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Abstract

Background: Lung disease is a leading cause of morbidity and mortality. A breach in the lung alveolar-epithelial
barrier and impairment in lung function are hallmarks of acute and chronic pulmonary illness. This review is part
two of our previous work. In part 1, we demonstrated that CdM is as effective as MSCs in modulating inflammation.
Herein, we investigated the effects of mesenchymal stromal cell (MSC)-conditioned media (CdM) on (i) lung
architecture/function in animal models mimicking human lung disease, and (ii) performed a head-to-head
comparison of CdM to MSCs.

Methods: Adhering to the animal Systematic Review Centre for Laboratory animal Experimentation protocol, we
conducted a search of English articles in five medical databases. Two independent investigators collected
information regarding lung: alveolarization, vasculogenesis, permeability, histologic injury, compliance, and
measures of right ventricular hypertrophy and right pulmonary pressure. Meta-analysis was performed to generate
random effect size using standardized mean difference with 95% confidence interval.

Results: A total of 29 studies met inclusion. Lung diseases included bronchopulmonary dysplasia, asthma,
pulmonary hypertension, acute respiratory distress syndrome, chronic obstructive pulmonary disease, and
pulmonary fibrosis. CdM improved all measures of lung structure and function. Moreover, no statistical difference
was observed in any of the lung measures between MSCs and CdM.

Conclusions: In this meta-analysis of animal models recapitulating human lung disease, CdM improved lung
structure and function and had an effect size comparable to MSCs.
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Background
Pulmonary illness is a leading cause of morbidity and
mortality [1]. In children, acute respiratory exacerbations
are a common reason for primary care visits and are
often implicated in hospitalizations [2, 3]. Many of these
pulmonary conditions result in impairments in lung
function that may last into adulthood [4, 5]. Conse-
quently, identifying novel therapies for lung disease is
highly warranted.
A unifying theme in many lung diseases includes in-

flammation [6–8]. While some inflammation is neces-
sary to combat new disease and for proper wound
healing, chronic inflammation may result in altered lung
structure and function. During an acute illness, current
therapies focus on restoring lung function by abating in-
flammation [9–11]. For instance, glucocorticoids are the
mainstay therapy for reducing inflammation during
acute exacerbations of asthma [12]. More recently, mes-
enchymal stromal/stem cells (MSCs) have shown en-
couraging outcomes in animal models of lung
inflammation [13–15].
MSCs are promising agents as they are easily har-

vested, can be rapidly expanded, and can secrete factors
(exosomes, microvesicles, microRNA) known to reduce
inflammation [16–18]. The “secretome” or “conditioned
media” of MSCs is considered biologically active and can
be easily collected from the surrounding fluid of propa-
gating cells [19–21]. Remarkably, preclinical studies sug-
gest MSC conditioned media (CdM) may be as
restorative as the MSCs themselves [22, 23]. We sup-
ported this observation in a previous systematic review
and meta-analysis demonstrating that CdM is as effect-
ive as MSCs in modulating inflammation [24].
This review is an extension of our previous work. In

this review, we examined the effects of CdM on (i) lung
architecture/function in animal models recapitulating
lung disease and (ii) compare these findings to MSCs.
Given that the therapeutic benefit of MSCs is attributed
to a paracrine fashion, we believed CdM would have
comparable effects to MSCs.

Methods
Overview and literature search
The methods in our review abide to those outlined by
the Systematic Review Centre for Laboratory Animal Ex-
perimentation (SYRCLE) [25]. Our protocol was regis-
tered through the Collaborative Approach to Meta-
Analysis and Review of Data from Experimental Studies
(CAMARADES) [26]. Details are described in our previ-
ous publication.
We conducted a literature search in five databases

using the following terms: mesenchymal stem cell-
conditioned media, lung disease, and animal. The last
search was performed on March 17th, 2020. Three

independent investigators evaluated titles and abstracts,
followed by full-text review.

Inclusion criteria and outcomes of interest
We included studies administering MSC-CdM to animal
models of acute lung injury or acute respiratory distress
syndrome (ALI/ARDS), asthma, bronchopulmonary dys-
plasia (BPD), chronic obstructive pulmonary disease
(COPD), cystic fibrosis (CF), pneumonia, pulmonary fi-
brosis (PF), and pulmonary hypertension (PH). Refer to
Supplementary File 1 for the list of included studies.

