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Abstract

Background: Systemic administration of mesenchymal stromal cells (MSCs) has been efficacious in many
inflammatory disease settings; however, little data are available on the potential immunomodulatory effects
following local MSC administration in the context of corneal transplantation. The purpose of this study was to
assess the potential of subconjunctival injection of MSCs to promote corneal allograft survival.

Methods: MSCs were isolated from female C57BL/6 (H-2k) or Balb/c (H-2d) mice and extensively characterized. An
allogeneic mouse corneal transplant model was used with Balb/c mice as recipients of C57BL/6 grafts. A dose-
finding study starting with 5 × 105 MSCs injected subconjunctivally at day − 7 was tested first followed by a more
clinically translatable low-dose single or dual injection strategy on day − 1 and day + 1 before/after transplantation.
Graft transparency served as the primary indicator of transplant rejection while neovascularization was also
recorded. Lymphocytes (from draining lymph nodes) and splenocytes were isolated from treatment groups on day
2 post-transplantation and characterized by flow cytometry and qRT-PCR.

Results: Both high- and low-dose injection of allogeneic MSCs on day − 7 led to 100% graft survival over the
observation period. Moreover, low-dose dual subconjunctival injection of 5 × 104 allogeneic MSCs on day − 1 or day
+ 1 led to 100% allograft survival in transplant recipients (n = 7). We also demonstrate that single administration of
allogeneic MSCs on either day − 1 or day + 1 promotes rejection-free graft survival in 100% (n = 8) and 86% (n = 7)
of transplanted mice, respectively. Early time point ex vivo analysis suggests modulation of innate immune
responses towards anti-inflammatory, pro-repair responses by local MSC administration.
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Conclusion: This work demonstrates that low-dose subconjunctival injection of allogeneic MSCs successfully
promotes corneal allograft survival and may contribute to refining future MSC immunotherapies for prevention of
corneal allograft rejection.

Keywords: Corneal transplantation, Mesenchymal stromal cells, Allogeneic, Subconjunctival, Immunomodulation,
Macrophage, Graft survival, Mouse

Introduction
Corneal transplantation is the last option for patients
suffering from serious ocular disease or injury [1–3].
Topical corticosteroids with or without adjuvant im-
munosuppressant therapy remains the gold standard
treatment for preventing corneal allograft rejection;
however, patients are still highly susceptible to immune-
mediated rejection. Therefore, novel therapies are ur-
gently needed to improve the prognosis of corneal
transplantation.
Mesenchymal stromal cells’ (MSCs) therapeutic poten-

tial is associated with their ability to effectively modulate
host repair responses and inflammation and their safety
profile following administration to patients [4, 5]. We
and others have shown that systemic administration of
MSCs prolongs corneal allograft survival and promotes
ocular surface regeneration [6–10]. Although the mecha-
nisms of MSC-induced immunomodulation in vivo are
not completely understood, data suggest that induction/
expansion of regulatory T cells (Tregs) or myeloid-
derived suppressor cells in the lung [7, 11] play an
important role. Most pre-clinical and clinical studies ad-
minister MSCs systemically; however, this often requires
high doses of cell numbers to achieve a therapeutic ef-
fect, which may lead to adverse side effects [12, 13]. In
contrast, local application of MSCs may have the poten-
tial to exert local immunomodulatory effects, which may
allow for the application of reduced cell numbers. Sub-
conjunctival injection of MSCs (albeit large numbers of
cells) seems to be beneficial in cornea injury models [14,
15] and in a rat corneal allotransplant model [16]. Here,
we show that, following subconjunctival administration,
allogeneic donor-derived but not syngeneic MSCs pro-
mote corneal allograft survival in a dose-dependent
manner. Our data indicate that a single bolus of locally
administered MSCs is sufficient to significantly attenuate
corneal allograft rejection. Moreover, early time point
ex vivo analysis suggests modulation of innate immune
responses by local MSC administration.

Materials and methods
Mouse corneal transplantation
A fully allogeneic major histocompatibility complex
(MHC) class I/II disparate cornea transplant model was

used for these studies as described previously [10]. See
Additional file 1 for details.

Generation and characterization of mouse MSCs
Isolation of mouse MSCs was performed as de-
scribed [10], and MSC preparations were extensively
characterized for the expression or absence of spe-
cific cell surface markers by flow cytometry and for
their differentiation capacity (Supplemental Figure 1
and 2) [7, 10, 17, 18].

RAW264.7 macrophage/MSC co-culture assay
See Additional file 1 for details.

