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Abstract

Background: During development, excessive osteogenic differentiation of mesenchymal progenitor cells (MPC)
within the cranial sutures can lead to premature suture fusion or craniosynostosis, leading to craniofacial and
cognitive issues. Saethre-Chotzen syndrome (SCS) is a common form of craniosynostosis, caused by TWIST-1 gene
mutations. Currently, the only treatment option for craniosynostosis involves multiple invasive cranial surgeries,

which can lead to serious complications.

Methods: The present study utilized Twist-1 haploinsufficient (Twist-19¢"*) mice as SCS mouse model to investigate

the inhibition of Kdm6a and Kdméb activity using the pharmacological inhibitor, GSK-J4, on calvarial cell osteogenic
potential.

Results: This study showed that the histone methyltransferase £EZH2, an osteogenesis inhibitor, is downregulated in
calvarial cells derived from Twist-19"* mice, whereas the counter histone demethylases, Kdm6a and Kdméb, known
promoters of osteogenesis, were upregulated. In vitro studies confirmed that siRNA-mediated inhibition of Kdméa
and Kdméb expression suppressed osteogenic differentiation of Twist-19* calvarial cells. Moreover,
pharmacological targeting of Kdméa and Kdméb activity, with the inhibitor, GSK-J4, caused a dose-dependent
suppression of osteogenic differentiation by Twist-19¢"* calvarial cells in vitro and reduced mineralized bone
formation in Twist-19* calvarial explant cultures. Chromatin immunoprecipitation and Western blot analyses found
that GSK-J4 treatment elevated the levels of the Kdméa and Kdméb epigenetic target, the repressive mark of tri-
methylated lysine 27 on histone 3, on osteogenic genes leading to repression of Runx2 and Alkaline Phosphatase
expression. Pre-clinical in vivo studies showed that local administration of GSK-J4 to the calvaria of Twist-19"* mice
prevented premature suture fusion and kept the sutures open up to postnatal day 20.
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Conclusion: The inhibition of Kdm6a and Kdm6b activity by GSK-J4 could be used as a potential non-invasive
therapeutic strategy for preventing craniosynostosis in children with SCS.

Keywords: Epigenetics, KDM6A, KDM6B, Calvarial cells, Osteogenesis, Coronal sutures, TWIST-1, Twist-

Saethre-Chotzen syndrome, Craniosynostosis
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Background

Calvarial sutures are comprised of active mesenchyme
forming the osteogenic fronts at the edges of the flat cal-
varial bones [1, 2]. Within the suture mesenchyme, a
reservoir of TWIST-17/Gli-1" mesenchymal progenitor
cells (MPC) exists which can either remain undifferenti-
ated or differentiate to mature bone forming osteoblasts
[3-7]. During embryonic and postnatal development, the
sutures remain open up to adulthood, providing
flexibility to the calvaria and allowing the cranium to
accommodate for the growing brain [8-11]. However,
dysregulation of MPC differentiation within these su-
tures results in excessive intramembranous ossification
and premature fusion of the suture space or called
craniosynostosis.

Craniosynostosis occurs in 1 in 2500 live births and
can result in an unusual head shape, facial asymmetry,
and most importantly, pre-fusion of the cranial sutures,
causing increased pressure on the developing brain lead-
ing to neurological deficits [12, 13]. Currently, the only
treatment for craniosynostosis is invasive cranial surgery,
mainly involving the removal of the affected sutures and
remodeling of the skull [14, 15]. These procedures could
negatively impact the quality of life of children with
craniosynostosis, leading to serious complications and
enforcing the need for invasive surgical procedures [16—
18]. The most prevalent syndromic craniosynostosis,
Saethre-Chotzen syndrome (SCS), involves unilateral
and bilateral coronal synostosis, facial asymmetry, occa-
sional cleft palate, droopy eyelid, and mild limb deform-
ities such as the shortened and united fingers and toes
[19, 20]. SCS is induced by the deletion or non-sense
mutations resulting in the loss of function or haploinsuf-
ficiency of the TWIST-1 gene [21]. There are more than
100 different TWIST-1 gene mutations related to SCS,
resulting in a range of phenotypes from a simple
unilateral coronal synostosis to a complex multiple su-
ture synostosis [22]. Recently, it has been revealed that
epigenetic mechanisms play a significant role in cranio-
synostosis where studies of genetically identical twins re-
ported that one twin displayed craniosynostosis, whereas
the other displayed normal skull development [23, 24].
These observations suggest that the development of cra-
niosynostosis in only one identical twin is most likely
due to epigenetic changes. However, until now, no study
has thoroughly examined the role of epigenetics in SCS.

