
Xiao et al. Stem Cell Research & Therapy            (2021) 12:5 
https://doi.org/10.1186/s13287-020-01957-4
REVIEW Open Access
The potential therapy with dental tissue-
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Abstract

Parkinson’s disease (PD), the second most common neurodegenerative disease worldwide, is caused by the loss of
dopaminergic (DAergic) neurons in the substantia nigra resulting in a series of motor or non-motor disorders. Current
treatment methods are unable to stop the progression of PD and may bring certain side effects. Cell replacement
therapy has brought new hope for the treatment of PD. Recently, human dental tissue-derived mesenchymal stem
cells have received extensive attention. Currently, dental pulp stem cells (DPSCs) and stem cells from human exfoliated
deciduous teeth (SHED) are considered to have strong potential for the treatment of these neurodegenerative
diseases. These cells are considered to be ideal cell sources for the treatment of PD on account of their unique
characteristics, such as neural crest origin, immune rejection, and lack of ethical issues. In this review, we briefly
describe the research investigating cell therapy for PD and discuss the application and progress of DPSCs and SHED in
the treatment of PD. This review offers significant and comprehensive guidance for further clinical research on PD.

Keywords: Cell therapy, Dopaminergic neurons, Dental pulp stem cells, Parkinson’s disease, Stem cells from human
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Introduction
Parkinson’s disease (PD) is the second most common neu-
rodegenerative disease in the world after Alzheimer’s dis-
ease with incidences of 1% and 5% for populations aged
over 65 and 80, respectively [1]. One of the main patho-
logical features of PD is that the loss of DAergic neurons
in the substantia nigra pars compacta (SNpc) leads to a
significant decrease in the content of dopamine (DA) in
the striatum, and there are Lewy bodies with α-synuclein
as the main component in the surviving neurons [2, 3].
The loss of these neurons will lead to some clinical symp-
toms related to the disease, such as static tremor,
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bradykinesia, rigidity, and postural gait disorders, along
with other non-motor symptoms [4]. Although the exact
pathogenesis of PD is still uncertain, it has been reported
that mitochondrial dysfunction, oxidative stress, neuroin-
flammation, and environmental toxins are important fac-
tors for the death of DAergic neurons [5, 6].
At present, drug therapy is the most effective and widely

used treatment for PD patients, including administration of
levodopa, DA agonists, amantadine, monoamine oxidase B
(MAO-B) inhibitors [7], catechol-O-methyltransferase
(COMT) inhibitors [8], and some anticholinergic drugs. As
physiotherapy, nucleus destruction and deep brain stimula-
tion (DBS) [9] are new and effective methods, which have
great potential for popularization and application. In
addition, some adjuvant therapies also are effective for re-
mission and partial treatment of patients with PD. Al-
though these treatments have improved certain symptoms
of the disease to some extent, they have not prevented the
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progression of PD and also cause some side effects. In re-
cent years, cell transplantation has been considered to be a
new option for the treatment of neurodegenerative diseases
[10, 11]. Stem cells are widely used in PD to counteract the
harmful effects of DAergic neuron loss, because of their
high proliferative capacity and multi-lineage differentiation
potential.
Of all available stem cell sources, human dental tissue-

derived mesenchymal stem cells (such as DPSCs and
SHED) not only feature the universal characteristics of
stem cells but have also attracted increasing attention
from PD researchers for their neural crest origin, immu-
nomodulatory activity, and non-tumorigenic properties
[10] and for avoidance of ethical problems caused by
transplantation [12, 13]. Owing to the neurocrest origin
of DPSCs and SHED, they achieve previously un-
imagined capability for treating central nervous system
diseases and peripheral nerve injuries such as caries and
alveolar bone atrophy [14, 15]. DPSCs and SHED can
play a powerful role in the treatment of PD. They can be
differentiated into DAergic neuron-like cells and secrete
neurotrophic factors such as brain-derived neurotrophic
factor (BDNF) and glial cell line-derived neurotrophic
factor (GDNF) [16–18]. DPSCs and SHED have high
proliferation ability, immunomodulatory characteristics,
neurodifferentiation ability, and non-ethical and material
advantages, which make them potential clinical thera-
peutic materials for PD. These cells are gradually be-
coming the priority of researchers in the cell therapy of
PD. In recent years, DPSCs and SHED have been applied
to the preclinical study of PD (Table 1). So far, there is
no comprehensive overview of the application of DPSCs
and SHED in the treatment of PD. Therefore, this review
briefly describes the research course of cell therapy for
PD and reports the application and research progress of
DPSCs and SHED in the treatment of PD.

