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Abstract

Extracellular vesicles (EVs) are secretory lipid membranes with the ability to regulate cellular functions by exchanging
biological components between different cells. Resident skin cells such as keratinocytes, fibroblasts, melanocytes, and
inflammatory cells can secrete different types of EVs depending on their biological state. These vesicles can influence the
physiological properties and pathological processes of skin, such as pigmentation, cutaneous immunity, and wound healing.
Since keratinocytes constitute the majority of skin cells, secreted EVs from these cells may alter the pathophysiological
behavior of other skin cells. This paper reviews the contents of keratinocyte-derived EVs and their impact on fibroblasts,
melanocytes, and immune cells to provide an insight for better understanding of the pathophysiological mechanisms of skin
disorders and their use in related therapeutic approaches.
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Background
The skin is a multilayer tissue organization that covers
the whole body and thus is known as the largest organ.
Protecting the body against microorganisms and hazard-
ous materials and regulating the rate of dehydration in
response to temperature, as well as sense of pressure
and pain, are the most important functions of the skin.
Various factors—such as environmental stimuli and hor-
mones—influence the structural stability and function of
the skin [1].
The structure of the skin is layered, and each layer is

made up of various cell types and biomolecules [2]. The
first layer, epidermis, provides an environmental barrier
to pathogens and controls water loss from the body. The
epidermis is composed of diverse cells including kerati-
nocytes, melanocytes, Langerhans cells, Merkel cells, in-
flammatory cells, and stem cells [3]. The second layer,

dermis, primarily contains nerve endings, blood vessels,
and cells such as fibroblasts, macrophages, and adipo-
cytes. The last layer, hypodermis, consists mainly of fat
and blood vessels and contains the same cells as the
dermis.
Among different skin cells, keratinocytes, fibroblasts,

and melanocytes have close communication with one
another. Keratinocytes establish a tight stratified layer by
a highly regulated differentiation process of progenitor
cells [4]. Fibroblasts synthesize the extracellular matrix
proteins and interfere in inflammatory responses [5].
The intercommunication between keratinocytes and fi-
broblasts is essential during the mechanism of wound
healing. Furthermore, basal keratinocytes are recipient
cells for melanin pigment secreted by melanocytes.
Intercellular communication is an important issue for sur-

vival of life in multicellular organisms. The extracellular
matrix (ECM), which is known as cellular microenviron-
ment, plays a critical role in intercellular communications.
ECM is an extensive three-dimensional network made from
a variety of proteins, proteoglycans/glycosaminoglycans, and
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glycoproteins. Cells produce ECM in response to growth fac-
tors, cytokines, and mechanical signals via their surface re-
ceptors [6].
Communication between cells is also mediated by the

EVs. EVs are small fragments detached from the plasma
membrane of cells that are released into ECM. It has
been demonstrated that EVs can communicate between
different cells, since they contain cellular biological com-
ponents that may affect cell signaling pathways. Regard-
ing skin tissue, different skin cells such as keratinocytes,
fibroblasts, melanocytes, and inflammatory cells also
communicate with one another through EVs that is me-
diated by ECM. Regarding skin tissue, different skin cells
such as keratinocytes, fibroblasts, melanocytes, and in-
flammatory cells also communicate with one another
through EVs that is mediated by ECM.
The nature of EVs as biological carriers has potential for

exploitation in different skin therapy purposes including
repair, regeneration, and rejuvenation [7]. However, to
make these therapeutic approaches accessible to patients
in the future, it is necessary to develop good manufactur-
ing practice (GMP) as a standard protocol to ensure the
quality of EVs used [8, 9]. In this regard, this review fo-
cuses mostly on the keratinocyte-derived EVs and their
impact on biological behavior of other skin cells.

Extracellular vesicles
Cells generally communicate using secreted factors or
membrane vesicles, commonly known as EVs. EVs are
phospholipid bilayer membranes that are classified into
exosomes (EXs), microvesicles (MVs), and apoptotic
bodies (ApoBDs) based on their different biological
characteristics (Table 1) [10–15].
EXs and MVs are released by living cells. They are

produced by most, but not all, cell types and similarly
contain genetic material such as mRNA, miRNA, and
even lower amount of DNA, along with numerous