TWIST-1, a basic helix-loop-helix transcription factor,
has been shown to mediate skeletal and head tissue de-
velopment [9, 25, 26]. Its expression in MPC within the
calvarial sutures is essential in maintaining its stemness
characteristics, such as proliferation activity, and nega-
tively regulating osteogenic differentiation by directly
inhibiting major osteogenic genes [9, 27-30]. Further-
more, previous studies found that Twist-1 expression is
required for correct establishment of the coronal sutures
in mice [5, 31]. Haploinsufficiency of the TWIST-1 gene
in SCS-derived calvarial cells results in a decrease in
proliferation and increased osteogenic differentiation,
leading to premature suture fusion [28, 32, 33]. TWIST-
1 expression and function have been correlated with the
epigenetic regulator Enhance of Zeste Homolog 2
(EZH2) in mediating SCS cranial bone cell growth and
differentiation [32], where Ezh2 knockdown in the mes-
enchymal lineage leads to craniosynostosis and other
skeletal deformities [34]. EZH2 is a member of the
Polycomb Repressive Complex 2 and acts as a methyl-
transferase which tri-methylates lysine-27 of the histone-
3 tail (H3K27me3), to repress gene activation [35]. The
counter demethylases, UTX (lysine demethylase 6A,
KDM6A) and JMJD3 (lysine demethylase 6B, KDM6B),
remove the tri-methylation mark on H3K27me3 to
promote gene activation [36-39]. The enzymatic
demethylase activity of these epigenetic modifiers is
carried out by the Jumonji C catalytic domain, through a
dioxygenase reaction that requires Fe (II) and o-
ketoglutarate as co-substrates [40]. Previous studies have
reported that KDM6A and KDM6B promote osteogenic
differentiation of mesenchymal stem cells [41, 42],
whereas EZH?2 represses bone gene activation and mes-
enchymal stem cell osteogenic differentiation [41]. Add-
itionally, loss-of-function mutation of KDM6A has been
previously identified to be associated with a congenital
skeletal tissue disorder, called Kabuki syndrome, with
characteristics including malformed cranial bones [43—
45]. Similarly, loss of KDM6B results in a severe delay of
osteogenic differentiation in mice [46, 47] and lowered
expression of Runx2 and Osterix, as a result of increased
levels of H3K27me3 [48]. These observations provide af-
firmation that both KDM6A and B play important roles
in promoting osteogenic differentiation of MPC.

To further examine epigenetic changes in SCS, we uti-
lized Twist-1 heterozygous mutant mice (Twist-19"),
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which display craniofacial defects including unilateral or
bilateral coronal synostosis and limb abnormalities simi-
lar to the characteristic abnormalities described for SCS
human patients [49]. The present study investigated the
expression levels and role of Kdmé6a and Kdmé6b in the
osteogenic potential of calvarial cells and calvarial
explants derived from Twist-1°"* mice. Furthermore,
we assessed a potential drug therapy approach to reverse
aberrant osteogenic differentiation in the sutures of
Twist-1"*  mice using the small-molecule cell-
permeable selective inhibitor, GSK-J4 targeting Kdm6a
and Kdmé6b activity in vivo.

Methods

Isolation of mouse calvarial cells

Mouse calvarial stromal cells were derived from the cal-
varia of 15-day-old Twist-1%"* heterozygous mice and
wildtype mice in accordance with South Australia Health
and Medical Institute (SAHMRI) Animal Ethics Com-
mittee approval # SAM347. The mice were humanely
killed by CO, inhalation followed by cervical dislocation.
The calvarial bones were retrieved then digested twice
with Collagenase I (3 mg/mL) and DNAase I (50 U/mL)
in PBS for 40 min each time. Bone chips were cultured
under hypoxia condition (5% O,) with growth media, a-
Modification of Eagle’s medium («MEM) supplemented
with 20% fetal calf serum (Batch F21701; CellSera, Ruth-
erford, NSW, AUS), 1mM sodium pyruvate, 2 mM L-
glutamine, 50 U/mL penicillin, and 50 pg/mL strepto-
mycin for up to 7 days. Cells were disassociated with
Collagenase I (3 mg/mL) and Dispase (3 mg/mL) solu-
tion, cultured with a seeding density of 8 x 10° cells/cm?®
and grown until confluent.

Osteogenic differentiation assays

Cells were cultured in osteogenic inductive media
(aMEM supplemented with 10% fetal calf serum,
100 pg/mL L-ascorbate-2-phosphate, 10 mM [-glycerol
phosphate, 2 mM L-glutamine, 1 mM sodium pyruvate,
10 mM HEPES buffer, 1 x 10°M dexamethasone, 50 U/
mL penicillin, and 50 pg/mL streptomycin) for 1 week or
2weeks. GSK-J4 at 1pM and 2pM or 0.1% dimethyl
sulfoxide (DMSO) in osteogenic-inductive media were
refreshed every 24 h. Alkaline phosphatase staining was
performed using Leukocyte Alkaline Phosphatase Kit
(Cat# 86R-1KT, Sigma—Aldrich Inc., North Ryde, NSW,
AU) following manufacturer’s protocols. The activity of
alkaline phosphatase was quantitated in triplicate and
normalized to total protein level per well using Alkaline
Phosphatase Assay Kit (Cat# ab83369, Abcam Australia
Pty Ltd., Melbourne, VIC, AU), following manufacturer’s
instructions. Bone mineral deposits were stained with
Alizarin red S (Cat# A5533, Sigma—Aldrich, Inc.), and
extracellular calcium levels were measured in triplicate
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wells and normalized to DNA content per well as previ-
ously described [27].

siRNA gene knockdown studies

Cells were seeded at 3 x10* cells per well in 24-well
plate the day before siRNA transfections to achieve ap-
proximately 70% confluency. Sequence-specific siRNA
against Kdmé6a (s75838 and s75839) and Kdm6b
(s103747 and s103746) or negative siRNA#1 control
(Ambion/Life Technologies, Scoresby, VIC, AU) were
transfected into the cells at concentration of 20 pmol in
transfection medium (aMEM with 10% fetal calf serum)
with Lipofectamine RNAIMAX reagent (Thermo-Fisher
Scientific, Scoresby, VIC, AU) as previously described
[41]. The incubation period for the transfection to
achieve at least a 50% knockdown of transcript levels
was 72 h before changing the media to osteogenic in-
ductive media.