Cell therapy for PD
PD research has always pioneered cell transplantation
therapy because of the unique pathological characteris-
tics—loss of DAergic neurons. Since the 1980s, re-
searchers have been trying to save the lost DAergic
neurons by cell transplantation [25]. Initially, a variety of
catecholaminergic cells were selected [26], but the most
successful method was to use tissue dissected from the
developing foetal midbrain. However, although this
method has proved successful in experiments, the clin-
ical effect is not satisfactory. This is mainly due to the
following reasons: (1) ethical problems are inherent in
the use of human foetal tissue, (2) there are practical
problems caused by the need for sufficient foetal tissue
for each patient, and (3) inconsistent results and side ef-
fects of dyskinesia were obtained in the “TRANSEURO”
study [9, 27, 28]. Therefore, in order to find more easily
available sources of substantia nigra DA cells for trans-
plantation, researchers have studied dopaminergic neu-
rons in different species and have begun to explore
different types of stem cells. At present, this field has been
developed to produce a large number of substantia nigra
DA cells safely and effectively from different types of stem
cells. Compared with foetal tissue cell transplantation,
stem cells play an irreplaceable role for the following
reasons: (1) better availability [29], (2) standardized pro-
duction [30], (3) controllable cell characteristics before
transplantation (unfavourable consequences can be
avoided [31, 32]), (4) good preservation conditions [30],
and (5) precise preoperative control [9], including of dose,
concentration, and volume. Therefore, these properties
further promote the favourable prospect for stem cell
transplantation in PD and inspire researchers to begin to
treat the disease through cellular reprogramming.
With the development of stem cell therapy, many

types of cells have been used for derivation and differen-
tiation of DAergic neurons, drug screening, and cell
therapy for PD [33]. At present, embryonic stem cells
(ESCs), neural stem cells (NSCs), induced pluripotent
stem cells (iPSCs), and mesenchymal stem cells (MSCs)
are considered to be reliable cell sources for PD therapy
[28, 34, 35]. To better understand the efficacy and safety
of cell replacement therapy, a variety of experimental
models of PD have been established. Toxicity-inducing
drugs include 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri-
dine (MPTP), 6-hydroxydopamine (6-OHDA), and rote-
none. These drugs act on cells or animal models to
simulate the pathological characteristics of PD. Next,
transfer of differentiated or undifferentiated ESCs, NSCs,
iPSCs, and other types of stem cells into an animal
model can restore a number of lost neurons or improve
the behaviour of the animal model to varying degrees.
ESCs were once thought to constitute the best source of

cells such as substantia nigra DAergic neurons [36]. It has
been known for a long time that undifferentiated ESCs
can be smoothly transplanted into the striatum of a rodent
and have the ability to differentiate into DAergic neurons,
which slows progression of behavioural abnormality in PD
rat models [37, 38]. It is a good choice to induce more
DAergic neurons in vitro, so the percentage of DAergic
neurons can be greatly increased by inhibiting certain mo-
lecular pathways [39, 40] and/or using developmental fac-
tors related to DA formation, such as Sonic hedgehog,
fibroblast growth factor 8, and brain-derived neurotrophic
factor. These derived neurons can also be transplanted to
experimental animal models and achieve unexpected ben-
efits. However, the same outstanding problem as with
iPSCs is that the tumorigenicity after transplantation can-
not effectively be solved. In addition, ESC transplantation
also involves certain ethical issues. There are more-or-less
unsolved problems regarding the safety and effectiveness
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of other stem cell transplantation approaches which
are not discussed in detail in this review. It is worth
noting that a breakthrough clinical trial was launched
in Japan in 2018 to transplant allogeneic human
iPSC-derived dopaminergic neuronal precursors into
the striatum of patients with PD [9, 41]. Further clin-
ical trials of cell transplantation in the treatment of
PD are expected to begin soon.
Mesenchymal stem cells (MSCs) are a type of adult