proteins [16]. EXs are 40–100nm in size and consti-
tute a homogeneous group of EVs [17], while MVs
are more heterogeneous (50–1000 nm). Alix, HSP70,
and the tetraspanins—such as CD9 and CD63—are
some of the surface markers of EXs, whereas integ-
rins, selectins, and CD40 are found on the surface of
MVs. The biogenesis mechanism of EXs is not fully
understood; however, it is commonly accepted that
EXs are formed through the endocytosis-exocytosis
pathway. Generally, the formation process begins
when intracellular fluid is internalized by different
endocytic pathways to form early endosomes. During
the next step, early endosomes are developed into late
endosomes, which mature subsequently to become
multi-vesicular bodies (MVBs). Lastly, MVBs are fused
with the cell membrane and exocytosis into the extra-
cellular environment, known as EXs. In contrast to
EXs, MVs originate from direct budding of the cell
membrane, which is dependent on calpain (a calcium-
dependent protein), cytoskeleton reorganization, and
intracellular calcium concentration. Calcium ions are
responsible for phospholipid redistribution of cell
membrane that leads to the formation of MVs.
In comparison to EXs and MVs, ApoBDs are the

largest EVs (800–5000 nm) generated from many
apoptotic cell types that mainly contain organelles
and nuclear components. ApoBDs express the same
surface markers as their cells of origin, which might
be used to discriminate cell type-unique ApoBDs.
However, phosphatidylserine is the only common
marker of ApoBDs which has been identified so far
[18]. ApoBDs are released into the ECM through sev-
eral stages, beginning with chromatin condensation
and nuclear splitting, then budding of the cell mem-
brane followed by proteomic degradation, and finally
disintegration of the cellular content into distinct
membrane enclosed vesicles, termed as ApoBDs.

Table 1 Comparison between the characteristics of extracellular vesicles

Type Size Content Surface markers Biogenesis origin Isolation method

Exosomes 40–
100
nm

mRNA, miRNA, and other non-
coding RNAs; lipids (cholesterol,
ceramide, sphingomyelin); cyto-
plasmic and membrane proteins
including receptors and MHC mol-
ecules, lower amount of DNA

Tetraspanins (CD63, CD9,
CD81), Alix, Hsp60, Hsp70,
Hsp90, clathrin, annexins,
ESCRT components (PDCD6IP
and TSG101), flotillin

Formation of early
endosome/formation of late
endosome/formation of
MVB/fusion with cell
membrane and exocytosis

Immunoprecipitation
(ExoQuick®),
ultracentrifugation, (100,
000–200,000g),
ultracentrifugation with
density gradient

Microvesicles 50–
1000
nm

mRNA, miRNA, non-coding RNAs,
cytoplasmic proteins, and mem-
brane proteins, including recep-
tors, Integrins, selectins, MMPs,
phosphatidylserine, cholesterol,
sphingomyelin, and ceramide

Integrins, selectins, MMPs,
phosphatidylserine, CD40,
ARF6, VAMP3

Cell membrane zeiosis Ultracentrifugation (10,
000–60,000g)

Apoptotic
bodies

800–
5000
nm

Cell organelles, nuclear fractions
including DNA, rRNA, mRNA

Phosphatidylserine Programmed cell death-
mediated zeiosis and cell
fragmentation

FACS and differential
centrifugation
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The characteristic of keratinocyte-derived EVs
Than et al. utilized a differential centrifugation method to
isolate EVs from spontaneously immortalized human ker-
atinocytes, HaCaT (human adult high calcium low
temperature [19]) cells, and primary human keratinocyte
cell cultures (PHKCs), then examined their contents [20].
Heat shock protein 70 (HSP70), tumor susceptibility gene
101 (TSG101), argonaute 2 (AGO2), CD81, CD63, and
CD9 were expressed by the three different EVs popula-
tions. Membrane proteins (integrin alpha 6 (ITGA6),
CD9, CD63) and cytoplasmic proteins (heat shock 70 kDa
protein 5 (HSPA5), eukaryotic translation elongation fac-
tor 1 alpha 1 (eEF1A1), syndecan binding protein
(SDCBP)) were common proteins corresponding to
HaCaT- and PHKCs-derived EVs. These proteins are ne-
cessary for skin development and repair (ITGA6), cell ad-
hesion (CD9), or cell extension and migration (CD9,
SDCBP) [21–25]. ECM related proteins—including lami-
nins, integrins, collagens, tenascins, thrombospondins,
and syndecans, along with some growth factors, cytokines,
integrins, metalloproteinases, stratifins, and cadherins—
were found in HaCaT- and PHKCs-derived EVs [20].
Additionally, the characterization of keratinocyte EVs con-