GSK-J4 treatment

GSK-J4 (Cat# 12073, Cayman Chemical, Ann Arbor, MI,
US) was reconstituted in DMSO and stored at - 80 °C.
Cells were seeded at 4.2 x 10* cells per well into 24-well
plate. GSK-J4 at 0.1 uM, 0.25uM, 0.5 M, 1uM, 2 uM,
5uM, and 10 uM or DMSO (0.1%) only were added to
the cells in the presence of either growth or osteogenic
inductive media.

Gene expression studies

Total RNA from cultured Twist-1"* calvarial cells was
isolated using TRIzol reagent (Cat# 15596026, Invitrogen/
Thermo Fisher Scientific, Waltham, MA, USA), according
to manufacturer’s instructions. Synthesis of ¢cDNA and
real-time polymerase chain reaction (PCR) analysis were
performed in triplicate as previously described [50]. Pri-
mer sets (GeneWorks Pty Ltd., Thebarton, SA, AU) used
in this study were mouse SB-Actin (Fwd: 5'-TTGCTG
ACAGGATGCAGAAG-3’; Rev.: 5-AAGGGTGTAA
AACGGAGCTC-3"); mouse Kdmé6a (Fwd: 5'-GGCTAC
TGGGGTGTTTTGAA-3’; Rev. 5'-TCCAGGTCGC
TGAATAAACC-3"); mouse Kdmé6b (Fwd: 5'-CCCCCA
TTTCAGCTGACTAA-3’; Rev: 5'-CTGGACCAAG
GGGTGTGTT-3"); mouse Ezh2 (Fwd: 5'-ACTGTCGG
CACCGTCTGATG-3"; Rev.: 5'-TCCTGAGAAATAAT
CTCCCCACAG-3'); mouse Twist-1 (Fwd: 5'-CAGCGG
GTCATGGCTAAC-3’; Rev.: 5'-TCCTGAGAAATAAT
CTCCCCACAG-3’); mouse Alkaline Phosphatase (Fwd:
5'-GCCTTACCAACTCTTTTGTGC-3'; Rev.: 5'-GGCT
ACATTGGTGTTGAGCTT-3"); mouse Runx2 (Fwd: 5'-
CCTCTGACTTCTGCCTCTGG-3"; Rev. 5 -TATGGA
GTGCTGCTGGTCTG-3").
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Cell proliferation assay

Cells were cultured at 9 x 10° cells/well in 96-well plates
in the presence of DMSO (0.1%) or a range of GSK-J4
concentrations (0.1 pM, 0.25pM, 0.5uM, 1M, 2 puM,
5uM, and 10 uM) in growth inductive media (aMEM
supplemented with 20% fetal calf serum, pyruvate, L-
glutamine, P/S) for 7 days. The rate of cell proliferation
was measured using cell proliferation ELISA, bromodeox-
yuridine (BrdU) colorimetric kit (Cat# 11647229001,
Roche Products Pty Limited, Sydney, NSW, AU), follow-
ing manufacturer’s directions. Absorbance was read at
450 nm on an iMark microplate reader (Bio-Rad Labora-
tories, Hercules, CA, USA).

Cell viability assay

Cells were seeded at 2.6 x 10° cells/well into 6-well
plates in growth inductive media and in the presence of
0.1% DMSO or GSK-J4 concentration range (0.1 pM-—
10 uM) for 7 days. The rate of apoptosis was measured
using Annexin V and 7AAD staining procedure. For
positive controls, apoptosis and necrosis were induced
by adding 100% DMSO overnight and 70% Ethanol, re-
spectively. Prior to reading, 5pL of Annexin V-488
(Cat# A13202, Invitrogen/Thermo Fisher Scientific) and
20 pL of 7-amino-actinomycin (7AAD; Cat# A1310, Invi-
trogen/Thermo Fisher Scientific) were added to ~ 1 x
10° cells as previously described [33]. Samples were ana-
lyzed immediately on LSRForessa X20 Analyzer (BD
Biosciences, North Ryde, NSW, Australia).

Calvaria organ explant cultures

Whole calvaria organ explants isolated from 4-day-old
Twist-1"* mice were placed onto mesh structures in
the presence of BjGb media (Fitton-Jackson Modification
with L-Glutamine; Cat# B1091, US Biological, MA,
USA) with rhBMP2 (50 ng/mL, Cat# PHC7145, Thermo
Fisher Scientific) and GSK-J4 at 1uM or GSK-J4 at
2 uM or vehicle control (0.1% DMSO) for 10 days as pre-
viously described [51, 52]. Calvaria explants were then
fixed in 10% formalin for 6 h, decalcified overnight with
14% EDTA (pH 7.2) and embedded in paraffin. Sections
(7 um) were stained with Masson’s trichrome staining.
The formation of the mineralized bone shown in blue
staining relative to the length of calvaria bone specimen
was measured using OsteoMeasure XP Advanced Bone
Histomorphometry ver.1.0.3.1 software (OsteoMetrics,
Inc., Decatur, GA, US) on an Olympus BX53Microscope
(Olympus, Notting Hill, VIC, Australia).