Outcomes of interest
Measures of lung structure and/or function were our
primary endpoint. Lung architecture and function were
assessed under the following categories: alveolarization,
vasculogenesis, right ventricular hypertrophy, fibrosis,
permeability, pulmonary pressures, compliance, and lung
injury. Although the pathogenesis of the included lung
diseases are heterogeneous, we combined all processes
irrespective of disease. This was conducted to obtain a
scoping overview of the impact of CdM on biologic pro-
cesses implicated in lung disease. Subsequently, we
assessed lung structure/function by disease in our sub-
group analysis. Excluded studies were those which did
not provide data concerning our primary outcome of
inflammation.

Data extraction
Three groups of investigators were used (ED and CE;
RN and JM; ME, DM, and SM) to collect data. Uniform-
ity of data was assessed by the primary author. This data
included general study design, animal model characteris-
tics, conditioned media characteristics, and outcomes of
interest.

Data analysis
A random effects model was used to generate forest
plots. A minimum of three studies were required for
each outcome to proceed with a meta-analysis. The esti-
mated effect size of CdM or MSC on lung architecture/
function was determined using standardized mean dif-
ference (SMD) with a 95% confidence interval (CI). Stat-
istical heterogeneity between studies was calculated
using the I2 metric, and funnel plots were used to exam-
ine publication bias. If more than six articles were in-
cluded per outcome, we conducted a subgroup analysis
for disease, animal species, and route and dose of CdM
administration. All statistical analyses were performed in
R version 3.6.2; packages used included dmetar, metafor,
and meta.
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Results
Study selection
Our literature search resulted in 245 articles. After re-
moving duplicates and viewing the titles and abstracts,
55 articles underwent full-text review. Twenty-nine arti-
cles met inclusion (refer to Supplementary Figure 1).

Study details
Table 1 summarizes the relevant study characteristics.
Articles included in the review were published between
the years 2009 to 2020. BPD was the most common ani-
mal model (n = 8), followed by ALI/ARDS (n = 5) and
asthma (n = 5). All of the studies used rodents to induce
their lung model.

CdM characteristics
Conditioned media properties are summarized in Sup-
plementary File 3. Stem cells were most isolated from
bone marrows and cultured in Dulbecco’s modified Ea-
gle’s medium. Incubation time of the CdM ranged from
24 to 72 h. The volume of CdM administered ranged
from 25 μl to 1 ml.

Alveolarization

� CdM: improved alveolarization with an SMD of 1.32
(95% CI 0.99, 1.65; 12 studies; Fig. 1a) with
moderate heterogeneity (I2 = 67%; p < 0.01).

� MSC: improved alveolarization with an SMD of 1.80
(95% CI 1.52, 2.07; 9 studies; Fig. 1b) with mild
heterogeneity between groups (I2 = 36%; p = 0.01).

� CdM vs. MSC: no significant difference
(Supplementary Figure 2).

Right ventricular hypertrophy

� CdM: favored CdM over control with an SMD of −
1.08 (95% CI − 1.56, − 0.61); 6 studies; Fig. 2a) with
significant heterogeneity (I2 = 70%; p < 0.01).

� MSC: favored over the control with an SMD of −
1.05 (95% CI − 1.69, − 0.42; 3 studies, Fig. 2b) with
significant heterogeneity between groups (I2 = 71%;
p < 0.01).

� CdM vs. MSC: no significant difference (SMD −
0.22, 95% CI − 0.36, 0.16; Supplementary Figure 3).

Lung fibrosis

� CdM: favored CdM over control with an SMD of −
1.08 (95% CI − 1.56, − 0.61; 6 studies; Fig. 3a) with
significant heterogeneity (I2 = 70%; p < 0.01).

� MSC: favored MSC over the control with an SMD
of − 1.99 (95% CI − 2.93, − 1.04; 4 studies; Fig. 3b)

a

b

Fig. 1 Effect size of CdM (a) and MSC (b) on lung alveolarization.
Forest plots demonstrate SMD with 95% confidence interval
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with significant heterogeneity between groups (I2 =
90%; p < 0.01).