stem cells isolated from a variety of tissues [42].
MSCs have the potential for multi-directional differ-
entiation, such as with osteogenesis, adipogenesis, and
neuroblast formation, and have a unique function of
secreting cytokines, which has been used in a number
of clinical trials. At present, eight unique MSCs [43]
have been isolated from different dental tissues and used
in the treatment of various diseases. DPSCs and SHED
have proved to be promising potential options for the
treatment of PD by multiple modes of action (Fig. 1).
Next, we will discuss the current application and progress
of DPSCs and SHED in the treatment of PD.
Fig. 1 Main ways to exert the curative effects of DPSCs and SHED in P
cause damage to DAergic neurons and then induce PD. DPSCs and SH
DPSCs and SHED can be directly transplanted into PD animal models f
hand, DPSCs and SHED can be induced to differentiate into DAergic n
In addition, DPSCs and SHED can secrete signal transduction proteins,
neurons. Extracellular vesicles are mainly composed of microvesicles an
to the animal model by several delivery methods. There are many mea
and intracerebral injection
Dental pulp stem cells therapy for PD
Characteristics of DPSCs
DPSCs were first discovered by Gronthos and colleagues
through the study of dental pulp cells in 2000 [44].
DPSCs share similar characteristics with bone marrow
mesenchymal stem cells (BMSCs), such as the morph-
ology of fibroblasts and the ability to form colonies
in vitro. They can express many surface markers such as
CD73, CD90, and CD105 but do not express surface
markers such as CD14, CD34, and CD 45 [44–46]. How-
ever, compared with BMSCs, DPSCs exhibit a higher
proliferation rate, more exuberant colony and colonies
formation ability, and stronger mineralization potential
[44, 47, 48]. In addition, DPSCs can also express the
ESCs markers OCT4, SOX2, and MYC, which are not
common in MSCs [49]. Similarly, in addition to odonto-
genic potential, DPSCs also have potential for multi-
lineage differentiation. In vitro, DPSCs can be differenti-
ated into various types of cells, such as adipocytes, hepa-
tocytes, osteoblasts, and neuronal cells under suitable
conditions. Additionally, there is sufficient evidence to
D models. Both genetic factors and environmental toxins can
ED can be isolated from the tissue of teeth. On the one hand,
or treatment through different delivery methods. On the other
euron-like cells in vitro and then be transplanted in several ways.
nerve growth factors, and extracellular vesicles to repair damaged
d exosomes. Exosomes of appropriate size can also be transferred
ns to transplant, such as intravenous injection, intranasal injection,
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show their immunomodulatory properties and the cap-
acity of ectopic formation in vivo [43].
DPSCs are stem cells derived from ectoderm, which

originate from migrated neural crest cells and exhibit
strong plasticity. They can express markers of nerve
lineage [50, 51], such as low-affinity nerve growth factor
receptor p75, intermediate filament nestin, and glial fi-
brillary acidic protein (GFAP), and more mature markers
of nerve lineage such as β-III tubulin and nuclear anti-
gen, which also reflects their origin and high heterogen-
eity [52, 53]. Of course, a large number of studies have
shown that it can differentiate into DAergic neuron-like
cells [10, 16, 54, 55]. In addition, DPSCs can also pro-
duce and secrete neurotrophic factors, induce axon guid-
ance, and differentiate into functionally active neurons,
which also illustrates great potential for cell transplant-
ation therapy for PD.