firmed the existence of other proteins like transforming
growth factor beta (TGF-β), epidermal growth factor (EGF),
involucrin, kallikrein 7 (KLK7), jagged 1 (JAG1), plasminogen
activator inhibitor 1 (PAI-1), matrix metalloproteinase-1, -3,
-8, and -9 (MMP-1, MMP-3, MMP-8, MMP-9), mitogen-
activated protein kinase 3 (MAPK3), and lactate dehydrogen-
ase (LDH) [26]. TGF-β regulates skin homeostasis and re-
generation by stimulating the fibroblasts [27] to express
collagen and other extracellular proteins, while EGF, involu-
crin, KLK7, and MAPK3 are potentially involved in keratino-
cyte differentiation. In addition, data has suggested that
JAG1 is associated with the enhancement of fibroblast
growth factor in vitro, while PAI-1 can play role in keratino-
cytes adhesion and migration during wound healing [28].
Matrix metalloproteinases (MMPs) are crucial enzymes for
wound re-epithelialization, as they contribute in extracellular
matrix degradation and deposition during tissue injuries [29].
Lastly, LDH can induce endothelial cell growth, proliferation,
and migration by stimulating vascular endothelial growth
factor (VEGF) production [30].
The biological status of keratinocytes can also deter-

mine the contents of their secreted EVs. For instance,
the activated migrating keratinocytes secrete EVs con-
tain cathepsin B, which interferes in intracellular prote-
olysis during wound healing [31]. Furthermore, different
isoforms of 14-3-3 protein have been identified in exo-
somes from differentiated and undifferentiated keratino-
cytes [26]. All seven 14-3-3 protein isoforms (β, σ, η, ε,
τ, ζ, and γ) exist in the exosomal cargos of differentiated
keratinocytes; however, exosomes of undifferentiated
keratinocytes only contain β, η, ζ, and γ isoforms. Each

of these isoforms is involved in different biological func-
tions. For example, it has been demonstrated that 14-3-
3σ can regulate protein synthesis and epithelial cell
growth by binding to keratin 17 (KRT17). This isoform
is also known as stratifin, which acts as a collagenase
stimulator factor in dermal fibroblasts [32]. 14-3-3γ and
β proteins act as protein kinase C (PKC) inhibitors.
Meanwhile, 14-3-3ε takes part in signal transduction and
cellular division and, along with 14-3-3ζ, both are in-
volved in the insulin sensitivity modulation. Lastly, 14-3-
3τ isoform is known as 14-3-3 protein T cell and a pro-
tein kinase regulator [26].
Regarding microRNAs, the let-7 family—including

hsa-miR 22, hsa-miR 27b, and hsa-miR 21—were among
the common miRNAs. The let-7 miRNAs regulate vari-
ous cellular activities, such as proliferation, differenti-
ation, and apoptosis [33]. hsa-miR 22, hsa-miR 27b, and
hsa-miR 21 regulate cell proliferation and apoptosis,
fibroblast activation, and keratinocyte migration, re-
spectively. Additionally, miRNA-203 and miRNA-205
were discovered in large amounts [20], which could
affect the wound closure process by regulating keratino-
cyte proliferation and migration [34, 35]. Some of the
keratinocyte-derived components and their relevant
functions are presented in Table 2.

Cross-talk between keratinocytes and fibroblasts through
EVs
Keratinocyte-fibroblast interactions occur via soluble
mediators or EVs that contain signaling molecules.
These epidermal-dermal communications are necessary
not only for the maintenance of skin homeostasis, but
also for the process of wound healing.
The communication between keratinocytes and fibro-

blasts can be mediated by integrins (ITG), which are het-
erodimeric cell adhesion receptors that transmit
biochemical and biomechanical signals between the cell
and its surrounding matrix. The signal transduction is
necessary for different cellular activities such as differen-
tiation, migration, expression of specific genes, or apop-
tosis. EVs containing ITGα1, ITGα2, ITGα3, ITGα6,
ITGβ1, ITGβ3, and integrin-specific accessory molecules
released by primary human epidermal keratinocytes have
been identified in the ECM of epidermis layer [36], and
therefore, it is hypothesized that EVs from epidermal
keratinocytes may deliver their integrins to fibroblasts
during healing processes.
It has been demonstrated that EVs can affect gene ex-