In vivo administration of GSK-J4 to calvaria of Twist-19"+

mice

Two 3 mm?® CollaCote sponges (Cat# 0101, Integra Life
Sciences Services, Saint Priest, FRA) soaked in 0.1%
DMSO as vehicle control or in GSK-J4 in the
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concentration of 2 pM was placed subcutaneously onto
each side of the coronal sutures of 8-day-old Twist-19"*
mice up to 20days of age, in accordance with the
SAHMRI Animal Ethics Approval (Ethics# SAM347).
The calvaria of treated mice fixed in 10% formalin was
analyzed using Masson’s trichrome staining. Mineralized
calvarial bone formation relative to the length of bone
analyzed was quantitated using OsteoMeasure software.

Immunohistochemical analysis

Calvaria was isolated from 10-day-old Twist- and
wildtype mice and then fixed in 10% formalin for 24 h,
decalcified with 14% EDTA (pH 7.2) overnight, and em-
bedded in paraffin. The samples were cut transversely
with thickness of 5um and processed as previously
described [33]. The primary antibody used was an anti-
mouse H3K27me3 rabbit polyclonal antibody (Cat# 07-
449, Millipore, Bayswater, VIC, Australia). Rabbit IgG
(Cat# 15006, Sigma—Aldrich) replaced the primary anti-
body as negative control, which showed no immunore-
activity. The percentage of H3K27me3-positive nuclei
(brown) to total number of nuclei within the white box
was quantitated using Image] software.

1del/+

Western blot analysis

Calvarial cells were cultured at 8 x 10> cells/cm? in T75
flask until confluent and then treated with GSK-J4 con-
centration range or 0.1% DMSO as vehicle control for
24 h. Histone extraction protocol was adapted from
Abcam (Abcam, Melbourne, VIC, Australia). Briefly, 5 x
10° cells were re-suspended in 1 ml of Triton Extraction
Buffer (0.5% Triton X 100 (v/v), 2 mM phenylmethylsul-
fonyl fluoride (PMSF), 0.02% NaNj3 (w/v)). The nuclei
lysates were incubated on ice for 10 min with gentle
stirring and centrifuged for 10 min at 6500 g at 4 °C. His-
tone acid extraction was performed using 0.2 M HCl at a
density of 2 x 10" nuclei/mL overnight at 4 °C. Histone
protein was collected in the supernatant following cen-
trifuge spin as described before and neutralized with 2
M NaOH at 1/10 of supernatant volume. Protein con-
centrations were measured using the Pierce Detergent
Compatible Bradford Assay Kit (Cat# 1863028, Thermo
Fisher Scientific). Western blot analysis was performed
as described [50]. The membranes were blocked with 5%
BSA blocking solution and probed overnight at 4 °C with
an anti-mouse H3K27me3 rabbit polyclonal antibody
(Cat# 07-449, Millipore Corporation, North Ryde, NSW,
Australia) and a rabbit anti-H4 antibody (Cat#ab10158,
Abcam). Following two washes with TBS/0.1% Tween
20, the blots were incubated for 1 h in room temperature
with fluorescence secondary antibody (anti-rabbit 800
nm or 680 nm, Li-Cor Biosciences, VIC, Australia). Blots
were washed two more times and then scanned on
Odyssey CLX Near-Infrared Fluorescence Imaging
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System (Li-Cor Biosciences). Analysis and measurements
were performed on Image Studio Lite software (Li-cor
Biosciences).

Chromatin immunoprecipitation (ChIP) analysis

Calvarial cells were seeded at density of 8 x 10° cells/cm?
in T75 flasks. Once the cells were confluent, the cells
were cultured in growth or osteogenic-inductive media
in the presence of GSK-J4 at 1 puM or vehicle control
(0.1% DMSO) for 24 h. ChIP protocol was adapted from
Abcam. Chromatin was crosslinked with a final of 0.75%
formaldehyde for 10 min at room temperature with gen-
tle rocking. Glycine at a final concentration of 125 mM
was added and incubated whilst shaking for 5 min. After
two washes with PBS, adherent cells were detached
using 1x trypsin, and the remaining cells were scraped.
Cells were lysed with FA lysis buffer (50 mM HEPES
KOH pH 7.5, 140 mM NaCl, 1 mM EDTA pH38, 1% Tri-
ton X-100, 0.1% Sodium deoxycholate, 0.1% SDS, and
protease inhibitors) at 400 ul per one million cells. DNA
was sheared with a probe sonicator (Diagenode Biorup-
tor Inc., Denville, NJ, USA) on ice and then used for im-
munoprecipitation as previously described [53]. Primary
antibodies that were used for immunoprecipitation were
anti-mouse H3K27me3 rabbit polyclonal (1 mg/ml; Cat#
07-449, Millipore) and IgG rabbit polyclonal control (1
mg/ml Millipore). Transcription start site (TSS) primer
sets (GeneWorks Pty Ltd) used in this study: mouse
Runx2 TSS (Fwd: 5'-AGGCCTTACCACAAGCCTTT-
3’; Rev.: 5'-GTGGGACTGCCTACCACTGT-3’), mouse
Alkaline Phosphatase TSS (Fwd: 5'-AGGGAAAGAG
AGAGGCAAGG-3’, Rev.: 5'-TTCCTTACCTGCAGGC
ACTC-3').