Preclinical application of DPSCs in Parkinson’s disease
The neural differentiation of DPSCs has been studied
in vitro. According to the cell morphology and the expres-
sion of early neuronal markers, it has been suggested that
these cells can differentiate into neurons [46, 52, 54, 56,
57]. In vivo studies have further shown that DPSCs can
survive and express neuronal markers after transplant-
ation into the brain [58]. This potential for spontaneous
differentiation of DPSCs also convincingly proves its role
in treatment by nerve regeneration. With cell therapy for
PD, from the initial transplantation of foetal midbrain tis-
sue to the study of animal models and clinical trials with
PD patients, research has provided us with proof-of-
concept evidence that transplantation of DAergic neuro-
blasts into the striatum can effectively relieve the symp-
toms of PD. We mentioned above that DPSCs can
differentiate into dopaminergic neuron-like cells and se-
crete neurotrophic factors (Fig. 1). For example, Claudia
[10] studied the neuroprotective effect of DPSCs using
DPSCs and a midbrain cell indirect co-culture system and
proved for the first time the protective effect of DPSCs on
dopaminergic neurons in PD models induced by MPP+ or
rotenone. It is speculated that their neuroprotective effects
may be caused by soluble factors released by DPSCs, such
as brain-derived neurotrophic factor (BDNF) and nerve
growth factor (NGF). Therefore, in PD cell therapy, the
differentiation of stem cells into DAergic neurons is not
the only purpose, but the ability to produce and secrete
neuroprotective factors may be more important [11].
These secreted neuroprotective factors may bind to spe-
cific receptors and trigger the activation of certain signal-
ling pathways that coordinate cell function.
Transplanting DPSCs directly into the brain of an ani-

mal model of PD does not seem to be a very effective
treatment. At present, a nerve-inducing mixture of vari-
ous chemicals and cytokines is widely used to cause
DPSCs to progress towards the fate of neurogenesis
in vitro (Fig. 1). The neuronal differentiation of DPSCs ba-
sically consists of two steps: the addition of medium for
epigenetic reprogramming and neural induction and sub-
sequent neuronal maturation. One study differentiated
DPSCs into DAergic neuron-like cells after five stages
[54]. After the formation of neurospheres in the second
stage, they were cultured in N-2 medium containing a
mixture of nerve inducers including fibroblast growth fac-
tor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid,
and the differentiation rate of DAergic neuron-like cells
was 14.49% (refers to the ratio of tyrosine hydroxylase
positive cells). This method not only has a low differenti-
ation rate but is also time-consuming. Some reports have
shown that DPSCs can differentiate into functional DAer-
gic neurons [59–61]. However, other researchers have
found that they may only differentiate into premature
DAergic neurons rather than functional and mature
DAergic neurons [62]. These contradictory findings led a
team recently to study the differentiation into dopamin-
ergic neurons of DPSCs under different chemical and
photobiological regulation conditions [55]. Their results
showed that photobiological regulation can increase the
expression of dopaminergic neuron protective protein
mRNAs in DPSCs under certain conditions. However,
DPSC-induced DAergic neurons have the characteristics
of immature neurons and are prone to death. The reason
for the analysis may be that there is no cell niche includ-
ing other cell types and extracellular matrix structure
in vitro. For now, the research on the treatment of PD by
inducing DPSCs to differentiate into DAergic neurons still
needs improvement.
Any injury can cause inflammation. Neuroinflammation

