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Abstract

Drug-induced liver injury (DILI) is one of the leading causes of clinical trial failures and high drug attrition rates.
Currently, the commonly used hepatocyte models include primary human hepatocytes (PHHs), animal models, and
hepatic cell lines. However, these models have disadvantages that include species-specific differences or
inconvenient cell extraction methods. Therefore, a novel, inexpensive, efficient, and accurate model that can be
applied to drug screening is urgently needed. Owing to their self-renewable ability, source abundance, and
multipotent competence, stem cells are stable sources of drug hepatotoxicity screening models. Because 3D culture
can mimic the in vivo microenvironment more accurately than can 2D culture, the former is commonly used for
hepatocyte culture and drug screening. In this review, we introduce the different sources of stem cells used to
generate hepatocyte-like cells and the models for hepatotoxicity testing that use stem cell-derived hepatocyte-like
cells.
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Introduction
Drug-induced liver injury (DILI) is one of the main rea-
sons for the withdrawal of new drugs from the market
and is also an important factor leading to the failure of
drug development. In Western countries, the annual in-
cidence of DILI is 1 to 20 cases per 100,000 inhabitants
[1–3]. In China, a retrospective study found an esti-
mated incidence of 23.8 DILI cases per 100,000 persons
per year, which is higher than that reported for Western
countries [4]. The safety of drugs has always been a

focus, and finding a reasonable and efficient drug predic-
tion model is a great challenge in the pharmaceutical
field [5].
DILI can be divided into intrinsic or idiosyncratic DILI

(iDILI). Intrinsic DILI is typically dose-related and pre-
dictable. It transpires within a short period and shows
insignificant individual differences. iDILI is less com-
monly seen in clinical practice; it is unpredictable and
features significant individual differences related to age,
sex, genetic factors, the environment, and associated
basic diseases. Thus, the assessment of iDILI is one of
the most challenging liver diseases for hepatologists be-
cause of its relatively low incidence, distinct individual
differences, diverse manifestations, and lack of typical
biomarkers [6–8].
Various hepatocyte models have been developed for

drug safety tests (Table 1).
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With considerable interspecies differences in drug me-
tabolism, animal models cannot accurately reflect the
metabolic response of drugs in humans, and high costs
and ethical issues also limit the application of animal
models [22]. Isolated primary human hepatocytes (PHHs)
maintain their original structure and most of their func-
tion in vivo, so they are an ideal model for evaluating drug
metabolism and toxicity and thus are “gold standard”
models for drug testing [9]. However, their rapid pheno-
type change and short life span seriously affect the accur-
acy of predicting drug metabolism [10, 23]. Hepatic cell
lines are inexpensive and can reproduce indefinitely, but
they lose the original characteristics of hepatocytes in
long-term culture in vitro and cannot effectively reflect
the complex metabolic effects of drugs in vivo [11].
Recently, stem cells have been widely used in regen-

erative medicine, safety pharmacology, toxicology re-
search, regenerative medicine, and cell therapy. Because
of their source abundance, self-renewable ability, high
proliferative potential, and multipotent competences,
stem cells are stable sources of hepatocytes for safe
pharmacology and toxicology evaluation. In this sense,
stem cell-derived hepatocytes are able to overcome the
shortcomings of traditional hepatocyte models, such as
interspecies differences and insufficient cellular function.
Three-dimensional (3D) culture technology has enabled
the formation of cell–cell and cell–matrix interactions and
can better maintain cell activity and function; hence, with
3D culture, liver tissue engineering has undergone a para-
digm shift from classic monolayer cell culture to more ad-
vanced organotypic liver models [24]. With the rapid
development of stem cell technology, scientists are paying
more attention to stem cells, hoping to establish a more
effective evaluation model of hepatotoxicity in vitro by
using stem cells [25]. In addition, the use of stem cells al-
lows for assessing drug toxicity in vivo. Also, humanized
mouse models based on stem cell-derived hepatocytes
provide good information about drug metabolism, dispos-
ition, and toxicity in humans and can contribute to the de-
velopment of personalized medicine strategies, which
would improve drug efficacy and safety [26]. Studies of
“hepatocytes” derived from stem cells have focused on
generating a closer representation of the mature PHH
phenotype, and the term hepatocyte-like cells (HLCs) is
commonly used to describe these cells [27].
In this review, we focus on the technology of stem cell

differentiation into HLCs and the current uses of stem
cells for hepatotoxicity evaluation.