pression in fibroblasts. For example, Huang et al. indi-
cated the presence of MV-like vesicles during active
keratinocyte migration and early stages of granulation
tissue organization in human wounded skin [37]. They
found that the addition of keratinocyte-derived MVs to
fibroblast culture medium could affect the expression of
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MMP-1 and -3, IL-6 and -8, and also the genes associ-
ated with TGFβ signaling pathway, like cellular commu-
nication network factor-2 and -3 (CCN2, CCN3), elastin
microfibrillar interface-located protein 3 (Emilin-3), col-
lagen triple helix repeat containing 1 (CTHRC1), NGFI-
A binding protein 1 (NAB1), and thrombospondin 1
(THBS1).
Experimental studies using PD184352 (an inhibitor for

ERK1/2 signaling pathway) indicated that the expression
of MMP1, MMP3, IL6, and IL8 was mediated by ERK
signaling, which caused the significant overexpression of
these genes [37]. Generally, during the wound healing
process, MMP production by fibroblasts influences ECM
remodeling and provides keratinocyte participation in
tissue remodeling. Furthermore, both IL-6 and IL-8 con-
tribute to wound healing by stimulating macrophage in-
filtration, keratinocyte migration, and angiogenesis [38].
As a result, both fibroblasts and keratinocytes have

mutual effect on each other in order to improve the
ECM remodeling for wound healing.
In the vicinity of keratinocyte-MVs, the expression of

CCN2 in fibroblasts increased while CCN3 decreased
[37]. CCN2 and CCN3 are downstream genes (medi-
ator/target) of TGF-β signaling [39]. In human skin fi-
broblasts, CCN2 exhibits activities such as matrix
production, cell migration and promotion of pro-
angiogenic genes expression [40–42], while CCN3 blocks
CCN2 and decreases matrix production [43].
THBS1, Emilin-3, CTHRC1, and NAB1—which are in-

volved in TGF-β signaling modulation—were upregu-
lated by the keratinocyte-MVs [37]. THBS1 is essential
for initiating TGF-β signaling in latent TGF-β [44],
whereas Emilin-3 and CTHRC1 serve as inhibitors of
the TGF-β signaling pathway [45–47]. Finally, NAB1
acts as a corepressor of the early growth response 1
(Egr-1), which is required for abrogation of TGF-β-
stimulated fibrotic responses [48, 49]. In general, it can
be concluded that keratinocyte-MVs mediate expression
of both positive and negative regulators of TGF-β signal-
ing pathway, which leads selective regulation of ECM
protein genes.
Besides affecting gene expression, keratinocyte-MVs

may also influence on the phenotype of fibroblasts. In the
same study, Huang et al. found that keratinocyte-MVs
have contradictory effect on fibroblast differentiation to
myofibroblasts by reducing expression of alpha-smooth
muscle actin (α-SMA) and cadherin-2 [37]. During natural
healing process, fibroblast differentiation is largely regu-
lated by TGF-β pathway and during this phenotype alter-
ation, α-SMA expression is induced and cadherin-2 is
changed to cadherin-11 [50]. Therefore, keratinocyte-MVs
appear to have dual role in regulation of fibroblast differ-
entiation by preparing them towards phenotype change
(cadherin-2 downregulation), but obstructing the full dif-
ferentiation (α-SMA reduction).
Likewise, Huang et al. investigated the effect of

keratinocyte-MVs on the fibroblast genes related to angio-
genesis (vascular endothelial growth factor-A (VEGF-A),
fibroblast growth factor 2 (FGF-2), and C-X-C motif che-
mokine ligand 12 (CXCL12)), and they revealed that only
expression of FGF2 was dose-dependently upregulated by
the keratinocyte-MVs [37].
Importantly, activation of ERK1/2, JNK, Smad, and

p38 signaling pathways occurred under the influence of
keratinocyte-derived MVs [37]. These signaling pathways
resulted in fibroblast migration and promoted the endo-
thelial tube formation.
Recently, miR-21 has been found in the contents of

keratinocyte-derived MVs. The involvement of miR-21
in different cellular activities—such as proliferation, dif-
ferentiation, migration, apoptosis, and epithelial to mes-
enchymal transition (EMT)—is well established [51].