is one of the many pathogenic mechanisms that lead to the
death of DAergic neurons in the substantia nigra of patients
with PD. Autopsy studies have basically confirmed the exist-
ence of innate immunity and adaptive immunity in the in-
jured brain regions of patients with PD [63]. Activated
microglia and T lymphocytes can be detected in the sub-
stantia nigra of patients, and increased expression of pro-
inflammatory mediators can also be detected [64, 65]. Thus,
a perfect cell transplantation programme should include
suppressing inflammation in addition to maintaining the
number of neurons, which DPSCs can do. In vitro, inflam-
mation can be achieved by a variety of methods, including
the use of MPTP or LPS for induction. Both toxins can in-
hibit the proliferation of DAergic neurons and enhance the
expression of inflammatory mediators. At the same time,
microglia clearly proliferate, which leads to the co-activation
of TLR4 and IFN- γ receptors and initiates the mechanism
of nerve cell death [66]. A study was conducted to investi-
gate the effects of DPSCs in an inflammatory microenviron-
ment when neurons and microglia were exposed to the
neurotoxin MPTP to observe the neuroimmunomodulatory
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properties of DPSCs in an in vitro PD model [20]. The re-
sults showed that DPSCs could significantly inhibit the pro-
duction of ROS and NO and regulate the levels of pro-
inflammatory factors such as IL-1α, IL-1β, IFN-γ, and TNF-
α. In addition, although DPSCs were exposed to environ-
mental toxins, they were still able to express neuronal
markers such as Nestin, Pax6, and Nurr1. At the same time,
similar results were obtained in another in vivo experiment
in which the behavioural defects of PD mice were reversed
to some extent [10]. In both studies, elevated levels of anti-
inflammatory factors IL-13, IL-4, IL-10, and TNF-α were
observed, which can neutralize the inflammatory process.
Some researchers speculate that these factors can be se-
creted by neurons or microglia, and they may reduce in-
flammation by promoting the M2 microglia phenotype and
causing death of the M1 microglia phenotype or by enhan-
cing the effects of oxidative stress on neurons through the
JAK/STAT pathway [67]. We tend to hold that these se-
creted factors originate from the transplanted DPSCs. This
paracrine process of producing and secreting various nutri-
tional factors may be the main mechanism by which DPSCs
play a role in the treatment of PD.
However, one of the challenges is to find a safe and ef-

fective method of cell delivery before DPSC transplant-
ation is used in clinical applications. It has been reported
that the survival rate of transplanted cells, the full enrich-
ment of therapeutic cells in the brain, and success in
avoiding the distribution of stem cells to peripheral organs
are all affected by transplantation methods [28, 68]. Due
to the existence of the blood-brain barrier (BBB), DPSC
transplantation is also faced with the problem of invasive-
ness and invalidity. However, some studies have explored
the nasal system as a new pathway for stem cell delivery,
which can bypass the BBB and directly target brain ther-
apy for PD [69, 70]. Therefore, a recent study showed that
degenerated tyrosine hydroxylase (TH)-positive neurons,
motor coordination, and olfactory function were signifi-
cantly improved by intranasal administration of PKH26
pre-labelled DPSCs into MPTP-induced PD mice [19]. In
another study, intrathecal injection also significantly pro-
moted the recovery of neurons and the improvement of
behavioural function [10]. Comparatively, the method of
intrathecal injection may be cumbersome and difficult.
Regardless of how the DPSCs are administered, the ability
of DPSCs to differentiate into DAergic neurons in vivo or
in vitro and its positive role in PD therapy have been con-
vincingly confirmed.