Subconjunctival administration of MSCs
MSCs were collected, washed three times with DPBS
(Thermo-Fisher Scientific, Dublin, Ireland), and fil-
tered through a 40-μm filter (Thermo-Fisher Scien-
tific) before administration. Mice were briefly
anesthetized using isoflurane and subconjunctivally
administered 5 × 104 (low-dose) or 5 × 105 (high-dose)
MSCs in 20 μl or 50 μl of DPBS, respectively, using a
30-G needle.

Generation of single-cell suspensions from lymph nodes
and spleens and flow cytometry
Single-cell suspensions of draining lymph nodes (dLNs)
and spleens were prepared as detailed in [10]. See Add-
itional file 1 for details.

RNA isolation and RT-PCR
See Additional file 1 for details.

Statistical analysis
See Additional file 1 for details.

Results
Subconjunctival injection of allogeneic MSCs promotes
corneal allograft survival in Balb/c mice
MSCs were isolated from C57BL/6 and Balb/c mice as
previously described and extensively characterized [10,
17]. MSCs were shown to conform to ISCT criteria
(Supplemental Figure 1 and 2). Data relating to
characterization and differentiation of Balb/c MSCs can
be found at [10].
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Next, we investigated if local administration of
MSCs could promote mouse corneal allograft survival
by applying two different injection strategies with ei-
ther one or two MSC injections. First, recipient Balb/
c mice received either no injection or a single bolus
injection of 5 × 105 (high-dose) or 5 × 104 (low-dose)
allogeneic C57BL/6 MSCs in the subconjunctival
space followed by allogeneic corneal transplantation 7
days later. Transplant survival was monitored over a
period of 40 days by microscopy and graft opacity as
the main indicator of cellular infiltration and endo-
thelial dysfunction was recorded. The majority of allo-
geneic control transplanted mice rejected their
corneal transplant before the end of the observation
period (mean survival time (MST), 21.3 days ±11.0
SD). In contrast, animals that received a bolus of 5 ×
105 MSCs had a 100% survival rate (Fig. 1a). Interest-
ingly, low-dose (5 × 104) was equally as efficacious as
high-dose treatment (Fig. 1a). Earlier onset of neovas-
cularization was observed in the high-dose allo-MSC
group (Fig. 1c), but no significant difference in opa-
city was seen between mice receiving either low- or
high-dose allo-MSCs (Fig. 1b). Representative images
of low-dose MSC-treated and allogeneic transplant
control mice are shown in Fig. 1d.
Following confirmation that local administration of

low-dose MSCs was just as efficacious as high-dose
treatment, we modified our injection strategy to-
wards a more clinically feasible injection protocol.
We investigated if subconjunctival MSC injection on
the day before and/or after the day of transplant-
ation could promote corneal allograft survival. We
found that double injection of low-dose MSCs on
day − 1 and day + 1 led to 100% corneal allograft
survival (Fig. 2a). Interestingly, a single injection
strategy either on day − 1 or day + 1 also resulted in
significant prolongation of allograft survival (Fig. 2a).
While not reaching statistical significance, there was
a clear trend towards reduced corneal opacity in all
MSC treatment groups versus PBS-treated control
mice (PBS v allo-MSC (D−1, D+1): p = 0.0717; PBS v
allo-MSC (D−1): p = 0.0699; PBS v allo-MSC (D+1):
p = 0.0641) (Fig. 2b). Neovascularization levels were
comparable between all groups (Fig. 2c). Interest-
ingly, dual injection of syngeneic, recipient-derived
MSCs had no significant impact on corneal allograft
survival (Fig. 2a).

Early time point analysis of draining lymph nodes
following subconjunctival injection of MSCs indicates
innate immune cell modulation
As it is well known that the draining lymph nodes
(dLNs) play an important role in corneal allograft
survival and rejection, we investigated the