� CdM vs. MSC: the comparison between CdM
and MSCs was similar (refer to Supplementary
Figure 4).

Vasculogenesis

� CdM: superior to control with an SMD of − 2.46
(95% CI − 3.22, − 1.70; 6 studies; Fig. 4a) with
moderate heterogeneity (I2 = 76%; p < 0.01).

� MSC: superior to control with an SMD of − 2.29
(95% CI -3.01, − 1.56; 4 studies; Fig. 4b) with mild
heterogeneity between groups (I2 = 35%; p = 0.14).

� CdM vs. MSC: overall effectiveness between CdM
and MSCs again showed no significant difference
(Supplementary Figure 5).

Permeability

� CdM: permeability assessment favored CdM over
control with an SMD of − 0.99 (95% CI − 1.32, −

a

b

Fig. 2 Effect size of CdM (a) and MSC (b) on right ventricular hypertrophy. Forest plots demonstrate SMD with 95% confidence interval
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a

b

Fig. 3 Effect size of CdM (a) and MSC (b) on lung fibrosis. Forest plots demonstrate SMD with 95% confidence interval
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0.66; 5 studies; Fig. 5a) homogeneity that is non-
significant (I2 = 11.0%; p = 0.33).

� MSC: in the evaluation of permeability, the MSC
was favored over the control with an effect size of −
1.54 (95% CI -2.13, − 0.95; 4 studies; Fig. 5b) with
heterogeneity between groups (I2 = 57.0%; p < 0.01).

� CdM vs. MSC: equal effectiveness (Supplementary
Figure 6).

Pulmonary pressures

� CdM: improvement in right ventricular pressures
compared to control with an SMD of − 0.69 (95% CI
− 0.99, − 0.39; 5 studies; Fig. 6a) with moderate
heterogeneity (I2 = 51%; p < 0.01).

� MSC: superior to control with an SMD of − 1.63
(95% CI − 2.02, − 1.24; 3 studies; Fig. 6b) with
moderate heterogeneity (I2 = 63%; p < 0.01).

� CdM vs. MSC: comparable (please refer to
Supplementary Figure 7).

Histologic lung injury

� CdM: improvement in histologic lung injury
compared to control with an SMD of − 6.05 (95% CI
− 8.72, − 3.38; 3 studies; Fig. 7a) with significant
heterogeneity (I2 = 87%; p < 0.01).

� MSC: superior to control with an SMD of − 2.01
(95% CI -3.41, − 0.60; 3 studies; Fig. 7b) with
significant heterogeneity (I2 = 88%; p < 0.01).

� CdM vs. MSC: less than 3 studies; comparison not
performed.

Compliance

� CdM: improvement in lung compliance compared to
control with an SMD of 1.75 (95% CI 0.81, 2.69; 4

a

b

Fig. 4 Effect size of CdM (a) and MSC (b) on lung vascularization. Forest plots demonstrate SMD with 95% confidence interval
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studies; Fig. 8a) with significant heterogeneity (I2 =
76%; p < 0.01).

� MSC: improvement in lung compliance compared to
control with an SMD of 2.33 (95% CI 1.84, 2.82;
3 studies; Fig. 8b) with no heterogeneity (I2 = 0%;
p = 0.5).

� CdM vs. MSC: not applicable as less than three
studies performed a head-to-head comparison.

All outcomes for lung structure and function combined

� CdM: Supplementary Figure 8A shows the SMD of
− 1.38 (with 95% CI of − 1.57, − 1.19) favoring CdM
over control.

� MSC: Supplementary Figure 8B shows the SMD of
− 1.66 (with 95% CI of − 1.91, − 1.41) favoring MSC
over control.

� CdM vs. MSC: no difference was appreciated
between CdM and MSC when all outcomes were
combined (Supplementary Figure 8C).

Subgroup analysis
Stratification of data was performed by lung disease, tis-
sue source, dose, and route of delivery of CdM. Evalu-
ation was performed if more than 6 studies had data.