Statistics

Experiments were performed in triplicates. Calculation
of statistical significance was carried out using GraphPad
PRISM 8 (GraphPad Software, La Jolla, CA, RRID: CR_
002798, http://www.graphpad.com/). The software was
also used for the generation of graphs which showed
statistical differences (*) of p < 0.05 between samples.

Results

Twist-19* calvarial cells exhibit increased expression and
upregulated enzymatic activity of Kdmé6a and Kdmé6b
Calvarial cells derived from 15-day-old Twist-19"* mice
cultured under osteogenic inductive conditions were
found to express reduced transcript levels of Twist-1 and
Ezh2, whereas gene expression levels of Kdmé6a, Kdm6b,
and the early (Runx2) and late (alkaline phosphatase)
bone-associated markers were upregulated, compared to
wild type calvarial cells (Fig. 1a). Immunohistochemical
analysis demonstrated a decrease in H3K27me3-positive
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cells within the coronal sutures of day 8 (pre-fusion)
Twist-1V* mice (Fig. 1b, c).

Kdmé6a and Kdméb promote the osteogenic
differentiation capacity of Twist-19¢"* calvarial cells

The role of Kdmé6a and Kdméb during osteogenic differ-
entiation in calvarial cells from Twist-1%"* mice was
assessed using two specific siRNA molecules targeting
either Kdmé6a or Kdm6b. Reduced gene expression levels
of Kdmé6a or Kdmé6b and the mature osteoblast marker,
Alkaline Phosphatase was confirmed by qRT-PCR ana-
lysis following siRNA treatment (Fig. 2a). Furthermore,
the data showed a decrease in alkaline phosphatase en-
zymatic activity in siRNA Kdmé6a or Kdm6b transfected
Twist-19°V* calvarial cells under osteogenic conditions,
compared with scrambled siRNA controls (Fig. 2b, c).
Parallel studies found that the level of Alizarin red-
positive mineralized deposits was significantly reduced
in cultures of siRNA Kdm6a or Kdm6b knockdown
Twist-19°V* calvarial cells under osteogenic conditions,
compared with scrambled siRNA-treated cells (Fig. 2d).
This was confirmed by reduced amounts of extracellular
calcium levels observed in replicate cultures of siRNA
Kdmé6a- or Kdm6b-treated Twist-1"* calvarial cells,
compared to the scrambled siRNA controls (Fig. 2e).

Kdméa and Kdméb inhibitor, GSK-J4, shows minimal
toxicity in Twist-19®* calvarial cells

Twist-1%"* calvarial cells were cultured with increasing
concentrations of GSK-J4 to assess potential cytotoxic
effects. Observable differences in cell density occurred in
the presence of GSK-J4 between 2 and 10 uM (Fig. 3a).
Quantitative analysis found that the proliferation rate
was not affected in the presence of 0.1-0.5 pM GSK-J4,
but cell proliferation was significantly reduced between
1 and 10 uM GSK-J4, as assessed by BrdU incorporation
(Fig. 3b). Flow cytometric analysis of Twist-19°V" calvar-
ial cells showed that the percentage of early apoptotic
(Annexin V positive), necrotic (7AAD positive), and
late-stage apoptotic (Annexin V +7AAD-positive) cells
significantly increased with GSK-J4 treatment at the
higher doses of 5uM and 10 uM (Fig. 3c, d). Therefore,
concentrations higher than 2 uM were eliminated from
further studies.

Inhibition of Kdm6a and Kdmé6b activity by GSK-J4
suppresses the osteogenic differentiation of Twist-
calvarial cells in vitro

We next assessed whether inhibition of Kdmé6a and
Kdméb activity could suppress the osteogenic differenti-
ation capacity of Twist-19°V* calvarial cells. Western blot
analysis showed an increase in H3K27me3 levels in his-
tone lysates extracted from Twist-19V* calvarial cells
treated with 1 pM or 2 uM GSK-J4, compared to 0.1%

1del/+
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Runx2, Alkaline Phosphatase (Alk Phos), Kdmé6a, Kdméb, and Ezh2 in calvarial cells from wild-type (WT) and Twist-19€"+ (Twist) mice, cultured under
osteogenic conditions were analyzed with real-time gPCR and normalized to S-actin. Data represent mean + S.E, *p < 0.05, two-tailed, not-paired,
non-parametric student’s t test, n =3 WT, and n =3 Twist mice. b Representative images of calvarial sections focusing on open coronal sutures
(white box) of 8-day-old WT and Twist mice using an antibody specific to H3K27me3 (brown stain) counterstained with hematoxylin, scale bar =
100 pum. ¢ Quantitative measurement of the percentage of H3K27me3-positive nuclei to total number of nuclei within the white box using
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DMSO (Fig. 4a), confirming the specificity of GSK-J4.
Furthermore, Twist-19°V" calvarial cells exhibited a
reduction in Runx2 and Alkaline Phosphatase gene ex-
pression levels in the presence of 1 or 2 uM of GSK-J4
compared to vehicle alone controls, when cultured
under osteogenic inductive conditions (Fig. 4b). Support-
ive studies showed that alkaline phosphathase activity
was significantly suppressed in Twist-19"* calvarial cells
treated with 2 uM of GSK-J4, compared to vehicle con-
trols (Fig. 4c, d). Chromatin collected from replicate ex-
periments was used to analyze levels of the inhibitory
mark, H3K27me3, present on the Runx2 and Alkaline