Generation of hepatocyte-like cells from stem
cells
hESCs, hiPSCs, and hMSCs
Thomson et al. [12] found that the human embryonic
stem cells (hESCs) expressed high levels of telomerase

activity, so these cells still maintained the developmental
potential to form trophoblast and derivatives of all three
embryonic germ layers even after undifferentiated prolif-
eration in vitro for a long time. Although hESCs have
high self-renewing potency and pluripotency, their use is
limited owing to the ethical issues involved in the
process of separation. Induced pluripotent stem cells are
reprogrammed from adult somatic cells by introducing
four factors: Oct3/4, Sox2, c-Myc, and Klf4. These cells
exhibit a gene expression pattern, epigenetic profile, and
differentiation potential similar to hESCs [28]. Because
they are easy to obtain without evoking ethical problems
and have unique advantages in the study of iDILI, the
use of human induced pluripotent stem cells (hiPSCs)
differentiated into hepatocytes has gradually become a
research hotspot [13, 14]. Human mesenchymal stem
cells (hMSCs) can be isolated from various somatic tis-
sues, such as adipose tissue, bone marrow, placenta, um-
bilical cord, and menstrual blood [15, 29–32]. As
compared with hESCs/hiPSCs, the use of hMSCs leads
to fewer ethical concerns, and the tumorigenesis risk is
also lower, but the expansion capacity and ability to dif-
ferentiate into endoderm are relatively lower [16].
Most of the current protocols attempt to promote the

differentiation of stem cells by mimicking the develop-
ment of the liver during embryogenesis in three steps:
definitive endoderm differentiation, hepatocyte differen-
tiation, and hepatocyte maturation. Hepatic growth fac-
tor, fibroblast growth factor, activin A, oncostatin M,
and other cytokines play important roles in different dif-
ferentiation stages [33–36]. In the current methods,
HLCs exhibit an immature hepatic phenotype (e.g., ex-
press fetal markers such as alpha fetoprotein) [37, 38]. In
particular, the gene expression and enzyme activity of
cytochromes P450 (CYPs) are far less than those of
PHHs in hiPSC-derived HLCs [39, 40]. Another study
showed that as compared with PHHs, many genes in
HLCs involved in xenobiotic metabolism remain low,
and gene regulatory network analysis showed that HLCs
contain features of not only liver but also stem cells, in-
testine, and fibroblasts [41]. Therefore, the induction
protocol needs to be further optimized before using
HLCs as an alternative to hepatocytes in drug research.
Researchers have shown that the use of small mole-

cules [42, 43] regulating the extracellular nutrient level
[44, 45], inducing overexpression of hepatic transcription
factors [46, 47], and manipulating miRNA expression
[48, 49] represents powerful methods for the efficient
generation of metabolically functional hepatocytes. How-
ever, substantial variation in differentiation efficiencies
has been observed among different stem cell lines, and a
set of consensus criteria is needed to assess whether
HLCs are suitable for drug testing. In this regard, some
experts suggest that drug screening systems should be
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evaluated in terms of the viability, morphology, function-
ality, and toxicity features [50].

Transdifferentiation
Researchers have tried to skip over iPSC differentiation
and directly convert terminally differentiated cells into he-
patocytes [51]. Huang et al. demonstrated that overexpres-
sion of transcription factors such as FOXA3, HNF1A, and
HNF4A directly induced fibroblasts into human-induced
hepatocytes (hiHeps). Although hiHeps express hepatic
gene programs and display functions characteristic of he-
patocytes, there is still a large gap in cell metabolic rate
between hiHeps and primary hepatocytes [17]. In addition,
Fu et al. [18] described a protocol for achieving the effi-
cient conversion of human primary hepatocytes into liver
progenitor-like cells by the delivery of developmentally
relevant cues, including NAD+-dependent deacetylase
SIRT1 signaling. These progenitor-like cells can re-
differentiate to achieve mature hepatic functions. How-
ever, the cells feature individual variation: most cannot be
cultured beyond 20 passages, and they show reduced pro-
liferation capacity, reduced expression of progenitor
markers, and chromosomal abnormalities in the late
passage.