immunological profile of lymph node cells following
dual MSC injection on day − 1/+ 1. MSC-treated
transplanted animals were sacrificed 2 days post-
transplantation, and LN cells were isolated and pro-
filed by flow cytometry and qRT-PCR. Although we
found no significant differences in MHC class II and
CD80 expression on CD11b+ and CD11c+ cells
(Fig. 3b–e) (see Fig. 3a for gating strategy) between
the two groups, we found that the proportion of
CD206-expressing CD11b+ cells (indicative of non-
classical, anti-inflammatory M2-like macrophages) was
significantly increased in the dLNs of mice treated
with two doses of allo-MSCs (Fig. 3f). qRT-PCR ana-
lysis of dLNs also showed a trend towards an increase
in TGF-β mRNA expression (though not statistically
significant) in allo-MSC-treated animals (Fig. 3g).
Analysis of the same immune cell subsets in the
spleen revealed no significant differences between
allo-MSC and PBS control treated transplanted mice
(Supplemental Figure 3A-E). This would suggest that
the observed increased proportion of CD11b+CD206+
cells is a LN-specific finding. To further validate that
MSCs (specifically allo-MSCs) can induce a M2-like
anti-inflammatory macrophage phenotype, we co-
cultured RAW264.7 macrophages with either syngen-
eic (Balb/c) or allogeneic MSCs (C57BL/6) for 72 h
(see Supplemental Figure 4A for experimental out-
line). Allo-MSCs were capable of both polarizing M0
macrophages (Supplemental Figure 4B) and skewing
M1-polarized macrophages (Supplemental Figure 4C)
to a M2-like phenotype, as measured by fold expres-
sion of the M2 marker arginase-1 (Arg-1). There was
also a clear increase in Arg-1 expression by M2-
polarized macrophages following co-culture with allo-
MSCs (Supplemental Figure 4D). Confirmation that
Arg-1 expression was coming from the macrophages
and not the MSCs themselves was obtained by asses-
sing Arg-1 expression by the MSCs alone. As shown
in Supplemental Figure 4E, neither MSC population
expressed Arg-1 mRNA at a physiologically relevant
level. While not reaching statistical significance, ana-
lysis of early CD4+ T cell responses showed trends
towards increased levels of both CD69+ (early marker
of activation) (Fig. 4b) and CD25+ (Fig. 4c) expressing
T cells (see Fig. 4a for gating strategy). This is per-
haps reflective of the early time point post-
transplantation at which the analysis was performed.
CD4+CD25+Foxp3+ Treg levels were comparable be-
tween both groups (Fig. 4d). In summary, these data
show that local administration of allo-MSCs promotes
corneal allograft survival and modulates innate im-
mune cell populations in the dLNs towards a more
anti-inflammatory/regulatory phenotype early after
MSC injection.
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Discussion
The field of MSC therapies has grown exponentially over
the last decade with MSCs being applied in many disease
settings but with mixed beneficial results [4, 13]. Many
important issues for the success of clinical applications
of MSCs such as timing of cell administration, dose, and
origin of MSCs are still not solved satisfactorily, there-
fore warranting further in vitro and pre-clinical investi-
gations. Here we show that local, subconjunctival
injection of allogeneic MSCs is as efficient as

intravenous injection in modulating corneal allograft
survival [7, 19] but at very low doses (5 × 104 MSCs).
This is significant as this novel low-dose injection proto-
col may also reduce the risk of potential side effects of
allogeneic cell administration in patients. Moreover, it
will allow a much larger number of patients to be
treated per donor bone marrow, thereby contributing to
reducing the costs of cell manufacturing for clinical tri-
als. Interestingly, both tested subconjunctival injection
strategies using different time points (day − 7 or day −

Fig. 1 Subconjunctival administration of allogeneic MSCs prolongs corneal allograft survival. Female Balb/c mice served as recipients for female
C57BL/6 donor corneas. Different doses of allogeneic (donor-derived) MSCs were injected subconjunctivally 7 days before transplantation (D−7).
Mice were observed every 2/3 days. a Kaplan-Meier survival curve analysis of allogeneic transplant controls (black line) (n = 9), corneal allograft +
5 × 105 MSCs (pink line) (n = 6), and corneal allograft + 5 × 104 MSCs (green line) (n = 4) (Log-rank (Mantel-Cox) test, **p≤ 0.01, ***p ≤ 0.001). b
Opacity and c neovascularization scores up to POD 40. d Representative light microscopy images of corneal allografts taken at two post-
transplantation time points from two separate mice either treated with low-dose allo-MSCs or untreated. n = 4–6 with numbers per treatment
group the same as in a. Error bars show mean + SD
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1/+ 1) resulted in equally efficient prevention of corneal
transplant rejection, indicating that the time point of cell
administration is less important in this disease setting.
Of note, double injection of syngeneic/autologous (re-
cipient-derived) MSCs did not lead to significant pro-
longation of allograft survival, a phenomenon which we
have previously described [7, 10]. Immunomodulatory
effects following intravenous infusion of MSCs can be
regulated through the myeloid cell-mediated induction
of Foxp3+ regulatory T cells in the lung, a phenomenon
which was first described by Ko et al. [11] and confirmed

by us and others [9, 10, 20, 21]. Interestingly, the injec-
tion of 5 × 104 MSCs in the subconjunctival space is un-
likely to result in these MSCs migrating to the lung to
exert their therapeutic effect; therefore, other mecha-
nisms of MSC immunomodulation are likely at play. It is
likely that MSCs not only have the capacity to modulate
monocytes/macrophages in the lung but also in other
immunorelevant compartments such as in the eye, the
conjunctiva-associated lymphoid tissues (CALT), or in
the draining lymph nodes. Indeed, we found that sub-
conjunctival injection of MSCs leads to detectable

