1, and mitochondrial biogenesis in a PGC-1α-
dependent manner in PH rats [85].
Intravenously injected ADMSCs engrafted into various

tissues, including brain, thymus, heart, liver, and lung,
while PH enhanced the integration of ADMSCs into the
liver and increased the regeneration of injured liver [86].
Transplantation of ADMSCs via the tail vein reduced bio-
chemical parameters such as ALT, AST, and ammonia in
CCl4-induced liver injury more effectively than transplant-
ation via the portal vein or direct liver parenchymal injec-
tion [87]. Transplantation of ADMSCs via the peripheral
vein or the splenic vein decreased the levels of proinflam-
matory cytokines, including IL-1, IL-6, IL-8, and IFN-γ,
and increased the levels of anti-inflammatory cytokines,
including IL-4 and IL-10, HGF, and VEGF in an ALF ani-
mal model, while transplantation via the splenic vein sig-
nificantly decreased the levels of serum liver enzymes and
increased the number of engrafted ADMSCs in the liver
more effectively than transplantation via the peripheral
vein [88]. Wang et al. reported that administration of
ADMSCs via the portal vein significantly decreased the
hepatic arterial perfusion index but increased portal vein
perfusion and microcirculation in rats with liver fibrosis
[89]. According to current evidence regarding transplant-
ation route, transplantation via the peripheral vein appears
to be the most convenient method, but determination of
which route is the most effective requires further study.

Ischemia/reperfusion-induced injury
Ischemia-reperfusion injury (IRI) of the liver is a well-
known cause of morbidity and mortality after OLT and
HT. ADMSCs decreased the apoptosis of hepatocytes,
decreased the levels of ALT, AST, TBIL, IL-2, and IL-10,
and maintained the tissue structure in rats with OLT via
alleviation of acute rejection [90]. ADMSCs improved
the survival rate of rats with liver IRI by downregulating
IL-6, IL-21, and CD70 and activating the neurogenic
locus Notch homolog protein pathway; the necrotic
areas showed improved liver function and improved liver
regeneration and maintained normal histology [91, 92].
Intrahepatic transplantation of ADMSCs markedly re-
duced the apoptosis of hepatocytes and decreased the
severity of pathological changes via downregulation of
Fas, Fas ligand, caspase-3, caspase-8, and caspase-9 and
upregulation of the Bcl-2/Bax ratio in pigs with IR com-
bined with laparoscopic hepatectomy [93]. ADMSCs sig-
nificantly decreased the serum levels of ALT, AST, TBIL,
and lactate dehydrogenase (LDH) via upregulation of
SOD, suppression of myeloperoxidase (MPO) and MDA,
and suppression of autophagy in swine with IRI [94]. On
the other hand, administration of ADMSCs decreased
hepatic oxidative stress and the expression of TNF-α,
TGF-β, IL-1β, IL-6, endothelin-1, MMP-9, plasminogen
activator inhibitor-1, Bax, caspase-3, and intercellular
adhesion molecule but increased the levels of endothelial
nitric oxide synthase, Bcl-2, IL-10, quinone oxidoreduc-
tase 1, and HO-1 in liver with IRI [95]. Sudden and
prolonged interruption of the arterial blood flow to the
liver accompanied by reperfusion initiated oxygen and

Fig. 2 ADMSCs engraft in vivo and repair injured liver tissue via differentiation, immunomodulatory effects, and paracrine effects
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nutrient deprivation, upregulation of oxidative reactions,
and activation of inflammation in the liver, while
ADMSCs are effective in eliminating IRI in liver tissues.

Chemically induced acute liver injury
As we know, the liver is the first organ to come into
contact with various orally ingested drugs after intestinal
absorption; thus, it is susceptible to chemically induced
injury, and such injury can result in acute and chronic
liver disease [96]. Banas et al. showed that ADMSC
transplantation markedly improved liver functions and
maintained the levels of ammonia, uric acid, and trans-
aminases in animals with CCl4-induced injury [37].
Animals treated with ADMSCs prior to CCl4-induced
ALF also demonstrated lower levels of ALT and IL-6 and
higher expression of regeneration markers, accompanied
by improved histopathology and survival rate [97]. In
addition, spheroid-derived ADMSCs significantly in-
creased liver regeneration in mice with CCl4-induced
ALF compared to ADMSCs derived from constant
monolayer cultures [98], and regenerated silk fibroin
(RSF)-treated ADMSCs rescued CCl4-induced ALF ani-
mals via upregulation of angiogenesis and hepatogenic
differentiation more effectively than ADMSCs on neat
RSF scaffolds [99].
On the other hand, ADMSCs significantly decreased

the levels of ALT, AST, and ammonia and returned pro-
thrombin time to normal levels in acetaminophen
(APAP)-induced ALF rats via inhibition of liver stress
and inflammatory signaling and enhancement of liver re-
generation [42]. In addition, ADMSC transplantation
significantly attenuated the severity of APAP-induced
liver injury and improved the survival rate of APAP-
induced ALF mice via suppressing MAPK signal activa-
tion, reducing the level of toxic nitrotyrosine and upreg-
ulating NF-E2-related factor 2 (Nrf2) expression and
anti-oxidant activity [44]. The immunomodulatory effect
of ADMSCs may serve as an important mechanism in
enhancing liver regeneration and maintaining liver
histology without necrosis in the livers of mice with con-
canavalin A (ConA)-induced hepatitis. Kubo et al. dem-
onstrated that ADMSCs significantly downregulated the
levels of liver enzymes, decreased the histopathological
changes and increased the survival rate of mice with
ConA-induced fulminant hepatitis via suppression of
inflammatory cytokines and a reduction in the number
of CD11b+, Gr-1+, and F4/80+ cells [100–102].
To improve the therapeutic effects of ADMSCs in