Alveolarization
Supplementary Figure 9A–D demonstrates that CdM
had the greatest impact on alveolarization in BPD

a

b

Fig. 5 Effect size of CdM (a) and MSC (b) on lung permeability. Forest plots demonstrate SMD with 95% confidence interval
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a

b

Fig. 6 Effect size of CdM (a) and MSC (b) on pulmonary pressures. Forest plots demonstrate SMD with 95% confidence interval
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animal models (SMD 1.67) and when the media was
derived from cord blood (SMD 2.89), given at a dose
of 7 μl/g (SMD 2.89), and delivered via the intraperi-
toneal route (SMD 1.56).

RVH
Supplementary Figure 10A–D depicts that CdM sig-
nificantly improved RVH in BPD animal models
(SMD − 0.93) and only when the media was derived
from adipose tissue (SMD − 1.05), given at a dose
of 100 μl (SMD − 1.14) and delivered intravenously
(SMD − 0.86).

Fibrosis
Supplementary Figure 11A–D illustrates that CdM had
the greatest impact in animal models of BPD and PH
(SMD − 4.1, − 3.4, respectively) and when the media was
derived from adipose tissue (SMD − 2.61), given at a
dose of 50 μl (SMD − 4.10) and delivered intravenously
(SMD − 1.95).

Vascularization
Supplementary Figure 12A–D shows that CdM had the
greatest impact in animal models of COPD (SMD −
8.09), when the media was derived from adipose tissue
(SMD − 2.61), given at a dose of 300 μl (SMD − 8.09)
and delivered intravenously (SMD − 3.65).

Risk of bias
No study was judged as low risk across all ten domains.
Eight studies stated that the allocation selection was ran-
dom. Most studies (n = 25) had similar groups at base-
line. Risk of bias was large regarding allocation
concealment, whether authors mention random housing
of animals, and blinding of caregivers or random selec-
tion of outcome. All studies were found to sufficiently
report complete data and being free from other bias.
Refer to Supplementary File 2 [27].

Publication bias
Supplementary Figures 13, 14, 15, 16, 17, 18, 19, and 20
illustrate publication bias through funnel plots. Overall,

a

b

Fig. 7 Effect size of CdM (a) and MSC (b) on histologic lung injury. Forest plots demonstrate SMD with 95% confidence interval
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publication bias was low in all the outcomes except for
lung permeability.

Discussion
Preclinical studies reiterate the ability MSCs have on
dampening lung inflammation. This capacity is largely
due to the paracrine secretion of MSC factors (microve-
sicles, exosomes) that provide a basis for future cell-free
therapies for human disease [28–31]. This is the first re-
view to directly compare the effects of CdM vs MSCs on
lung structure and function in animal models of diverse
lung disease. Overall, we found that CdM improved
measures of alveolarization, right ventricular hyper-
trophy, lung fibrosis, vasculogenesis and permeability.
Furthermore, CdM reduced pulmonary pressures, ame-
liorated histologic lung injury, and increased lung com-
pliance. We found that CdM was comparable to MSCs

in all lung measures evaluated individually and when
combined.
The bioactive factors contained in the CdM of MSCs

have been the focus of multiple studies and review arti-
cles [32–34]. Congruent with the findings found in this
review, Hansmann et al. show that MSC-CdM, com-
pared to CdM from lung fibroblasts, reversed alveolar
injury, normalized lung function (airway resistance),
and reversed RVH [35]. Additionally, the same group re-
cently demonstrated that MSC exosomes (molecular
cargo found within CdM) restored lung architecture,
stimulated pulmonary blood vessel formation, and mod-
ulated lung inflammation [22]. In an E. coli pneumonia-
induced ALI mouse model, MSC microvesicles (also
found in MSC-CdM) reduced lung permeability and
histologic injury score and were equivalent to MSCs
[36]. Together, these findings, and those in recent

a

b

Fig. 8 Effect size of CdM (a) and MSC (b) on pulmonary compliance. Forest plots demonstrate SMD with 95% confidence interval
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reviews, substantiate the results found in this review [37,
38].
This year, Augustine et al. published a network meta-

