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Abstract

Introduction: Extracellular vesicles (EVs), especially stem cell-derived EVs, have emerged as a potential novel
therapy for acute kidney injury (AKI). However, their effects remain incompletely understood. Therefore, we
performed this meta-analysis to systematically review the efficacy of EVs on AKI in preclinical rodent models.

Methods: We searched PubMed, EMBASE, and the Web of Science up to March 2019 to identify studies that
reported the treatment effects of EVs in a rodent AKI model. The primary outcome was serum creatinine (Scr) levels.
The secondary outcomes were the blood urea nitrogen (BUN) levels, renal injury score, percentage of apoptotic
cells, and interleukin (IL)-10 and tumour necrosis factor (TNF)-α levels. Two authors independently screened articles
based on the inclusion and exclusion criteria. The meta-analysis was conducted using RevMan 5.3 and R software.

Results: Thirty-one studies (n = 552) satisfied the inclusion criteria. Pooled analyses demonstrated that the levels of
Scr (SMD = − 3.71; 95% CI = − 4.32, − 3.10; P < 0.01), BUN (SMD = − 3.68; 95% CI = − 4.42, − 2.94; P < 0.01), and TNF-α
(SMD = − 2.65; 95% CI = − 4.98, − 0.32; P < 0.01); the percentage of apoptotic cells (SMD = − 6.25; 95% CI = − 8.10, −
4.39; P < 0.01); and the injury score (SMD = − 3.90; 95% CI = − 5.26, − 2.53; P < 0.01) were significantly decreased in
the EV group, and the level of IL-10 (SMD = 2.10; 95% CI = 1.18, 3.02; P < 0.01) was significantly increased.
Meanwhile, no significant difference was found between stem cell-derived EVs and stem cells.

Conclusion: The present meta-analysis confirmed that EV therapy could improve renal function and the
inflammatory response status and reduce cell apoptosis in a preclinical rodent AKI model. This provides important
clues for human clinical trials on EVs.
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Background
Acute kidney injury (AKI) is a major kidney disease
characterised by a rapid decline in renal function
and is associated with an increase in mortality and
hospitalisation [1]. However, the prognosis of this
disease, which may occur under various circum-
stances, has not been significantly improved since
the mid-1990s [2]. Due to the lack of efficient
therapeutic methods, patients with renal ischaemia

reperfusion injury (IRI) are mostly treated by
supportive manoeuvres, such as renal replacement
therapy [3].
Many studies have confirmed that mesenchymal

stem cell (MSC) therapy can effectively improve AKI
[4, 5], but most of these studies have not found that
MSCs colonise in the kidneys to play a direct role
[4, 6]. Moreover, MSC therapy may have certain
risks, such as inducing tumours, and its safety re-
mains questionable [7].
Recently, data in the literature have highlighted that

the delivery of MSC-derived EVs can ameliorate AKI in
preclinical models [3, 6, 8]. EVs are secreted by almost
all types of cells and can be subdivided into exosomes,
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microvesicles, and apoptotic bodies [9]. Exosomes are
the smallest vesicles (30–100 nm) released by the fusion
of multivesicular bodies containing intraluminal vesicles
with the plasma membrane. Microvesicles are vesicular
structures (0.1–1.0 μm) shed by outward blebbing of the
plasma membrane. The largest EVs (1–5 μm) are apop-
totic bodies that are formed during the late stages of
apoptosis [10]. EVs contain proteins, lipids, carbohy-
drates, mRNAs, and miRNAs and may influence differ-
ent cell types acting on physiological processes such as
proliferation and immune escape [11]. Compared with
MSCs, the small size of MSC-derived EVs allows them
to avoid the pulmonary first-pass effect and to penetrate
deep inside most body barriers [3]. Therefore, MSC-
derived EVs are expected to be an effective treatment for
AKI.
Many animal studies have been performed to investi-

gate the efficacy of EVs on an AKI model with various
cell origins and different injection doses, delivery routes,
and therapy times [3, 12]. To provide the most recent
available evidence for clinical studies, we performed this
meta-analysis to investigate the efficacy of EVs on pre-
clinical rodent models.

Materials and methods
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) was used to perform this
meta-analysis [13].