Table 2 Some of the keratinocyte-derived extracellular vesicle
components and their biological functions

CD9 Exosome biogenesis pathways, cell adhesion

CD63 Exosome biogenesis pathways

hsa-miR 22 Regulation of cell proliferation and apoptosis

hsa-miR 27b Fibroblast activation

hsa-miR 21 Keratinocyte migration, fibroblast migration and
differentiation, fibroblast-mediated angiogenesis
and pro-inflammatory response

miRNA-203, miRNA-
205

Regulation of keratinocyte proliferation and
migration

Cathepsin B Intracellular proteolysis

Hsp70 Cytoprotection

Annexin II Biogenesis of the EVs

Mac-2BP Cell adhesion and host defense

TGF-β Stimulation of fibroblast to express collagen

EGF, involucrin,
KLK7, MAPK3

Keratinocyte differentiation

Jagged-1 Regulation of fibroblasts growth factor

PAI-1 Keratinocytes adhesion and migration

MMPs Extracellular matrix degradation

LDH Stimulation of VEGF production

14-3-3σ Stimulation of fibroblast to express collagen

14-3-3 γ/β PKC inhibition

14-3-3ε Signal transduction and cell division

14-3-3ζ Regulation of insulin sensitivity

14-3-3τ Regulation of protein kinase

ITG Communication between keratinocytes and
fibroblasts

Hsp90α Pro-motility factor for the migration of
keratinocytes, fibroblasts and endothelial cells
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Qian et al. found that miR-21-MVs derived from kerati-
nocytes are implicated in fibroblast migration and differ-
entiation, fibroblast-mediated angiogenesis, and pro-
inflammatory response [52]. The results also confirmed
the contribution of miR-21-MVs on MMP-1, MMP-3,
IL-6, and IL-8 overexpression in fibroblasts in which
phosphatase and tensin homolog (PTEN), regulator of
IL-6 and IL-8 expression, was found to be the target of
miRNA-21.
In addition to keratinocyte-derived EVs, the inter-

action between fibroblast-derived EVs and keratinocytes
has also been revealed. For instance, Terlecki-Zaniewicz
and colleagues compared the effect of senescent and qui-
escent fibroblast-derived EVs on the dynamic of scratch
closure assay in an in vitro 2D culture model [53]. They
identified miR-23a-3p in the contents of fibroblast-
derived EVs, which has a crucial role in cellular senes-
cence [54] and skin aging. The results showed that tem-
porary exposure of keratinocytes to senescent cell-
derived EVs could increase the number of keratinocytes
in the cell free area, in comparison to those that were
subjected to EVs from quiescent fibroblasts. However,
prolonged incubation impaired the keratinocyte differen-
tiation in vitro. This was in line with in vivo evidence
showing increased wound healing [55] as a result of tem-
porary presence of senescent cells.

Cross-talk between keratinocytes and melanocytes
through EVs
Melanocytes are specialized cells that are situated in the
basal layer of epidermis and produce melanin. The most
important role of melanin is the prevention of UV-
induced DNA damage in human keratinocytes, achieved
by filtering harmful UV radiation. Melanocytes provide
specific organelles, termed melanosomes, in which mel-
anin pigment is produced and deposited. In fact, mela-
nosomes are shedding vesicles that are taken by the
microvilli of keratinocytes [56]. In other words, melano-
somes can be considered as a type of EV, which enables
the communication between melanocytes and keratino-
cytes that result in skin pigmentation.
Melanocytes can interact with keratinocytes through

filopodia. Filopodia, which are correlated with the pro-
duction of pigment globules and originated from the
melanocyte dendrites, were initially discovered to serve
as conduits for melanosome transmission to the kerati-
nocytes [57]. Ando et al. revealed the mechanism of
transferring melanosomes from melanocytes to keratino-
cytes [56]. Pigment globules containing melanosomes
bud off from all areas of melanocyte dendrites, are se-
creted into the ECM, phagocytosed by keratinocytes,
and then dispersed in the keratinocyte cytosol followed
by gradual degradation of the membrane surrounding
the melanosome. However, whether a single transfer

mechanism or other multiple mechanisms are involved
in the melanosome transfer remained unclear.
Ultraviolet (UV) irradiation causes skin pigmentation,

which depends on the intercellular interchange of mel-
anin between melanocytes and keratinocytes. When me-
lanocytes are exposed to ultraviolet A (UVA), EVs
shedding from plasma membrane occurs and then these
EVs are preferably captured by keratinocytes [58]. Simi-
larly, ultraviolet B (UVB) can affect intercellular commu-
nication between melanocytes and keratinocytes through
EXs, shedding from keratinocytes [59].
The secreted exosomes from keratinocytes can promote