HepaRG cells
The HepaRG cell line is a human bipotent progenitor cell
line that can be differentiated into HLCs and biliary epi-
thelial cells [19]. Whole-genome expression profiling
showed that HepaRG cells are remarkably similar to hu-
man hepatocyte populations [52]. In fact, HepaRG cells
maintain liver cell functions, drug-metabolizing enzymes,
hepatobiliary transporters, and nuclear receptors better
than do other hepatic cell lines [53]. A multiparametric
screening assay showed that oxidative stress, mitochon-
drial damage, and disorders of neutral lipid metabolism
were changed notably in HepaRG cells exposed to DILI-
related drugs, which accounts for their high sensitivity as
compared with other cell lines [54]. A high concentration
of DMSO required in standard differentiation protocols
limits the use of HepaRG cells [55, 56], but studies have
shown that 3D culture or a cocktail of soluble molecules
can be used as an alternative to the DMSO-based differen-
tiation protocol for HepaRG [57, 58]. In addition, even
though HepaRG cells express high functional levels of
most phase I and II enzymes, the levels of some metabolic
enzymes such as cytochromes P450 2A6 (CYP2A6),
CYP2D6, and CYP2E1 still remain low [20, 21].

Hepatocyte-like cell models for hepatotoxicity
testing
2D models
2D monolayer cell culture is a traditional in vitro model
for studying the response of cells to drugs that has the

advantages of easy and low-cost operation. A few studies
have applied stem cell-derived hepatocytes for drug tox-
icity testing, demonstrating their sensitivity and predict-
ive power in identifying drugs with hepatoxic effects.
Although the hepatocyte-like cell model is not as good
as that of primary hepatocytes in some respects, the ac-
curacy of drug prediction is far higher than that of hep-
atic cell lines [59, 60]. An analysis of 12 compounds
showed an R2 correlation coefficient of 0.94 for TC50
values obtained for stem cell-derived hepatocytes and
primary hepatocytes, which was higher than the R2 coef-
ficient of 0.62 obtained for HepG2 cells. Also, HLCs
demonstrated all toxicological endpoints typically exam-
ined, including steatosis, apoptosis, and cholestasis [61].
In addition to the direct toxic effects of drugs on liver
cells, immune reaction is also involved in the pathogen-
esis of DILI. Proinflammatory and anti-inflammatory
cytokine levels are increased when hESC-derived HLCs
are treated with acetaminophen or thiazolidinedione.
Kim et al. [62] demonstrated the potential of hESC-
derived HLCs in an in vitro model system for assessing
drug-induced hepatotoxic immunological events
(Table 2).
Furthermore, the HLC model allows for high-

throughput drug screening and long-term drug toxicity
assessment. Ware et al. [63] used a set of 47 drugs to as-
sess the sensitivity and specificity of iPSC-derived HLCs
for DILI predictions based on a micropatterned co-
culture system. For 37 of these hepatotoxic drugs, the
sensitivity of the HLCs and PHHs was 65% and 70%, re-
spectively, with a specificity of 100% for the 10 non-
hepatotoxic drugs. Thus, HLCs were quite sensitive and
specific to the detection of drug toxicity as compared
with PHHs. Long-term culture of HLCs is needed for
evaluating chronic hepatoxicity. Holmgren et al. [64]
demonstrated that HLCs showed a time-dependent toxic
response to amiodarone, aflatoxin B1, and troglitazone
when exposed to hepatotoxic compounds for 14 days.
Unfortunately, the study lacked data on primary hepato-
cytes and compared HLCs with only HepG2 cells.