Search strategy
We searched PubMed, EMBASE, and the Web of Sci-
ence from database inception to March 2019. The
search terms were as follows: (“extracellular vesicles”
or “EVs” or “micro vesicles” or “micro-vesicles” or
“microvesicles” or “microparticle” or “exosome” or
“MVs” or “shedding vesicles”) and (“AKI” or “acute
kidney injury” or “renal ischaemia-reperfusion” or
“acute renal failure”). The search was limited to ro-
dent models with no language restrictions. The refer-
ence lists of selected studies were searched by hand
to identify potentially relevant citations. Ethical ap-
proval was not required because the meta-analysis
was based on published articles.

Study selection
Two independent investigators (CL and JW) conducted
the study selection. Disagreements between the investi-
gators were resolved in meetings or adjudicated by a
third reviewer (XS).

Eligibility criteria
The inclusion criteria were as follows: (1) popula-
tion—rodent models with AKI; (2) intervention—vari-
ous cell-derived EVs; (3) comparison—placebo; and
(4) outcome measure—the primary outcome was the
level of serum creatinine (Scr). The secondary out-
comes were the renal injury score, percentage of

Fig. 1 Flow chart of the study selection
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apoptotic cells, and levels of blood urea nitrogen
(BUN), interleukin (IL)-10, and tumour necrosis factor
(TNF)-α.
The exclusion criteria were as follows: (1) AKI was not

performed on rodent models, (2) repeated data, (3) in-
sufficient information, and (4) review, letter, commen-
tary, correspondence, case report, conference abstract,
expert opinion, or editorial.

Data extraction
Data extraction was performed by two independent re-
viewers (CL and JH) using a standardised form. The fol-
lowing data were collected: first author, country or
region, publication year, number of animals, type of AKI
model, species, treatment time, measurement time and
EV cell origins, diameter, and dose. For studies that had
not shown the corresponding results, Engauge Digitizer
version 4.1 software was used to extract data from the
graphics [14, 15].

Quality assessment
The methodological quality of each included study
was evaluated by two independent authors (JW and
ZM) with a Collaborative Approach to Meta-Analysis
and Review of Animal Data from Experimental Stud-
ies (CAMARADES) 10-item checklist [16]: A, peer-
reviewed journal; B, temperature control; C, animals
were randomly allocated; D, blind established model;
E, blinded outcome assessment; F, use of anaesthetic
without significant intrinsic vascular protection activ-
ity; G, appropriate animal model (diabetic, advanced
age, or hypertensive); H, calculation of the sample
size; I, statement of compliance with animal welfare
regulations; and J, statement of potential conflicts of
interest.

Statistical analysis
All statistical analyses were conducted using RevMan
version 5.3 and R statistical software version 3.4.1.
Statistical significance was set at P < 0.05 (two-tailed).
Continuous outcomes are expressed as the standar-
dised mean difference (SMD) with the 95% CI. Het-
erogeneity was analysed among studies using the I2

statistic. I2 > 50% indicated significant heterogeneity
[17]. Subgroup, sensitivity, and meta-regression ana-
lyses were performed to investigate potential between-
study heterogeneity and to explore other potentially
confounding factors. A cumulative meta-analysis was
performed to explore changes in the results over
time. Funnel plots and Egger’s test were conducted to
detect publication bias. If publication bias was indi-
cated, we further evaluated the number of missing
studies by the Trimfill method and recalculated the

pooled risk estimation with the addition of those
missing studies.