melanin synthesis by improving the expression and func-
tion of melanosomal proteins [59]. However, the function
of these exosomes is distinct in different skin phototypes
and can be adjusted by UVB. According to results con-
ducted by Lo Cicero et al., the expression of melanocyte
proteins—including tyrosinase (TYR), microphthalmia-
associated transcription factor (MITF), and Rab27a—were
increased when melanocytes were exposed to miRNA-
derived exosomes obtained from UVB treated Caucasian
and Black keratinocytes, in comparison to non-treated
Caucasian keratinocytes [59]. hsa-miRNA-3196 and hsa-
miRNA-203 are specific microRNAs that correlate with
this pathway. In fact, hsa-miRNA-3196 upregulated the
expression of MITF and Rab27a, while hsa-miRNA-203
caused upregulation of TYR and Rab27a [59]. On the
other hand, the reduction of MITF levels in melanocyte
cells in the presence of keratinocyte exosome-derived
miR-675 has also been demonstrated [60].
In another study, Liu et al. found that keratinocyte-

derived EXs carry miR-330-5p-targeting TYR, which
could suppress melanocyte pigmentation by inducing a
significant decrease in the production of melanin and
expression of TYR. Additionally, overexpressed miR-
330-5p in melanocytes also proved the inhibitory effect
of miR-330-5p on pigmentation [61].
Since EVs have potential to deliver therapeutic agents,

such as DNA, mRNA, miRNA, or peptide sequences, ex-
clusive bioengineering of EXs [62, 63] containing genes
like miR-330-5p, miR-675, miRNA -3196, or miRNA-
203 could offer a therapeutic approach for hypo- and
hyperpigmentation disorders by regulating the balance
of expression of melanocyte proteins.

Cross-talk between keratinocytes and immune cells
through EVs
Keratinocytes are the first skin cells that encounter en-
vironmental allergens; therefore, they play a critical role
in skin immunity by organizing the physical barrier. Fur-
thermore, previous publications revealed a high level of
allergen uptake by keratinocytes in inflammatory condi-
tions like chronic atopic eczema [64]. Keratinocytes can
operate as modulators for the migration of inflammatory
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cells, keratinocyte proliferation, or differentiation, as well
as the induction of other cytokines through cytokine se-
cretion [65], which can be mediated by EVs. In addition,
they produce and secrete various antimicrobial peptides
(AMPs) such as cathelicidin LL-37, a family of AMPs
implicated in the pathogenesis of inflammatory skin dis-
ease, like psoriasis [66]. It is noteworthy that keratino-
cytes can stimulate rapid reaction in antigen specific
memory CD4+ and CD8+ T cells by processing en-
dogenous and exogenous antigens [67]. It has been
proven that epidermal keratinocytes intrinsically express
MHC I and display instigated expression of MHC II
under inflammatory conditions [68, 69].
As previously mentioned, keratinocytes release extra-

cellular vesicles. Secreted exosomes from keratinocytes
function as intercellular transmitters and immune mod-
ulators through interaction with antigen-presenting cells
(APCs). For instance, keratinocyte-EXs are found to be
internalized by dendritic cells (DCs) in vitro.
In a study conducted by Yin et al., exosome transfer

from the mouse progenitor epidermal keratinocyte
(MPEK) cell line to bone marrow-derived dendritic cells
(BMDCs) was analyzed under both steady state and in-
flammatory conditions (e.g., in the presence of +/IFNc)
[70]. Interestingly, BMDCs readily took up these exo-
somes in vitro and matured, as they overexpressed CD40
and increased the production of IL-6, IL-10, and IL-12.
The investigation of antigen-specific information trans-
portation via exosomes confirmed that keratinocytes
picked up antigens and delivered them to their exosomes
[70]. However, MPEK-derived exosomes containing anti-
gens failed to activate antigen-specific T cells via BMDCs.
It is well determined that exosomes from mature DCs

are effective immune activators [71], while immature
DCs have been proven to be immunosuppressive. The
major reason for this difference is due to their content
of proteins involved in immune modulation [72]. There-
fore, since keratinocytes are non-professional APCs,
their exosome contents are more similar to those of im-
mature rather than that of mature DCs, thus indicating
an anti-inflammatory activity for keratinocyte-EXs.
Altogether, this finding suggests that keratinocytes are
capable of directing nonspecific immune responses but
do not evoke specific immune system. However, the fac-
tors that mediate these changes remained unknown.
It is proposed that under inflammatory conditions or

in the presence of superantigens, T cell activity is stimu-
lated by keratinocytes. For example, Staphylococcal en-
terotoxin B (SEB) is such a superantigen produced by
Staphylococcus aureus bacterium. SEB binds to MHC II
and, with less affinity, to the T cell antigen receptors
without MHC molecules, causing severe stimulation of
the immune system and provoking acute pathological ef-
fects [73].