3D organoid models
Cells are exposed to a dynamic environment in vivo.
The oxygen gradient, nutrient concentration, fluid
shear stress, and fluid friction force may significantly
affect the hepatic differentiation of stem cells [65, 66].
The static monolayer 2D culture model does not re-
produce these conditions, so it cannot maintain the
complete drug metabolic capacity of the cells, which
may result in non-predictive or misleading data for
in vivo drug responses. However, a 3D culture is able
to mimic in vivo nutrient and oxygen concentration
gradient as well as cell–cell and cell–matrix
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interactions, has greater stability, and promotes a lon-
ger lifespan than does 2D cell culture. Whether stem
cells are differentiated or used for predicting drug
toxicity, a 3D system is better than a 2D system [67–
69]. In recent years, 3D culture technology has devel-
oped rapidly and is now used for the development of
organoids, spheroids, scaffolds, bioreactors, microflui-
dic devices, and 3D bioprinting. Organoid technology
is one of the most promising 3D models for various
applications in regenerative medicine, disease model-
ing, drug discovery, and hepatotoxicity [70] (Table 2).
Organoids create structures that resemble their

organ of origin by assembling themselves into a 3D
structure while growing and expanding in vitro. Be-
cause organoid models can reproduce organ-specific
characteristics, including cellular architecture, morph-
ology, and function, organoid technology has emerged
as a powerful and revolutionary strategy enabling
studies of disease and has applications for drug dis-
covery and clinical treatments (Fig. 1). However, in
the last decade, the meaning of “organoid” has come
to encompass a range of cell culture techniques, not
necessarily a single technique [71]. Here, we define an
organoid as an in vitro 3D cellular cluster derived ex-
clusively from primary tissue, pluripotent stem cells
or progenitor cells that is capable of self-renewal and
self-organization and exhibits similar organ function-
ality as the tissue of origin [72–74].

Complex and simplified organoids
The liver is mainly composed of hepatocytes, a type of
parenchymal cell, but non-parenchymal cells, such as
endothelial cells of the hepatic sinus, Kupffer cells, stel-
late cells, and lymphocytes, also play important roles.
Non-parenchymal cells can enhance the maturation of
hepatocytes by regulating some key pathways [75, 76].
The ability of human endothelial cells (hECs) to secrete
endogenous angiogenic factors might facilitate the re-
cruitment of new blood vessels to the transplantation
site [77]; thus, multicellular co-culture is widely used in
organoid culture (Fig. 1). HLCs derived from hiPSCs
were co-cultured with stromal cell populations, human
umbilical vein endothelial cells, and hMSCs on Matrigel
matrix to form a vascularized and functional liver tissue
mass termed a liver bud. Immunostaining and gene ex-
pression analyses revealed a resemblance between
in vitro-grown iPSC-derived liver buds and in vivo liver
buds [78]. Recently, a variety of different organoid cul-
ture methods have been described, and hESCs, hiPSCs,
hMSCs, and other stem cells have been reported to form
organoids [79–81].
Multicellular co-cultured organoids have abundant

structural levels, mimicking the complex niche compo-
nents and interactions in vivo to a greater extent. How-
ever, for drug screening, some experts consider that the
organoids should have high prediction power by recap-
itulating critical aspects of the target in vivo, and

Hepatocyte-like cells Liver organoidsStem cells

Disease model

Organ-on-a-chip

Chimeric mice with
humanized liver

Mechanism research
Drug screening
Hepatotoxicity evaluation
Drug-drug interactions