vivo, preconditioning with lysophosphatidic acid (LPA)
and/or sphingosine-1-phosphate (S1P) has been used.
Treatment of cells with these agents synergistically en-
hanced the anti-stress effects of ADMSCs via Gi protein,
the RAS/ERK pathway, the PI3K/AKT pathway, upregu-
lation of IL-10, and promotion of the nuclear

translocation of nuclear factor-kappa B (NF-κB). These
LPA- and/or S1P-pretreated ADMSCs obviously amelio-
rated the histological damage, oxidative stress, inflam-
mation, and lipid metabolism dysfunction in galactoside
(Gal)/lipopolysaccharide (LPS)-induced ALF mice [103].
Although zeaxanthin dipalmitate (ZD)-pretreated
ADMSCs exerted no adverse effects on healthy animals,
they significantly improved liver function in a Gal/LPS-
induced ALF model via upregulation of microRNA-210
and subsequent suppression of apoptosis, inflammation,
and ROS in ADMSCs [104].

Liver fibrosis
Sustained hepatitis virus infection, alcohol consumption,
and fat deposition lead to repeated and chronic liver
injury, and the resulting accumulation of aberrant myofi-
broblasts and extracellular matrix results in liver fibrosis
with poor prognosis. ADMSC transplantation signifi-
cantly reduced serum levels of glutamic pyruvate trans-
aminase and TBIL and reduced liver fibrosis as
evidenced by Sirius Red staining [105]. Harm et al.
concluded that the detailed mechanism through which
ADMSCs eliminate liver fibrosis involves hepatic differ-
entiation, reduction of inflammatory activity, and inhib-
ition of HSC activation [106]. Furthermore, ADMSCs
significantly reduced the expression of collagen I, colla-
gen III, α-smooth muscle actin (α-SMA), hyaluronic
acid, and hydroxyproline and inhibited liver fibrogenesis
via inhibition of the activation of HSCs, enhancement of
HSC apoptosis, upregulation of HGF, and downregula-
tion of NGF and TGF-β1 [107]. A clinical study enrolled
four patients with liver cirrhosis for ADMSC transplant-
ation. The study found that ADMSCs maintained liver
function well and that they upregulated the expression
of liver regeneration-related factors (HGF and IL-6) in
patients with liver cirrhosis [108].
Splenectomy prior to MSC administration suppressed

liver fibrosis via upregulation of stromal cell-derived
factor-1 and HGF, which facilitate the migration of
MSCs into injured sites [109]. After incubation with
serum from rats with acute CCl4 injury, ADMSCs dem-
onstrated polygonal morphology and expressed AFP,
ALB, and CK8 and other hepatocyte markers. Moreover,
ADMSCs preconditioned with serum from rats with
acute CCl4 injury significantly improved liver function
and reduced liver fibrosis in CCl4-induced liver fibrosis,
as demonstrated by higher expression of hepatic and
pro-survival markers and improvement in liver structure
[110]. Exposure to basic fibroblast growth factor obvi-
ously upregulated the proliferation and differentiation of
ADMSCs in vitro and enhanced the ability of ADMSCs
to suppress the progression of liver fibrosis via elevation
of HGF expression, promotion of HSC apoptosis, and
enhancement of hepatocyte proliferation [83].
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Genetically modified ADMSCs are currently being
used in the treatment of liver fibrosis since they are able
to accelerate repair of liver injury in vivo. HGF-
overexpressing ADMSCs significantly decreased the
serum levels of ALT and AST, ameliorated radiation-
induced liver fibrosis via downregulation of α-SMA and
fibronectin, and promoted hepatocyte regeneration [82].
Transplantation of FGF-21-overexpressing ADMSCs sig-
nificantly attenuated thioacetamide-induced liver fibrosis
via inhibition of p-JNK, NF-κB, and p-Smad2/3 signaling
and secretion of α-lactoalbumin and lactotransferrin
[111]. Overexpression of miR-122 enhanced the thera-
peutic efficacy of ADMSCs by suppressing proliferation
and collagen maturation in HSCs in the treatment of
CCl4-induced liver fibrosis [112].

Conclusions
In comparison to MSCs from other sources, ADMSCs
have similar multi-lineage potential, self-renewal capacity,
anti-apoptotic effects, anti-oxidative effects, and anti-
inflammatory effects after administration in vivo. We sug-
gest that the application of ADMSCs in liver regeneration
be increased since they have unique characteristics such
as abundant source material and ease of isolation. Al-
though various studies have focused on improving the
hepatic functions of HLCs in vitro, these immature hepa-
tocytes easily progress to the cell death pathway. Thus, we
still recommend implanting ADMSCs in vivo since they
are not extremely sensitive to the damaged microenviron-
ment. Moreover, autologous ADMSCs are recommended
because the use of autologous cells reduces the acute re-
jection rate. The liposuction process causes less trauma
than bone marrow aspiration, and adipose tissue can pro-
vide a large number of ADMSCs for proliferation and in-
jection. The ideal route of administration, dosage, and
timing of ADMSC administration for the treatment of
liver disease are highly variable; thus, studies should focus
on the optimization of ADMSC efficacy in vivo. However,
the short-term and long-term safety of the clinical applica-
tion of cell transplantation is also an area of active contro-
versy as cell transplantation may result in infections and
potentially in tumorigenesis. To this end, ADMSCs pro-
vide a potential strategy in the field of liver regeneration
for treating acute or chronic liver injury (Table 1), thus en-
suring the availability of ADMSCs for research, trial, and
clinical applications in various liver diseases in the future.
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