In this regard, Cai et al. analyzed the effects of pre-
treated HaCaT cells (with interferon γ and SEB) on the
function of rested T cells [74]. The HaCaT cells secreted
exosomes with CD63 and TSG101 markers that pro-
moted SEB/IFNγ-associated expansion of resting CD4+
and CD8+ T cells in vitro, even though the mechanism
of interaction between exosomes and T cells was not
specified. However, earlier studies proposed that individ-
ual exosomes may bind to the specific receptors on tar-
get cell and be internalized by endocytosis or by plasma
membrane fusion [75, 76]. For example, it has been
demonstrated that T cells can recruit released exosomes
from DCs, via their LFA-1 receptors [76].
Regarding superantigen-mediated inflammation, it

should be noted that the SEB superantigen is implicated
in the pathogenesis of psoriasis diseases in more than
50% of cases [77]. Psoriasis is a chronic inflammatory
disorder that severely affects the skin and nails. As
keratinocytes are the most predominant cell type in epi-
dermis, they are also the main cells with which Staphylo-
coccus aureus contacts. Dysregulated keratinocytes along
with different kinds of penetrated immune cells orches-
trate an abnormal immune response. For example, neu-
trophils can amplify inflammatory processes by
producing neutrophil extracellular traps (NETs) [78],
which recently were found to be associated with psoria-
sis progression. It has been reported that NETs may in-
duce antimicrobial peptide human beta-defensin-2
(HBD-2) expression in psoriatic keratinocytes [79] and
the induction of T helper 17 cells from peripheral blood
mononuclear cells (PBMCs) [80].
Relatedly, Jiang et al. investigated the release and func-

tion of psoriatic keratinocyte-EXs and focused on the
communication between keratinocytes and neutrophils
[81]. In order to simulate psoriasis condition, keratino-
cytes were treated with psoriatic cytokine cocktail and
then released exosomes from both healthy and psoriatic
keratinocytes were characterized. The results determined
that psoriatic keratinocyte exosomes could significantly
promote the formation of NETs and subsequent expres-
sions of IL-6, IL-8, and tumor necrosis factor-alpha
(TNF-α) in neutrophils, which have been reported to
play a critical role in psoriasis [82]. For instance, high
level IL-6 in wounded tissue has been reported as re-
quired for the dampened regulatory T cell activity de-
tected in psoriasis patients [83]. IL-8 is able to attract
more neutrophils to the lesion site [82] and TNF-α can
be found in many inflammatory diseases including psor-
iasis [84]. However, a specific cargo in psoriatic
keratinocyte-EXs that might be responsible for stimulat-
ing the activation of neutrophils was not identified [81].
On the other hand, NF-kB and p38 MAPK signaling
pathways were activated in neutrophils, induced by
cytokine-treated keratinocyte-EXs and were responsible
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for the expressions of mentioned proinflammatory
factors.
By considering this hypothesis that keratinocyte-EXs

are associated with superantigen-related inflammatory
diseases, the design of exosomes inhibitor mechanism
may offer a potential therapeutic approach through the
reduction of immune responses [74].

The effect of EVs on the wound healing process
Intercellular communications are important for main-
taining tissue hemostasis during injury, and the role of
EVs is significant in establishing these communications,
as they are able to influence cell proliferation, migration,
and angiogenesis. Secreted EVs from keratinocytes can
motivate fibroblast migration by activating specific sig-
naling pathways and can improve skin diseases by regu-
lating pigmentation in melanocytes and controlled
stimulation of immune cells activity (Fig. 1).
Following skin injury, released transforming growth

factor-alpha (TGFα) from epidermal cells stimulates se-
cretion of the exosomes containing heat shock protein
90-alpha (HSP90α) proteins from keratinocytes [85].