Phosphatase promoter transcription start sites (TSS),
using ChIP analysis. The results demonstrated that
H3K27me3 levels decreased dramatically on the Runx2
and Alkaline Phosphatase TSS under osteogenic induct-
ive conditions compared to normal growth conditions
(Fig. 4e, f). However, treatment with GSK-J4 resulted in
increased levels of H3K27me3 on the Runx2 and Alka-
line Phosphatase TSS, correlating with the suppression
of these genes following GSK-J4 treatment (Fig. 4e, f).
These findings suggested that the addition of GSK-J4 to
Twist-19?* calvarial cell cultures increased the amount
of H3K27me3 found on the promotors of osteogenic
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del/+

calvarial cells treated with siRNAs targeting either Kdméa (sikdméa1 or sikdmé6a2) or Kdméb
(siKdm6b1 or sikdm6b2), compared to the siRNA scrambled control (Scram), under osteogenic inductive conditions. Data represent mean gene
expression levels normalized to B-actin + S.E. expression, *p < 0.05, two-tailed, not-paired, non-parametric student’s t test, n =3 Twist-1
calvaria cells treated with siRNA Scram control or Kdm6A and Kdmé6B-
specific siRNA, following 1 week of osteogenic induction, scale bar = 100 um at x50 magnification. ¢ Quantitative analysis of alkaline phosphatase
calvaria cells treated with Scram control and Kdmé6a and Kdméb-specific siRNA, following
osteogenic induction. Data represent mean + S.E,, *p < 0.05, two-tailed, not-paired, non-parametric student’s t test, n=4 Twist-19* mice. d
calvaria cells treated with siRNA Scram control or Kdm6A- and Kdmé6B-
specific siRNA, following 2 weeks of osteogenic induction, scale bar =100 um at x50 magnification. e Analysis of extracellular calcium levels
calvaria cells treated with SiRNA Scram control or Kdm6A- and KdméB-specific siRNA, following 2 weeks of
osteogenic induction. Data represent mean + S.E, *p < 0.05, two-tailed, not-paired, non-parametric student's t test, n =4 Twist-1

Ca?* Levels per yg DNA

calvarial cells. a Real-time gPCR analysis of Kdmé6a, Kdméb, and

e mice. b

del/+ mice

genes by inhibiting the activity of Kdmé6a and Kdmé6b
during osteogenesis.

The effect of GSK-J4 on osteogenic differentiation was
further examined using a murine calvarial organotypic ex-
plant model. Calvaria derived from Twist-1°"* mice were
cultured in media containing BMP2, to initiate bone for-
mation, in the presence or absence of GSK-J4. The calvar-
ial explants were then stained with Masson’s trichrome
stain to identify newly mineralized bone (Fig. 5a).

Histomorphometric analysis revealed a reduction in total
bone formation and thickness in calvarial explants treated
with 1 um and 2 uM of GSK-J4, compared to 0.1% DMSO
vehicle alone treated explants (Fig. 5b, c).

GSK-J4 treatment prevents craniosynostosis in Twist-19/*
mice

The ability of GSK-J4 treatment to prevent fusion of the
coronal sutures in vivo was assessed using 3 mm?
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Fig. 3 Effects of GSK-J4 on Twist-1°¢* viability and proliferation. a Representative cell densities of Twist-19"* calvarial cells are shown following
treatment with low, medium, and high doses of GSK-J4 for 1 week, scale bar =100 um at x50 magnification. b Proliferation rates were measured
calvarial cells following GSK-J4 treatment with a range of concentrations (0.1 pM-10 uM or 0.1% DMSO
vehicle control) for 1 week. Data represent mean + S.E, one-way ANOVA with Tukey's multiple comparisons, n=3 Twist-19¢"* mice. ¢ Flow
cytometric analysis of Annexin V/7AAD staining in Twist-19V* calvarial cells in the presence of GSK-J4 (0.1 uM=10 uM or 0.1% DMSO vehicle
control) for 1 week. Representative histograms depicting early apoptotic cells (Annexin V), necrotic cells (7JAAD"), and late apoptotic cells
(Annexin V*/7AAD"Y). d Quantitation of percentage of Annexin V/7AAD stained Twist-1
presence of GSK-J4 (0.1 uM—=10 uM or 0.1% DMSO vehicle control) for 1 week. Data represent mean + S.E, *p < 0.05, one-way ANOVA with Tukey's

del’* calvarial cells by flow cytometric analysis in the

Collacote™ sponges containing either DMSO alone or
GSK-J4 placed subcutaneously on top of the coronal
sutures in pre-fusion from 8-day-old Twist-1?*
mice. Sections of coronal sutures derived from 20-
day-old Twist-1%* mice were stained with Masson’s
trichrome stain and examined by histomorphometric
analysis. The data showed that 80% of Twist-19°"*
mice treated with 2pM GSK-J4 exhibited open