Treatment of PD with stem cells from human
exfoliated deciduous teeth
Characteristics of SHED
Stem cells from human exfoliated deciduous teeth (SHED)
constitutes a unique population of pluripotent stem cells
first isolated from the residual pulp of deciduous teeth by
Miura et al. in 2003 [46]. They also have the characteris-
tics of MSCs, but compared with DPSCs and BMSCs,
SHED exhibit a stronger proliferation rate, higher cell
population doubling rate, and more vigorous ability to
form spherical cell clusters. The surface labelling of SHED
meets the minimum standard proposed by ISCT. They ex-
press CD13, CD29, CD44, CD56, CD73, CD90, CD105,
CD146, and CD166 but not CD14, CD19, CD24, CD31,
CD34, CD45, CD117, or CD133 [46, 71–74]. SHED are
also derived from migrated neural crest cells. They can ex-
press the neural stem cell marker nestin, embryonic stem
cell markers Oct4 and Nanog, and stage-specific embry-
onic antigens SSEA-3 and SSEA-4 [46]. Additionally,
SHED has higher levels of basic fibroblast growth factor
(bFGF) and bone morphogenic protein 2 (BMP-2) gene
expression than do BMSCs and DPSCs [75]. In addition,
the favourable immunomodulatory properties of SHED
have been fully proven in the research of related diseases
[76].
SHED has highly potential for multi-directional differen-

tiation. In addition to odontogenic potential, they can dif-
ferentiate into osteogenic, adipogenic, hepatogenic, and
neurogenic lineage cells under suitable conditions in vitro.
Under the condition of neural induction culture, SHED
has been found to express the early neural marker nestin,
the late neural marker neuron-specific enolase (NSE), glial
fibrillary acidic protein (GFAP), and 2′,3′-cyclic nucleo-
tide 3′-phosphodiesterase (CNP) [77]. It has been re-
ported that transplantation of undifferentiated or nerve-
induced SHED into a rat spinal cord injury (SCI) model
can promote functional recovery [78]. This indicates the
potential of implanted SHED or its derivatives in the treat-
ment of SCI in rodents and other neurodegenerative dis-
eases. In addition, a large number of studies on the
culture of SHED-derived neurospheres and the induction
of dopaminergic neurons as well as the treatment of PD
rat models have shown that they constitute a very suitable
cell source for cell therapy in PD [22–24].

Preclinical application of SHED in Parkinson’s disease
Previous studies on the neural potential of DPSCs and
SHED without neural induction have shown that these
cells can express nestin, a neural progenitor cell marker,
and GFAP, a glial cell marker, at the mRNA and protein
levels [45, 46]. In vitro differentiation studies have also
shown that they can differentiate into nerve cells and
can survive and express neuronal markers when SHED
is transplanted into the brain of adult rodents. In
addition, they are neural crest-derived cells and are easy
to obtain, which further indicates their potential applica-
tion value for the treatment of PD.
A recent study explored the efficiency of SHED for dif-

ferentiation into DAergic neuron-like cells and the abil-
ity of DAergic neuron-like cells to secrete dopamine and
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evaluated the therapeutic effect when SHED were trans-
planted into a 6-OHDA-induced (nigrostriatal damage
mainly caused by oxidative stress) PD rat model [23]. The
team used a hypoxia-induced differentiation scheme to ef-
fectively differentiate SHED into DAergic neuron-like
cells. After undifferentiated and differentiated SHED were
transplanted into the PD rat model, behavioural disorder
and the number of TH-positive cells were significantly im-
proved, and the protective effect on endogenous DAergic
neurons was also observed. This subject also demonstrates
that the paracrine mechanism during this differentiation
helps to combat 6-OHDA-induced neurodegeneration
and repair nigrostriatal damage, confirming the conclu-
sions of previous studies showing that these dental pulp-
derived stem cells promote the functional recovery of vari-
ous acute and chronic central nervous system injuries
through cell replacement and paracrine mechanisms [79,
80]. In another study, transplantation after induced differ-
entiation in vitro also significantly restored the dyskinesia
of a 6-OHDA-treated PD mouse model [22]. To under-
stand the mechanism of treatment, this study also deter-
mined that SHED secreted a large number of cytokines
such as IL-6, GDNF, BDNF, and VEGF, which proved its
immunomodulatory effect from the side. It is worth not-
ing that the researchers added to the medium at the mid-
dle stage of neural induction the small molecule
CHIR99021, which can inhibit the Wnt signal pathway of
cells activated by GSK3β, thus increasing the production
of DAergic neuron progenitor cells [81, 82]. Considering
the survival rate of transplanted cells, a study used SHED-
derived spheres instead of induced DAergic neurons for
transplantation into a 6-OHDA-treated PD rat model
[24]. Although it improved the dyskinesia of rats, the re-
sults were not very satisfactory. It may have been due to
immune rejection, inflammatory response, correct integra-
tion of transplanted cells with the host brain, or for other
reasons, which still needs to be further studied.
Based on the above studies, there may be three main