Scaffolds Non-parenchymal cells

Co-culture

Fig. 1 Generation of liver organoid models and their applications. Organoids are formed by a single cell type or with non-parenchymal cells (e.g.,
endothelial cells) in co-cultures. They can be scaffold-based or scaffold-free. Patient-derived organoids can be applied to disease modeling.
Combined with microfluidics, the organ-on-a-chip accurately mimics the microenvironment in vivo. In addition, chimeric mice with humanized
livers were introduced for preclinical drug evaluation to further verify drug metabolism and toxicity in vivo. These 3D organoid models can be
applied to drug development and drug screening, toxicology mechanism research, regenerative medicine, and personalized therapy
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simplified procedures are necessary to maintain the
homogeneity of the system. Wu et al. [82] established a
system to generate hiPSC-derived functional hepato-
biliary organoids in vitro without using exogenous cells
or DNA transfection. Specifically, this kind of organoid
displayed not only hepatocyte function but also the abil-
ity to efflux rhodamine and store bile acid. Moreover,
after transplantation into immune-deficient mice, the
organoids survived for more than 8 weeks. Mun et al.
[83] reported that their organoids preserved mature liver
properties, including serum protein production, drug
metabolism and detoxification functions, active mito-
chondrial bioenergetics, and regenerative and inflamma-
tory responses. When used for drug screening, the
organoids exhibited significant toxic responses to clinic-
ally relevant concentrations of drugs that had been with-
drawn from the market due to hepatotoxicity. One of
the major challenges with the use of hepatic cells in drug
screening assays is their loss of detoxification capacity
during prolonged cultivation. However, Rashidi et al.
[84] reported that their organoids, formed with hiPSCs,
exhibited stable CYP3A activity for more than 1 year in
culture, thus providing an attractive resource for long-
term drug testing in vitro. Moreover, the levels of
CYP3A4 and CYP1A2 in the organoids were much
higher than those in 2D cultures, and the highest sensi-
tivity to acetaminophen was detected in the organoids
even at low concentrations [85].
Thus, for specific disease models, multiplexed orga-

noids accurately mimic the in vivo environment, but
simplified organoids with good homogeneity and con-
trollability are more applicable in large-scale drug
screening. Both simple and complex culture systems
have their pros and cons. How to achieve a balance
among efficiency, simplicity, complexity, and control-
lability needs more exploration.

Scaffold-based and scaffold-free organoids
Scaffolds for cell culture are mainly divided into bio-
logical and artificial scaffolds. Biocompatibility is better
with biological than artificial scaffolds, and the former
can better mimic the environment in vivo. Synthetic
scaffolds can be used to artificially regulate some charac-
teristics, such as size, shape, hardness, permeability, and
porosity, and have better reproducibility and stability
than biological scaffolds [86, 87]. Biological scaffolds that
are commonly used include natural polymers such as
Matrigel, collagen, chitosan, gelatin, cellulose, and algin-
ate. In general, organoid derivation protocols rely mainly
on the use of Matrigel. Although Matrigel improves cell
growth and efficient differentiation, its complex, ill-
defined, and variable components and batch-to-batch
variability have led to an uncontrolled cellular micro-
environment and reduced repeatability [88]. The use of

a natural extracellular matrix (ECM) with better biocom-
patibility or artificial scaffolds with controlled mechanical
characteristics can further define the self-organization of
organoids and their functional level. Hydrogels with high
biocompatibility and tunable properties, such as perme-
ability, elasticity, stiffness, and chemical reactivity, can
mimic the native ECM microenvironment by maintaining
spatiotemporal control over biochemical and physical cues
[89]. Several defined hydrogels have been shown to facili-
tate organoid formation as substitutes for Matrigel to im-
prove the reproducibility and maturity of organoids by
precisely controlling their componential, structure, and
mechanical conditions [90, 91]. In addition, decellularized
liver scaffolds provide a biomimetic natural organ scaffold
with highly intact native ECM, vascular networks, and
mechanical strength. Repopulated cells in these decellular-
ized whole-liver scaffolds are organized in a natural man-
ner and perform a high level of biomimetic liver functions
better than do conventional 2D culture systems [92].
Decellularized liver matrix is an ideal scaffold, but because
of the complicated process, high cost, and concerns about
the relevant differences between human and animal liver
architecture and immunological reactions, the application
of a decellularized liver matrix has some limitations [93].
For artificial scaffolds, we have more choices. The syn-