Results
Search results and study characteristics
The process of study selection is outlined in Fig. 1.
In total, 31 studies satisfied the inclusion criteria
[18–48]. The main characteristics of the included
studies are presented in Table 1. All these studies
were published between 2009 and 2019, and a total
of 552 rodent animals were included in this meta-
analysis. Among the included studies, 8 used bone
marrow mesenchymal stromal cell (BMSC)-EVs [18,
27, 32, 40, 46–48], 6 used human umbilical cord
mesenchymal stromal cell (UCMSC)-EVs [24, 28, 29,
36, 43, 44], 4 used human umbilical Wharton’s jelly
mesenchymal stromal cell (WJMSC)-EVs [20, 30, 34,
38, 39], 3 used human umbilical vein endothelial cell
(UVFC)-EVs [21, 31, 37], 2 used kidney-derived mes-
enchymal stromal cell (KMSC)-EVs [25, 42], 2 used
adipose-derived mesenchymal stromal cell (ADMSC)-
EVs [33, 35], 1 used human liver stem cell (HLSC)-
EVs [41], and the 5 remaining used another origin
of EVs [19, 22, 23, 26, 45]. The AKI model was
established with IRI [18, 20–23, 25, 26, 28–34, 36–
40, 42, 44, 45, 47], cisplatin [24, 35, 43, 46], glycerol
[27, 41, 48], or the caecal ligation and puncture
(CLP) method [19]. The diameter of the isolated EVs
ranged from 15 to 1000 nm (mostly 50–200 nm).
Surface markers, including CD63, CD9, CD81, and
tumour susceptibility gene (TSG) 101, were used to
identify and sort EVs from other components. A var-
iety of microRNAs have been reported in EVs, such
as miR-21 [19], miR-451 [27], miR-486-5p [31], miR-
30 [34], and miR-199a-5p [18]. Most studies injected
100 μg EVs intravenously after the injury model was
established [20, 22, 23, 26, 28–30, 33–35, 38–40, 46]
(Table 1).

Quality assessment
All the included records were peer-reviewed publi-
cations, and all animals were allocated randomly to
a treatment group and a control group; however,
most studies did not report sample size calculation,
blinded induction of the model, or blinded assess-
ment of outcome. The details of the study quality
assessment are shown in Additional file 1: Table
S1.

Primary outcome
All studies reported the level of Scr. The pooled
analysis showed that EVs can significantly reduce
the Scr level when compared with the control
(SMD = − 3.71; 95% CI = − 4.32, − 3.10; P < 0.01; I2 =
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Fig. 2 (See legend on next page.)
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73%; Fig. 2). The subgroup analysis showed that all
cell-derived exosomes are effective in reducing the
Scr level (Fig. 2). The cumulative meta-analysis
showed that the result did not change over time
(Additional file 2: Figure S1). The sensitivity analysis
showed that none of the single studies significantly
influenced the result (Additional file 3: Figure S2).
The multivariable meta-regression analysis showed
that the delivery dose (P < 0.05) and cell origin of
EVs (P < 0.05) were independent influential factors
of SCr reduction.

Secondary outcomes
The level of BUN was significantly decreased in the
EV group (SMD = − 3.68; 95% CI = − 4.42, − 2.94;
P < 0.01; I2 = 82%; Fig. 3). A subgroup analysis was
performed according to the origin of the EVs, and
the results indicated that all kinds of EVs included
in this meta-analysis would reduce the level of BUN.
The cumulative meta-analysis showed that the result
did not change over time (Additional file 4: Figure
S3). The sensitivity analysis showed that none of the
single studies significantly influenced the result
(Additional file 5: Figure S4). The meta-regression
analysis showed that the cell origin of the EVs (P <
0.05) was an independent influential factor of BUN
reduction.
Other secondary outcomes are summarised in Table 2.

TUNEL assays were carried out in kidney tissue to de-
tect apoptotic cells. Ten studies [20, 24, 30, 31, 34, 36,
38–40, 45] reported TUNEL results, and the pooled ana-
lysis showed that EVs can significantly reduce cell apop-
tosis. The tubular injury score was reported in six
studies [21, 23, 30, 31, 33, 37], and the results showed
that the injury score was lower in the EV group. In the
EV group, the anti-inflammatory cytokine IL-10 [20, 24,
38] was significantly increased and the proinflammatory
cytokine TNF-α [20, 35, 38] was significantly decreased
(Table 2).
Among the included studies, seven compared the

efficacy of cell-derived EVs with cells in the AKI
model. The results showed no significant difference in
Scr (SMD = 0.29; 95% CI = − 0.66, 1.24; P = 0.55; I2 =
74%; Fig. 4a) or BUN (SMD = − 0.50; 95% CI = − 0.17,
1.18; P = 0.15; I2 = 45%; Fig. 4b) levels between the
two groups. Meanwhile, no significant difference was

found between stem cell-derived EVs and stem cells
(Fig. 4).