analysis comparing stem cell and cell-free therapies in
preclinical measures of BPD. MSC-CdM had a similar
effect size to MSCs regarding alveolarization (MSC SMD
1.71 vs. CdM SMD1.68), angiogenesis (SMD 2.24 vs.
1.79), and pulmonary remodeling (1.29 vs. 1.22) [39].
Similar to their results, this review showed that CdM
had among the largest impact on measures of alveolari-
zation and vasculogenesis, processes critical for appro-
priate lung healing, development, and function [40].
Although vasculogenesis/angiogenesis is an important
process to restore lung function/structure, it can also en-
hance remodeling and thus worsen outcomes in other
lung diseases such as asthma or pulmonary fibrosis [41].
In Supplementary Figure 12A, we demonstrate that this
process improved in BPD, pulmonary hypertension, and
COPD but was not assessed in asthma/pulmonary
fibrosis.
In the study by Hayes et al., they found that MSCs

were superior to CdM in a rodent model of ventilator-
induced lung injury. However, our review suggests that
when you compile the literature, there were no signifi-
cant benefits of using cells over CdM. We cannot ex-
plain why CdM was not comparable in this study;
however, an important challenge that remains in the
field includes the rigorous testing of key variables (tissue
source, dose, route, disease, etc.) that may impact the
quality of CdM [42–44]. For instance, we found that the
intravenous route provided optimal results. Moreover,
multiple administrations of CdM may augment vascular
development, as seen in the study by Huh et al (n = 10
intravenous injections). Conversely, the optimal source
and dose of CdM is dependent on the variable or the lung
disease. This brings to light that it will be incredibly chal-
lenging to find a single CdM product that is ideal for all
lung diseases. Thus, the idea of “one-size-fits-all” does not
hold true for regenerative cells or products. Illustrating
this concept, Rathinasabapathy et al. showed greater im-
provement in measures of RVH compared to other studies
measuring right ventricular size. Important differences
seen in the study by Rathinasabapathy and colleagues was
that they used a different animal model (PH vs. BPD)
and age of rodents (adult vs. neonatal) [45].
As investigators, we should attempt to tease out these

characteristics in order to have the ideal product(s) for
our lung disease of interest. In this way, we may have
translational success in future clinical studies. Refining
these features will take time but will play a vital role in
efficacy. Moreover, pinpointing small and large animal
models of lung disease that will recapitulate what occurs
at the patient bedside is essential if we want to move the
needle in the field [46].

The plausibility of using a cell-free product as a
therapeutic agent for lung disease is substantiated by
newly registered human clinical trials. For instance,
NCT04235296 and NCT04234750 are evaluating
safety of MSC-CdM in regulating wound inflamma-
tion and promoting wound healing in burn injury.
Another Phase I trial (NCT04134676) plans to study
the therapeutic potential of umbilical cord tissue-
derived stem cell CdM on chronic skin ulcers. Trials
valuing the safety of stem cell CdM constituents (exo-
somes) are also underway for ischemic stroke
(NCT3384433) and ocular conditions (NCT04213248,
NCT03437759).
There are several limitations to our systematic review

and meta-analysis, many of which mirror those pub-
lished in our previous report. We incorporated multiple
animal models of lung disease that have diverse patho-
logic processes resulting in their etiology. Also, most of
the studies lacked methodologic details rendering them
with an unclear risk of bias. Moreover, although preclin-
ical models of lung disease have been helpful in identify-
ing targetable mechanisms/processes, they oftentimes
lack the intricacies of human disease. Thus, meticulous
efficacy studies in large animals may be one approach to
mitigate translational failure in human trials.

Conclusion
This review demonstrates that the administration of
CdM in animal models of lung disease improves lung
architecture and function. When compared to MSCs,
CdM is as efficacious and provides a basis that cell-free
products are a viable option for future studies. However,
mores studies are needed to identify how specific vari-
ables (tissue source, route of delivery, concentration,
etc.) may impact/strengthen their therapeutic potential.
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Supplementary information accompanies this paper at https://doi.org/10.
1186/s13287-020-01900-7.

Additional file 1: Figure S1. Flow diagram demonstrating study
selection process.
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Additional file 3: Figure S3. Effect size of CdM on right ventricular
hypertrophy. Forest plots demonstrate SMD with 95% confidence
interval.
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interval.
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Additional file 10: Figure S10. Effect size of CdM on right ventricular
hypertrophy by disease (a), source (b), dose (c), and route (d). Forest plots
demonstrate SMD with 95% confidence interval.
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