thetic polymers are the basis of 3D scaffold culture,
among which poly-lactic acid, poly-glycolic acid, and
poly-caprolactone are the commonly used materials
(Fig. 1). Especially, nanofibrous scaffolds formed by elec-
trospinning are expected to be an ideal tool for tissue
engineering because they are biocompatible scaffolds
with topographic structures that can be fabricated to
mimic the structures of natural ECM. Many studies
showed that nanofibrous scaffolds are a good choice in
regenerative medicine [94]. In addition, 3D bio-printing
technology allows for the use of different materials to
produce scaffolds with defined shapes and geometries.
The generation of HLCs showed improved morpho-
logical organization, increased liver-specific gene expres-
sion, increased metabolic product secretion, and
enhanced CYP induction in a 3D printed model. The ap-
plication of bioprinting technology in tissue engineering
allows for the development of a 3D biomimetic liver
model that recapitulates the native liver module archi-
tecture and could be used for various applications such
as early drug screening and disease modeling [95, 96].
However, the current methods for culturing organoids

are usually costly and time-consuming. Scaffold-free ap-
proaches may overcome the problems. Some of the com-
monly used techniques are the hanging drop method,
rotational culture or agitation, and use of low-adhesion
plates to promote self-aggregation [97, 98]. To enable
mass production of viable cell cultures, a bioreactor and a
microwell array platform have been used for culturing
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organoids [81, 99]. As compared with the scaffold-based
method, the scaffold-free model is simple and low-cost
and implies no need to consider histocompatibility. There-
fore, it is more suitable for large-scale drug screening.

Patient-derived organoids
The drug metabolic capacity of hepatocytes varies
greatly among individuals. iDILI is often caused by poor
metabolism or genetic disorders. iDILI is related to a
variety of factors, so with animal tests and traditional
models, predicting the hepatotoxicity of some drugs is
difficult. One cannot conduct in vitro studies on PHHs
from patients with iDILI; however, patient-derived orga-
noids can be important tools for iDILI because iPSC-
induced HLCs retain donor-specific CYP metabolism
and drug responses [100]. Human organoids have been
used to investigate infectious diseases, immune diseases,
genetic diseases, and cancer. The use of organoids has
led to the establishment of an in vitro personalized hep-
atic model system for disease modeling, drug discovery,
and drug toxicity studies. For example, organoids from
A1AT-deficient patients can be expanded in vitro and
mimic in vivo pathology [101]. Ouchi et al. [102] suc-
cessfully developed an organoid model of steatohepatitis.
Using 11 different healthy and diseased pluripotent stem
cell lines, the authors developed a reproducible method
to derive multicellular human liver organoids composed
of hepatocyte-, stellate-, and Kupffer-like cells that ex-
hibited transcriptomic resemblance to the in vivo-de-
rived tissues. Under free fatty acid treatment, these
organoids successively recapitulated key features of stea-
tohepatitis, including steatosis, inflammation, and fibro-
sis phenotypes. More importantly, organoids from
patients with genetic dysfunction of lysosomal acid lip-
ase phenocopied severe steatohepatitis and were success-
fully treated by suppression of farnesoid X receptor
agonism-mediated reactive oxygen species. Furthermore,
other disease models have been successfully established,
such as rheumatoid arthritis [103], citrullinemia [104],
and alcoholic liver injury models [105]. Thus, the
patient-derived organoid platform is an effective tool for
studying the mechanisms of disease and screening tar-
geted drugs for human genetic disorders and allow for
further progress in personalized treatment development.

Organ-on-a-chip
Organs-on-chips are microfluidic devices for culturing
living cells in continuously perfused, micrometer-sized
chambers that model the physiological functions of tis-
sues and organs. The microfluidic system supplies a con-
tinuous flow of fresh medium and facilitates constant
removal of metabolic waste, thus providing a consistent
microenvironment to maintain cell viability and function
over a long culture period. By manipulating the cell

culture microenvironment with high precision, the effi-
ciency of reprogramming human somatic cells into
hiPSCs can be greatly improved [106, 107]. Wang et al.
[108] established a liver organoid-on-a-chip system by
using microengineering techniques, and the liver orga-
noids exhibited dose- and time-dependent hepatotoxic re-
sponses after exposure to acetaminophen. Some experts
believe that the microfluidic organoids for drug screening
platforms may be cost-effective tools for the “fail early, fail
cheaply” paradigm of drug development [109].
In vivo, organs and tissues do not exist in isolation but