Publication bias
Significant publication bias was observed (P < 0.01;
Additional file 6: Figure S5). We used the Trimfill
method to recalculate the pooled risk estimation
with the addition of missing studies (Additional file 7:
Figure S6). However, the overall results were not sig-
nificantly changed. Therefore, publication bias may
have little effect on the meta-analysis outcomes (data
not shown).

Discussion
Our meta-analysis of 31 studies provided a compre-
hensive summary of the effect of EVs on the preclin-
ical rodent AKI model. Pooled analyses confirmed
that EV therapy could improve renal function and the
inflammatory response status and reduce cell apop-
tosis in a preclinical rodent AKI model. The multivar-
iable meta-regression analysis indicated that the
delivery dose and cell origin of EVs were independent
factors influencing the effect of EVs. Meanwhile, no
significant difference was found between stem cell-
derived EVs and stem cells. Therefore, the present
meta-analysis provides important clues for human
clinical trials on EVs.
A previous meta-analysis focused on this topic indi-

cated that mesenchymal stromal cell-derived EVs pro-
duce a more marked therapeutic effect on recovery from
renal failure than MSC-conditioned medium [49]. Our
meta-analysis contained various types of cell-derived
EVs and further evaluated the effect of EVs on cell apop-
tosis, the tubular injury score, and inflammatory cyto-
kines, providing useful information for further clinical
trials.
Many studies have shown that RNAs carried by

EVs are the pivotal mechanism for their therapeutic
function [11, 50], and the proteins contained in
EVs are also related to many biological processes.
EVs are membrane-bound vesicles released by all
cell types, including stem/progenitor cells, which
are important information carriers for regulating
angiogenesis, extracellular matrix remodelling, gene
expression, inflammation states, the cell cycle and
proliferation, the phenotype of target cells, cell mi-
gration, and morphogenesis [51–54]. The surface

(See figure on previous page.)
Fig. 2 The forest plot shows the efficacy of EVs in reducing Scr levels in the AKI model. ADMSC, adipose-derived mesenchymal stromal cell;
BMSC, bone marrow mesenchymal stromal cell; 95% CI, 95% confidence interval; EVs, extracellular vesicles; HLSC, human liver stem cell; IV, inverse
variance; KMSC, kidney-derived mesenchymal stromal cell; Scr, serum creatinine; SD, standard deviation; UCMSC, umbilical cord mesenchymal
stromal cell; UVEC, umbilical vein endothelial cell; WJMSC, Wharton’s jelly mesenchymal stromal cell
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Fig. 3 The forest plot shows the efficacy of EVs in reducing BUN levels in the AKI model. ADMSC, adipose-derived mesenchymal stromal cell;
BMSC, bone marrow mesenchymal stromal cell; BUN, blood urea nitrogen; 95% CI, 95% confidence interval; EVs, extracellular vesicles; HLSC,
human liver stem cell; IV, inverse variance; KMSC, kidney-derived mesenchymal stromal cell; SD, standard deviation; UCMSC, umbilical cord
mesenchymal stromal cell; UVEC, umbilical vein endothelial cell; WJMSC, Wharton’s jelly mesenchymal stromal cell
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molecules of EVs permit them to be targeted to re-
cipient cells. Once attached to a target cell, EVs
can induce signalling via a receptor-ligand inter-
action, be internalised by endocytosis and/or phago-
cytosis, or even fuse with the target cell’s
membrane to deliver their content into its cytosol,
thereby modifying the physiological state of the re-
cipient cell [55, 56].
Compared with stem cells, stem cell-derived EVs

have lower immunogenicity and may reduce some
of the risks associated with cellular therapy, such as
cytokine release syndrome [51]. In our meta-
analysis, we demonstrated that stem cell-derived
EVs were equally effective as stem cells when ap-
plied to treat AKI. In one study, MSC-derived EVs
were superior to MSCs in reducing global renal
damage levels in a rat model of donation after cir-
culatory death (DCD) kidney [57]. Thus, EVs ap-
pear to be a promising approach for the repair of
AKI.
The multivariable meta-regression analysis showed