coronal sutures at postnatal day 20, whereas unilateral
or bilateral coronal craniosynostosis was observed in
83% of the Twist-1* mice treated with DMSO
alone (Table 1 and Fig. 5d). Furthermore, there was a
significant reduction in the total mineralized bone
formed and bone thickness in the coronal sutures of
GSK-J4-treated Twist-17* mice compared to DMSO
treated control mice (Fig. 5e, f). These findings
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quantitation of alkaline phosphatase activity relative to total protein for Twist-1°¢* calvaria cells treated with either 1 uM or 2 pM GSK-J4 or 0.1%
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demonstrate that local administration of GSK-J4 number of Twist-1Y" mice with open coronal su-
underneath the skull cap can prevent premature cor- tures, unilateral or bilateral coronal craniosynostosis
onal suture fusion that occurs in Twist-19°"* mice be- following treatment of either DMSO (0.1%) or 2 puM
tween postnatal days 9-20. Table 1 shows the GSK-J4 (n="5-6 Twist-1°"* mice/treatment group).
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Fig. 5 GSK-J4 treatment suppresses osteogenesis and prevents coronal suture fusion and bone formation of Twist-19V* mice. a Representative
images of the stained Twist-1%"* calvarial explants treated with BMP2 for 10 days in the presence of either 1 and 2 uM of GSK-J4 or 0.1% of
DMSO vehicle control, then stained with Masson’s. The blue stain depicts the mineralized bone and the red stain depicts unmineralized osteoid,
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Representative images of Masson’s trichome-stained coronal sutures of 20-day-old Twist-19¢* mice following local implantation of CollaCote
sponge carriers containing either 2 uM GSK-J4 or 0.1% DMSO at postnatal day 8, scale bar= 100 um. Images captured at X100 magnification.
Histomorphometric analysis of e mineralized bone formed and f cortical bone thickness of locally treated coronal sutures (*p < 0.05, one-way
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Discussion

In this study, we demonstrate for the first time that cal-
varial cells extracted from Twist-19* mice express ele-
vated levels of the H3K27me3 demethylases, Kdm6a and
Kdm6b, whereas the gene expression levels of the
counter histone methyltransferase, Ezh2, was reduced,
compared to cells derived from littermate wildtype mice.
This correlated to a reduction in the amount of
H3K27me3 within the coronal sutures of Twist-19"*
mice. These findings suggest that the altered balance in
epigenetic enzymes that deposit or remove H3K27me3
are pivotal in driving the craniosynostosis phenotype.

Table 1 GSK-J4 treatment prevents unilateral and bilateral
craniosynostosis in Twist-19¢"* mice

DMSO control 2 puM GSK-J4
Open coronal sutures 1 4
Unilateral coronal craniosynostosis 2 1
Bilateral coronal craniosynostosis 3 0

Both histone demethylases have been previously re-
ported to promote osteogenic differentiation by remov-
ing the repressive mark, H3K27me3, on the promoter of
osteogenic-promoting genes [41]. Similarly, we found
that inhibition of Kdm6A and Kdmé6b activity in Twist-
19" calvarial cells reduced gene transcript levels of
Runx2 and Alkaline Phosphatase, following treatment
with GSK-J4, correlating to lower levels of H3K27me3
on the respective promoters. Previous studies have
shown that TWIST-1 induces EZH2 in cultured human
mesenchymal stem cells increasing levels of EZH2 and
H3K27me3 along the Ink4A locus and bone gene pro-
moters to increase proliferation but suppress osteogen-
esis, which was diminished in cranial bone cells derived
from SCS patients [32, 33, 41]. These observations sup-
port our findings that TWIST-1 mutations lead to aber-
rant EZH2 and KDMG6A/B expression levels, suggesting
that a balance of histone demethylases and methyltrans-
ferase is essential in maintaining the correct fate deter-
mination of cranial MPC. The epigenetic dysregulation
seen in the Twist-1 haploinsuficient cells may therefore
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mediate the premature maturation of bone cells as a re-
sult of Twist-1 mutation within the suture mesenchyme
of the SCS mouse model. The aberrant osteogenesis in
Twist-1 mutant cells has been reported previously in
other studies and further confirmed by the present study
with the increased expression of Runx2 and Alkaline
Phosphatase when compared to wildtype cells [28, 33,
54]. Both of these osteogenic genes have been previously
shown to be expressed within mouse calvarial cells at
the osteogenic fronts and within the suture mesenchyme
and thus have essential roles in the development of
mouse calvaria [55, 56].