rather reside in a highly integrated and dynamically
interactive environment in which they interact and sup-
port each other [110]. In addition to the liver-on-a-chip,
a series of organs-on-chips, including the lungs [111],
kidneys [112], intestines [113], and blood vessels [114],
have been developed by use of microfluidic technology.
Several laboratories have established multiorgan chips,
such as liver–kidney coculture biochips and four-organ
chips of the intestine, liver, skin, and kidney, which have
shown a great advantage in evaluating pharmacokinetic
and pharmacodynamic parameters [115–117]. For ex-
ample, Schimek et al. [118] designed an integrated lung–
liver organ chip. The authors found that aflatoxin B1,
which has hepatotoxicity and carcinogenesis, impaired
the function of lung tissues but had a protective effect
when liver organoids were present. In contrast, in a
multi-organ-on-a-chip system consisting of liver and
cancer models, the anticancer prodrug capecitabine
inhibited the proliferation of cancer cells after being me-
tabolized by HepaRG cells [119]. Therefore, more com-
plex drug metabolic reactions can be observed when
several types of organoids are integrated into a single
platform. The function of one organoid may influence
the response of downstream organs, which is similar to
how drugs are metabolized in vivo in that a drug may be
metabolized by several organs [120]. Integrated
multiorgan-on-chip systems will help further predict
drug absorption, metabolism, and clearance in the body.
However, with current technologies, replicating the exact
size and function of each organ to accurately reflect the
physiological interactions among them is challenging
[121]. In addition, the human body is an integrated
whole, and hormones, hemodynamics, and even bio-
rhythms affect the metabolism of drugs in vivo. If the
organ-on-chip system could consistently and accur-
ately predict the pharmacology of drug candidates,
organ-on-chip models might replace animal test
models in the future [122].

Hepatocyte-like cell models for in vivo hepatotoxicity
testing
Drug metabolism differs in vitro and in vivo; therefore,
preclinical evaluation of drug candidates in experimental
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animal models is an important step in drug develop-
ment. However, owing to the differences between ro-
dents and humans with respect to the metabolic and
toxicological characteristics of drugs, accurately predict-
ing the toxicity of drugs is often impossible [123]. To ad-
dress this problem, chimeric mice with humanized livers
were used for preclinical drug evaluation to replace trad-
itional animal models [26]. Three types of chimeric mice
with a humanized liver are frequently used for studies:
urokinase-type plasminogen activator/severe combined
immunodeficiency (uPA/SCID) mice, NOG mice ex-
pressing a thymidine kinase transgene (TK-NOG mice),
and Fah−/−/Rag2−/−/Il-2rg−/− (FRG) mice (humanized
liver FRG mice) [124–126]. Immune deficiency and gen-
etic modification in these mice allowed transplanted hu-
man liver cells to reproduce in the livers of these mice,
resulting in chimeric mice with humanized livers that
perform human drug metabolism and transformation
functions [127].
Studies have found that the laboratory and histologic

features of drug-induced liver toxicity in humanized
mice mirrored those of humans [128–131]. For example,
troglitazone is an antidiabetic drug that has been with-
drawn from the market because of idiosyncratic severe
liver injury. Its severe liver toxicity has never been in-
duced in animal models until Kakuni et al. successfully
detected it in chimeric mice with humanized liver [129].
Another study by Xu et al. [131] tested the dose-
response of the drug fialuridine, a nucleoside analog for
hepatitis B virus (HBV) infections, in humanized TK-
NOG mice. Fialuridine did not display any toxicity in
preclinical animal studies but was abruptly terminated in
phase II clinical trials because seven of 15 clinical trial
participants showed acute liver failure [132]. The au-
thors found a dose-dependent liver toxicity in chimeric
mice with a humanized liver as compared with non-
humanized mice. Although currently most chimeric
mice with humanized liver models used in hepatotoxicity
testing (including the works of Kakuni et al. and Xu
et al. mentioned above) were generated by transplanting
PHHs [133–135], the use of stem cells to serve as hep-
atocyte sources for chimeric mice with a humanized
liver is promising because stem cells are easily obtained
and can be large-scale produced [136] (Fig. 1).
Stem cell-derived HLCs have been used to develop hu-