mechanisms of SHED in the treatment of PD (Fig. 1).
First, DAergic neurons or other neurons differentiated by
SHED in vivo form a functional connection with the host
neuron. Transplanted DAergic neuron-like cells can se-
crete DA to restore the functional activity of neurons. Sec-
ond, the transplanted SHED can secrete cell growth
factors, such as VEGF, BDNF, and GDNF. Some studies
have reported that undifferentiated MSCs can secrete
neurotrophic factors such as BDNF, GDNF, NGF, HGF,
and VEGF to play a neuroprotective role [12, 83]. Third,
through the immune regulation by cytokines such as IL-6
and TNF-α, these factors may combine with VEGF,
BDNF, and GDNF to enhance immune regulation and re-
verse the damage to host neurons [84].
Like other approaches to stem cell transplantation, non-

invasive cell therapy remains to be explored. Recently,
some studies have suggested that the exosome of SHED
may offer a new strategy for the treatment of PD. All cul-
tured cell types can secrete exosomes, which carry a var-
iety of proteins, RNA, lipids, and various metabolites [85,
86]. From the point of view of the treatment of PD, the
transfer of exosomes has several advantages. First, they
can cross the BBB to reach the brain without complicated
neurosurgery [87]. Second, this technique is safer because
it avoids the risks of cell transplantation, such as low sur-
vival rate, immune rejection, and malignant transform-
ation. Finally, it is a relatively simple, stable, and
controllable system which is suitable for large-scale clin-
ical production [88]. So, this technique may have equal or
even superior potential to treat PD as the use of SHED. A
study demonstrated the neuroprotective effects of SHED-
derived exosomes in vitro through ReNcell VM human
neural stem cell lines, inhibiting about 80% of 6-OHDA-
induced apoptosis [17]. In another study, the SHED exo-
somes were delivered into a 6-OHDA-treated PD rat
model by intranasal administration, and it was found that
the rat recovered from dyskinesia, and expression of TH
in substantia nigra and striatum was normalized [21].
However, it has not been proven that exosomes increase
the expression of TH in substantia nigra and striatum by
directly affecting dopaminergic neurons or indirectly in-
crease the expression of TH by regulating the response of
astrocytes and microglia. It is also possible that both
mechanisms operate at the same time. Taken together,
these findings suggest that the use of exosomes in early
preclinical studies may be a promising method for the
treatment of PD.
Clinical trials
In contrast to a large amount of evidence reported in
basic studies, there is no clinical application of DPSCs or
SHED in the clinical treatment of PD.
Many regenerative medicine studies have shown that

DPSCs and SHED can provide a good therapeutic effect
for a variety of diseases, including various central ner-
vous system diseases such as spinal cord injury, stroke,
retinal injury, Alzheimer’s disease, and peripheral nerve
injury [89]. In addition, clinical studies on related dis-
eases are also under way. Some research groups use au-
tologous DPSCs to transplant into patients with dental
pulp injury to promote pulp formation. Long-term
follow-up monitoring shows that they can safely and ef-
fectively promote pulp regeneration, and no adverse re-
actions are observed [90–92]. In addition, a number of
clinical trials have been carried out on bone regener-
ation, stroke, and diabetes [93, 94]. All in all, DPSCs and
SHED are expected to become clinical-grade cells that
can be widely used in the treatment of various diseases
in the future.
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The first clinical trial of cell transplantation for PD
began more than 30 years ago, using DAergic neuronal
precursor cells derived from human foetal midbrain tissue,
which are still being used in ongoing TRANSEURO stud-
ies [9]. According to the investigation and statistics, the
clinical projects involving stem cell therapy for PD under
research in the world include work with MSCs
(NCT03550183, NCT03684122), NSCs (NCT03309514,
NCT02452723), ESCs (NCT03119636), and iPSCs [41]. In
these studies, cells are delivered to patients by intravenous
or intracerebral injection, and the transplanted cells play a
neuroprotective role through neuronal differentiation or
anti-inflammatory activity. The subjects have been
followed up at different times to evaluate the safety and ef-
fectiveness of the treatment through various rating scales
so as to provide a basis for further clinical research.
For DPSCs and SHED, first, they have the characteris-