that the delivery dose and cell origin of EVs were in-
dependent factors influencing the efficacy of EVs.
This suggests that we need to consider these factors
when performing clinical trials. The properties and
cargoes of EVs have been summarised in databases
that are continuously updated, namely, Vesiclepedia,
ExoCarta, and EVpedia [58]. Interestingly, the same
cell may release EVs that differ in the content of their
membrane lipid composition and in their intravesicu-
lar cargo [58, 59]. Therefore, further studies are ur-
gently needed to explore the mechanism behind this
phenomenon.
In our meta-analysis, various sizes of EVs were in-

cluded. The large heterogeneity between EVs poses
major obstacles to understanding the composition and
functional properties of distinct secreted components
[60]. One recent research reassessment of exosome com-
position established the differential distribution of pro-
tein, RNA, and DNA between small EVs and
nonvesicular extracellular matter and demonstrated that
small EVs are not vehicles of active DNA release [60]. It
is important for further study to identify the key ele-
ments in AKI treatment.

One clinical trial tested the effects of MSC-derived
EVs on the progression of chronic kidney disease
(CKD) patients, and the results indicated that EVs
can improve the estimated glomerular filtration rate
(eGFR); decrease Scr, BUN, and TNF-α levels; and
increase IL-10 levels [61]. However, significant trans-
lational challenges need to be addressed before the
use of MSC-derived EVs for the clinical treatment of
AKI. First, EV isolation and storage methods may
potentially affect EV characteristics. It is challenging
to ensure that recovered vesicles are truly from the
extracellular space rather than from intracellular ves-
icles or artefactual particles released from cells
broken during tissue harvest, processing (e.g. mech-
anical disruption), or storage (including freezing) [9].
Second, in most studies, the follow-up time ranged
from 1 day to 2 weeks. Therefore, the long-term ef-
fects of EVs are a key issue that requires further ex-
ploration before their clinical application. Third, a
development method that can be used to meet the
large-scale clinical production requirement of a suffi-
cient quantity of EVs is also a core problem [51].
Fourth, labelling EVs with lipophilic or surface-
coating fluorophores may modify the physicochemi-
cal characteristics of EVs and alter the detection
mode and/or uptake by target cells [9]; thus, the de-
velopment of specific tracking tools is required to
further detect EVs.

Limitations
Several potential limitations to this meta-analysis should
be considered. First, despite the fact that we performed
subgroup and sensitivity analyses, the heterogeneity be-
tween studies cannot be remarkably reduced. This may
weaken the stability of the results. Second, we included
stem cell-derived EVs and other cell origin EVs, but we
did not perform a direct comparison to identify the best
option, which may have also increased the heterogeneity.
Third, there was potential for the incomplete retrieval of
identified research studies, which could have introduced
publication bias. Finally, data extraction from graphics by
using Engauge Digitizer software may have altered the ori-
ginal data, which would also affect the results.

Table 2 Secondary outcomes

Outcomes Number of studies Std. mean difference (95%CI) Test for effect (P value) Heterogeneity, I2 (P value)

TUNEL 10 [20, 24, 30, 31, 34, 36, 38–40, 45] − 6.25 (− 8.10, − 4.39) < 0.01 87% (< 0.01)

Injury score 6 [21, 23, 30, 31, 33, 37] − 3.90 (− 5.26, − 2.53) < 0.01 54% (0.05)

IL-10 3 [20, 24, 38] 2.10 (1.18, 3.02) < 0.01 68% (0.04)

TNF-α 3 [20, 35, 38] − 2.65 (− 4.98, − 0.32) 0.03 95% (< 0.01)

Abbreviations: IL interleukin, TNF tumour necrosis factor
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Fig. 4 The forest plot compares the efficacy of cell-derived EVs with cells in the AKI model. a Forest plot of Scr. b Forest plot of BUN. ADMSC,
adipose-derived mesenchymal stromal cell; BMSC, bone marrow mesenchymal stromal cell; BUN, blood urea nitrogen; 95% CI, 95% confidence
interval; EVs, extracellular vesicles; IV, inverse variance; KMSC, kidney-derived mesenchymal stromal cell; Scr, serum creatinine; SD, standard
deviation; UVEC, umbilical vein endothelial cell
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Conclusion
The present meta-analysis confirmed that EV therapy
could improve renal function and the inflammatory re-
sponse status and reduce cell apoptosis in a preclinical
rodent AKI model. This provides important clues for
human clinical trials on EVs.
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