Fig. 2 Subconjunctival administration of low-dose allogeneic MSCs prolongs corneal allograft survival with pre-transplant injection the crucial
factor. Female Balb/c mice served as recipients for female C57BL/6 donor corneas. Allogeneic MSCs were administered subconjunctivally using
three different treatment strategies. Mice received one injection of 5 × 104 MSCs either the day before transplantation (D−1) or the day after
transplantation (D+1) or two separate doses at D−1 and D+1. Control mice received PBS alone at D−1 and D+1. Mice were observed every 2/3
days. a Kaplan-Meier survival curve analysis of corneal allograft + PBS (D−1, D+1)-treated control mice (gray line) (n = 6), corneal allograft + 5 × 104

allogeneic MSCs (D−1, D+1) (green line) (n = 7), corneal allograft + 5 × 104 allogeneic MSCs (D+1) (blue line) (n = 7), corneal allograft + 5 × 104

allogeneic MSCs (D−1) (red line) (n = 8), and corneal allograft + 5 × 104 syngeneic MSCs (D−1, D+1) (black line) (n = 8) (Log-rank (Mantel-Cox) test,
*p≤ 0.05, **p≤ 0.01). b Opacity and c neovascularization scores up to POD 40. n = 6–8 with numbers per treatment group the same as in a. Error
bars show mean + SD
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changes in the expression profile of innate immune cells
in the draining lymph nodes as early as 2 days after
transplantation, resulting in a significant upregulation of
CD206 expression on mononuclear phagocytes. This
suggests that 1–3 days after MSC administration, a
skewing of the anti-graft immune response towards a

more anti-inflammatory or wound healing phenotype
has occurred.
In conclusion, we have shown that the subconjunctival

administration of MSCs has the potential to significantly
prolong corneal allograft survival using a single injection
strategy and a much reduced MSC dose compared to

Fig. 3 Dual administration of low-dose allogeneic MSCs induces a higher proportion of anti-inflammatory mononuclear phagocytes in the
draining lymph nodes. Draining lymph nodes (dLNs) were harvested 2 days post-transplantation (D+2) from corneal allograft recipient mice
receiving either two injections of PBS or low-dose allogeneic MSCs the day before transplantation (D−1) and the day after transplantation (D+1).
a Flow cytometry gating strategy used to select activated dendritic cells (DCs) (CD11c+MHCII+, CD11c+CD80+) or mononuclear phagocytes
(MPh) with either a pro-inflammatory (CD11b+MHCII+, CD11b+CD80+) or an anti-inflammatory (CD11b+CD206+) phenotype. b Proportion of
MHCII+ DCs expressed as a percentage of the parent (CD11c+) population. c Proportion of CD80+ DCs expressed as a percentage of the parent
(CD11c+) population. d Proportion of MHCII+ MPh expressed as a percentage of the parent (CD11b+) population. e Proportion of CD80+ MPh
expressed as a percentage of the parent (CD11b+) population. f Proportion of CD206+ MPh expressed as a percentage of the parent (CD11b+)
population. g Analysis of mRNA expression (normalized to the housekeeping gene GAPDH and shown as fold-change relative to the PBS-treated
allogeneic control group) in the dLNs of TGF-β1 at D+2 from PBS-treated allogeneic controls and low-dose allogeneic MSC-treated corneal
allograft recipients. Error bars: mean ± SD. *p < 0.05 (each individual dot represents a separate animal, n = 3–6). D’Agostino and Pearson omnibus
normality test and Shapiro-Wilk normality test used to determine the distribution of data. ROUT testing was used to identify outliers. Non-
parametric unpaired two-tailed Student’s t tests used for data that was not normally distributed
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systemic administration. This novel injection protocol
could lead to the development of novel therapeutic
treatment regimens for patients who suffer from adverse
immune reactions towards an allogeneic corneal trans-
plant and with much reduced cell numbers enhancing
safety and efficacy of cellular therapies.
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