tics common to other stem cells. Second, these cells
have unique advantages. (1) They have strong potential
for neural differentiation because of the origin of their
neural crest. (2) The ethical problems caused by trans-
plantation can be avoided. (3) More importantly, these
cells do not express costimulatory molecules, such as
MHC-II, CD40, CD80, or CD86; therefore, they not only
do not activate the immune system but also regulate im-
mune rejection [95, 96]. Therefore, these cells are a good
potential material among all the stem cell sources that
can be used to treat PD.
Many studies demonstrated that just MSCs alone are

not effective enough for neurodegenerative diseases and
neurotrophin engineered MSCs are more effective [97,
98]. The engineering of dental stem cells aims to enhance
specific functions to achieve stable therapeutic effects, in-
cluding proliferation and neurogenic differentiation. In
general, there are three common embellishments: (1) Dif-
ferentiation in vitro. It is common to add neurotrophins
such as EGF, bFGF, and BDNF to the differentiation
medium in vitro to promote their maturation into DAer-
gic neuron-like cells [99, 100]. Compared with undifferen-
tiated cell transplantation, it can increase the level of DA
and the secretion of neurotrophic factors more effectively
and promote the recovery of neurological impairment
[23]. (2) Genetic engineering. It is well known that DPSCs
and SHED can secrete a variety of cytokines and nerve
growth factors, such as BDNF and GDNF. Studies have
shown that BDNF and GDNF have significant repair and
protection effects on neurodegenerative diseases, includ-
ing promoting axonal regeneration and reducing apoptosis
[101, 102]. Therefore, some new treatments emerge as the
times require, including the overexpression of BDNF and
GDNF and the use of genetically engineered MSCs as a
carrier to directly transfer cytokines to the microenviron-
ment [97]. A team has tested the safety and efficacy of
genetically engineered human MSCs in transgenic
Huntington’s disease (HD) mouse models and published
the results of new drug licensing [103]. Their results show
that human genetically engineered MSCs can significantly
reduce striatal atrophy in HD mice by about 50% com-
pared with non-transgenic mice. In addition, it has been
confirmed that MSCs transfected with GDNF can protect
the nigrostriatal pathway from inflammatory Parkinson’s
syndrome [98]. (3) Modification of chemical materials.
The use of MSC-based nanostructured and microstruc-
tural materials for neurotrophic delivery is an effective
way to improve the characteristics and therapeutic efficacy
of stem cells, such as hydrogels and graphene [104–106].
These results suggest that it may be a promising direction
to consider the engineering treatment of these cells in the
future research on the treatment of PD with DPSCs and
SHED.

Conclusions
Recently, stem cell transplantation has attracted increasing
attention as a treatment for neurodegenerative diseases.
Many results have been achieved in the use of DPSCs and
SHED in various in vitro and in vivo models of PD. This
review summarizes their current research progress in the
treatment of PD in some detail. Whether from the per-
spective of basic research or in clinical application, they
have more advantages than do other stem cells and are a
great choice for PD treatment. This insight has a profound
enlightening effect for the further clinical research on PD.
However, further research is warranted to study the mech-
anisms, immune rejection, survival rate, and delivery
mode associated with this treatment.
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