manized liver HBV infection models in mice and evalu-
ate anti-HBV drugs. For instance, Yuan et al. [137]
developed an animal model with a human chimeric liver
to study in vivo HBV infection by engrafting hiPSC-
HLCs into Fah−/−Rag2−/−IL-2Rγc−/−SCID (FRGS) mice.
As expected, the hHLC-FRGS mice reproduced HBV
mimicking chronic HBV-caused viremia, and they were
used to evaluate the effects of anti-HBV drugs. In the
study, the combination of the well-demonstrated HBV

entry inhibitor myrcludex B with the clinical drug ente-
cavir efficiently blocked HBV spread in hHLC-FRGS
mice. Similarly, the authors also used HepaRG cells to
construct an HBV-infected humanized mouse model to
evaluate anti-HBV drugs, including myrcludex B, cyclo-
sporin A, vanitaracin A, irbesartan, and ritonavir and
demonstrated that myrcludex B and cyclosporin A were
more effective than the other three drugs in suppressing
HBV replication [138].
Nevertheless, chimeric mice with humanized liver have

some disadvantages. Generating chimeric mice with a
humanized liver is costly and time-consuming [139].
And the efficiency of in vivo engraftment and expansion
of immature HLC is still low. In the Yuan et al. study,
FRGS mice implanted with HepaRG cells showed only
about 10% liver chimerism, which was lower than that
for PHHs [138]. However, in vivo administration of 5D5,
an agonist c-Met receptor antibody, greatly promoted
the expansion of hiPSC-HLCs in Fah-deficient mice, and
the liver chimerism exceeded 40% in transplanted mice
[140]. Nagamoto et al. [141] demonstrated that trans-
planted HLCs with overexpression of FNK (a hyperactive
mutant gene from Bcl-xL) into uPA/SCID mice could
enhance the repopulation efficiency of human liver
chimeric mice. In addition, Ng et al. developed an
inverted colloid crystal scaffold whose 3D mechanical
properties could be engineered to reproduce the extra-
cellular niche sensed by hepatic progenitors during hu-
man development. The model could help integrate,
vascularize, and function the organoids following im-
plantation into livers of immune-deficient mice [142].

Conclusions
A large number of studies have shown that stem cell-
derived hepatocytes have great potential in regenerative
medicine, disease modeling, and drug screening. Only
when the function of HLCs is consistent with that of
PHHs can they accurately predict drug toxicity; hence,
the differentiation of stem cells into fully functional he-
patocytes remains a major challenge. On the one hand,
small molecule compounds can replace the role of cyto-
kines to improve the efficiency of differentiation [143].
On the other, researchers pay more attention to chan-
ging the microenvironment of cell culture to improve
differentiation efficiency [144]. In recent years, with the
development of 3D culture techniques, liver tissue en-
gineering has been transformed from the classic mono-
layer cell culture to more advanced organotypic liver
models that allow for more precise control of the micro-
environment [145].
There are still many limitations to the use of 3D cul-

ture that need to be considered. First, the 3D model has
not been able to replace the 2D culture model on a large
scale [146]. Second, the results vary among laboratories
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[147]; therefore, the repeatability rate needs to be im-
proved and the detection endpoints of cell differentiation
and drug screening need to be unified. Third, according
to the current protocols, generating organoids are time-
consuming and costly [148]. To overcome these limita-
tions, more technologies are needed, such as high-
throughput microarray culture, 3D printing technology,
and bionic scaffolds [149]. 3D culture combined with
technology from materials science, bioengineering, and
other fields will greatly improve the sensitivity and ac-
curacy of drug screening.
In conclusion, the stem cell-based model provides an

excellent platform for evaluating drug hepatotoxicity. In
the future, combined with technologies such as gene-
editing, omics, and single-cell sequencing, stem cell-
derived HLC models will bring great benefits for drug
toxicity and drug metabolism testing and also mecha-
nisms of DILI and individualized medicine studies.
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