HSP90α is a common pro-motility factor for the migra-
tion of main human skin cells during wound healing
process through binding to low-density lipoprotein
receptor-related protein 1 (LRP-1) on the surface of ker-
atinocytes, dermal fibroblasts, and dermal microvascular
endothelial cells [86]. Extracellular HSP90a acts as a lig-
and that binds to subdomain II among four external
subdomains of LRP-1, to trigger cross membrane signal
transduction inside the cell. The signal crosses the
plasma membrane, bypasses the NPTY, and then exits at
the NPVY site in the intracellular tail of LRP-1. Then,
NPVY motif transmits the signal to Akt1/Akt2 kinases,
which is essential to the lateral migration of keratino-
cytes to close the wound. Subsequent inward migration
of dermal fibroblasts and dermal microvascular endothe-
lial cells into the wound, remodels the injured tissue,
and creates new blood vessels [85, 87].
In parallel, keratinocytes release extracellular vesicles

containing 14-3-3σ isoforms, when the skin is damaged.
This protein participates in keratinocyte-fibroblast inter-
actions, which result in the overexpression levels of col-
lagen and MMP1 in fibroblasts [32, 88]. Not only 14-3-

Fig. 1 The relationship between keratinocyte-derived extracellular vesicles with wound healing process
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3σ but also 14-3-3β and 14-3-3η isoforms seemed to
induce MMP-1 expression in fibroblasts, suggesting
the crucial role of 14-3-3 proteins upon epithelializa-
tion [26, 89].
Collagen, as one of the main ECM components, is ef-

fective in wound closure by attracting the keratinocytes
and fibroblasts to the wound bed [90]. In association
with keratinocyte EVs, EV-derived TGFβ1 is proposed to
indirectly affect collagen production through the regula-
tion of miR-21. TGF-β1 is presented to the TGFβ1RII
receptor, resulting in the expression of miR-21 that tar-
gets PTEN, thereby facilitating collagen expression [52].
This regulation mechanism in wound sites is essential
for controlling sustained production of collagen and sub-
sequent attenuation of fibrosis development in patho-
logical disorders like scars, hypertrophy, and keloids.
Relatedly, miR-21 was discovered to be related to cell

migration, angiogenesis and re-epithelization. Besides,
Qian et al. confirmed the potential application of miR-
21-MVs derived from keratinocytes for wound healing
improvement [52]. They determined that miR-21 consid-
erably promoted skin repair in diabetic rats by stimulat-
ing fibroblast function. Stimulated fibroblast was verified
to synthesize cytokines—including IL-6 and IL-8—not
only to expand the wound inflammatory response but
also provide a feedback loop to promote keratinocytes
proliferation [91].
At present, the most noteworthy hindrance in the

treatment of chronic wounds is how to prolong healing
duration. Consequently, based on this evidence provided,
it can be concluded that design of MVs carrying
miRNA-21 might play beneficial roles, particularly in the
case of diabetic ulcers.

Conclusion
It is believed that skin-derived EVs can be considered as
bioactive delivery systems that affect the function and
fate of neighboring cells. For instance, keratinocyte-
derived EVs contain a wide variety of biomolecules in-
cluding DNA, miRNA, mRNA, and proteins that can po-
tentially influence on the function and behavior of other
skin-homing cells such as fibroblasts, melanocytes, and
immune cells. It is demonstrated that the released MVs
from keratinocytes can affect gene expression in fibro-
blasts, which may result in the proliferation, differenti-
ation, and migration of fibroblasts or even causes
fibroblast-mediated angiogenesis and pro-inflammatory
responses. The physiological function of keratinocyte-
derived EXs in the regulation of melanocyte proteins is
also well determined, which may offer a therapeutic ap-
proach for hypo- and hyperpigmentation disorders. Fur-
thermore, it is indicated that keratinocyte-derived EXs
can function as intercellular transmitters and immune
modulators through interaction with APCs, which may

provide a therapeutic approach through the reduction of
immune responses.
By considering these findings, it would be possible to

incorporate specific therapeutic molecules like genetics
materials, proteins, or even inhibitor agents into bioengi-
neered EVs and deliver them to the target abnormal
cells, i.e., fibroblasts, melanocytes, or inflammatory cells,
in order to improve their biological activity for the treat-
ment of skin disorders such as pigmentation abnormal-
ities, autoimmune disease like psoriasis, or chronic
wounds.
There is growing evidence that using EVs, or inhibitors

of EVs’ components, as therapeutic cargo would be
promising for treating skin disorders [9, 92]. Therefore,
manufacturing of GMP-grade EVs that are then vali-
dated in preclinical and clinical studies is necessary for
the translation of this technology.
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