Functional studies using Twist- calvarial cells de-
termined that suppressing the expression of Kdmé6a and
Kdmé6b led to the inhibition of early osteogenic differen-
tiation shown in the reduced activity and expressions of
Alkaline Phosphatase, and late osteogenic differentiation
as seen in the reduced amount of mineral deposition
and reduced calcium production. This is in agreement
with previous studies reporting that Kdm6b-null mice
display open calvarial sutures and less mineralized
calvarial bones [46], whereas Kdm6a-null mice exhibit
defects in neural crest formation [44]. Notably, the
defects in Kdm6a knockout mice are more severe in fe-
male mice than in males [57, 58]. This suggested that
Uty/Kdméc, an enzymatically inactive paralog of Kdmé6a
located on the Y-chromosome, is able to compensate for
the loss of Kdmé6a in males [59, 60]. However, compari-
son between the sexes showed similar effects on osteo-
genesis following Kdmé6a and Kdmé6b inhibition (data
not shown). This indicated that the enzymatic activity is
essential in the regulation of H3K27me3 levels during
calvarial osteogenic differentiation, and thus, Kdmé6c ac-
tivity was not able to compensate during Kdmé6a and
Kdmé6b inhibition in this instance. Collectively, our
findings provided evidence that Kdmé6a and Kdméb are
putative targets in treating craniosynostosis in Twist-
19¢* mutant mice and confirmed previous studies that
deregulated epigenetic patterns play significant roles in
the development of craniosynostosis [23, 24].

Our study further explored the utility of a chemical
inhibitor, GSK-J4, in suppressing the osteogenic poten-
tial of Twist-19V" calvarial cells. This inhibitor was
designed to target KDM6A and KDM6B enzymatic ac-
tivities by competitively binding with their active sites,
responsible for the interaction between the co-substrate,
a-ketoglutarate, and a histone-3 peptide [61]. Our study
showed that the treatment of GSK-J4 using concentra-
tion of 1 uM and 2 uM on Twist-1°"* calvarial cells re-
sulted in a reduction in Runx2 and Alkaline Phosphatase
gene expression and activity. Notably, the dosage used
had little or no effect in the cell viability rate of the
Twist-19V*  calvarial cells; however, higher doses
significantly reduced the proliferation rate. This anti-
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proliferative effect of GSK-J4 has been previously de-
scribed for embryonic bodies and tumor cells such as
bone sarcoma [62], pediatric brain glioma [63], and
acute lymphoblastic leukemia [64]. Whilst the reduction
of proliferation was found to be caused by accumulation
of cells at S-phase inhibiting cell cycle progression, our
study showed that Twist-19" calvarial cells undergo
apoptosis in the presence of 5 uM GSK-J4.

Functional studies showed that GSK-J4 treatment
reduced the development of the total bone on whole
calvarial organotypic explant cultures derived from
Twist-1°"* mice. In a pre-clinical model of SCS, local
administration of GSK-J4 to the calvaria of Twist-19¢V*
mice prevented premature coronal suture fusion and
reduced the amount of mineralized calvarial bone for-
mation. The local delivery approach of GSK-J4 adminis-
tration was performed because Kdméa is ubiquitously
expressed and both Kdmé6a and Kdmé6b were shown to
be essential in the correct skeletal patterning, brain and
heart development [43, 46, 57, 65, 66]. Collectively, the
present study demonstrated that GSK-J4 treatment
effectively suppressed osteogenic differentiation of
Twist-1%"* calvarial cells in both sexes and whole
calvaria explants in vitro, and prevented coronal suture
craniosynostosis of Twist-19* mice in vivo by inhibit-
ing the enzymatic activity of aberrant Kdmé6a and
Kdméb levels and thus recovering the level of
H3K27me3 marks on osteogenic genes.

Previous studies have employed GSK-J4 to understand
the roles of the KDM6 subfamily members in regulating
differentiation of embryonic stem cells and bone
marrow-derived mesenchymal stem cells [65]. Moreover,
GSK-J4 has been highly utilized in the studies of novel
therapeutic strategies against various types of diseases,
including acute lymphoblastic leukemia [64], myeloid
leukemia [67], osteoarthritis [65] and breast [68], pros-
tate [69], ovarian cancers [70], and brainstem glioma
[63]. Of note, the later study also showed that normal
brain cells from healthy children are unaffected by GSK-
J4 treatment. This implies that the use of localized GSK-
J4 treatment to reverse craniosynostosis may have little
or no adverse impact on brain development in children
with SCS. However, further studies are required to per-
form pathological assessments of any potential GSK-J4
toxicity issues for various tissues and organs, as well as
cognitive evaluations, using Twist-1°"* mice in the ab-
sence of pre-clinical large animal models of SCS.

Currently, the main treatment for craniosynostosis in-
volves an open calvaria remodeling surgery. This type of
surgery might lead to serious complications such as
cerebral contusions, cerebrospinal fluid leaks, hemato-
mas, infections, and wound breakdowns [17, 18]. Add-
itionally, in severe cases of craniosynostosis, there is
often a need for a follow-up treatment with repeated
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surgery procedures and substantial hospitalization, as
there is the possibility that sutures might fuse before the
cranium has had the opportunity to expand appropri-
ately to accommodate for the growing brain [71]. Des-
pite the negative impacts on a patient’s wellbeing and
health providers, therapies which do not involve invasive
surgery have yet to be developed.

Conclusions

In this study, we demonstrate for the first time that the
histone demethylases, Kdm6a, and Kdmé6b have the po-
tential to be used as novel therapeutic targets for the
prevention of craniosynostosis in an SCS mouse model,
where the Twist-1 gene is mutated. Therefore, this study
could potentially minimize the need for invasive ap-
proaches by using a local drug therapy such as GSK-J4
to slow down the rate of premature suture fusion in chil-
dren with SCS, which is reversible following cessation of
treatment.
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