
REVIEW Open Access

Mesenchymal stromal/stem cells and their
exosomes for restoration of
spermatogenesis in non-obstructive
azoospermia: a systemic review
Rano Zhankina1†, Neda Baghban2†, Manarbek Askarov1, Dana Saipiyeva1, Almaz Ibragimov1, Bakhyt Kadirova1,
Arezoo Khoradmehr2, Iraj Nabipour2, Reza Shirazi3*, Ulanbek Zhanbyrbekuly1* and Amin Tamadon2*

Abstract

Stem cells have been introduced as new promising therapeutic agents in treatment of degenerative diseases
because of having high differentiation potential while maintaining the ability to self-replicate and retaining features
of their source cells. Among different type of cell therapies, mesenchymal stromal/stem cell (MSC) therapy is being
increasingly developed as a new way to treat structural defects that need to be repaired and regenerated. Non-
obstructive azoospermia (NOA) is a reproductive disease in men that causes infertility in 10% of infertile men. Based
on in vitro studies, MSCs from different tissue sources have been differentiated into germ cells or gamete
progenitor cells by simple methods in both male and female. On the other hand, the therapeutic effects of MSCs
have been evaluated for the treatment of NOA animal models created by chemical or surgical compounds. The
results of these studies confirmed successful allotransplantation or xenotransplantation of MSCs in the seminiferous
tubules. As well, it has been reported that exosomes secreted by MSCs are able to induce the process of
spermatogenesis in the testes of infertile animal models. Despite numerous advances in the treatment of
reproductive diseases in men and women with the help of MSCs or their exosomes, no clinical trial has been
terminated on the treatment of NOA. This systematic review attempts to investigate the possibility of MSC therapy
for NOA in men.
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Introduction
In the current decade, the emerging field of stem cell
therapy has quickly become a new era of regenerative
medicine. The diverse potential of stem cells is a focus
of research of many scientists in molecular biology, gen-
etic engineering, and even general medicine for develop-
ing new approaches in the treatment of a number of
diseases, which have always been a challenge for clini-
cians [1].
Stem cells are cells that are self-sustaining throughout

the life of an organism and capable of differentiating into
cells of various types. There are several types of stem
cells found in human tissues. Among them, mesenchy-
mal stromal/stem cells (MSCs) derived from various tis-
sues including the bone marrow and adipose tissue have
been considered to be the most promising material in
terms of their application for cell therapy. The MSCs are
popular among scientists and clinicians due to their
multilinear differentiation potential, low immunogenicity
and active participation in tissue repair, and regeneration
after migration to damaged sites. In general, MSCs have
advantages over other types of stem cells for clinical use
in cell-based therapies. These advantages include avail-
ability, easy to isolate and expand, multilineal differenti-
ation, immunosuppressive, and both of the autograft and
allograft are possible, free from ethical issues, and lim-
ited replicative lifespan [2].
According to World Health Organization (WHO) cri-

teria, the marriage is considered infertile, if no preg-
nancy occurs within 12months of unprotected sex [3].
This pathology is an important medico-social issue with
up to one in six of married couples failing to conceive
naturally [4]. Among them, 20–30% of infertility is re-
lated solely to men [5]. Infertility cases are linked to the
diminished quantity or quality of ejaculate, which may
be due to impaired spermatogenesis, slow maturation of
spermatozoa in the epididymis, or incomplete patency of
the vas deferens. The main causes of male infertility are
genetic disorders, urogenital infections, hypogonadism,
cryptorchidism, varicocele, ejaculatory disorders, general
and systemic diseases, and immunological factors [6].
Despite its multifactorial nature, male infertility has not
been fully understood and about half of cases are consid-
ered idiopathic or unexplained [7]. Investigation of male
fertility usually starts with history, physical examination,
and spermogram.
Azoospermia is classified as obstructive and non-

obstructive (NOA). In most patients with NOA, it is
possible to distinguish clinically by diagnostic workup
including history, hormone levels, and physical examin-
ation. These indicators allow to confidently determine
the type of azoospermia. This is important, since ob-
structive azoospermia is more favorable due to preserva-
tion spermatogenesis. However, the NOA accounts for

about 10% of infertility cases and manifests as the ab-
sence of spermatozoa in ejaculates due to spermatogenic
deficiency. In the overwhelming majority of cases, azoo-
spermia is associated with a number of irreversible dis-
orders of the testicles, which lead to inhibition of
spermatogenesis. Such disorders are most often linked
to endocrine, genetic, and inflammatory diseases [8]. In
addition, NOA can be idiopathic [9]. Palpation and
measurement usually reveal small and flabby testicles
typical for non-obstructive azoospermia. In all patients
with azoospermia, the levels of follicle stimulating hor-
mone (FSH), luteinizing hormone (LH), prolactin, total
testosterone, estradiol, and inhibin B should be mea-
sured [10]. In most patients with NOA, FSH is increased
(> 7.6 IU/mL) and LH is elevated or close to normal
[11]. Hypogonadism is defined by low total testosterone
levels (< 300 ng/dL) and occurs in the majority of pa-
tients with NOA, usually reflecting Leydig cell deficiency
[12]. Obesity can be associated with low total testoster-
one levels, thereby serum estradiol levels increase due to
elevated aromatization of androgens in peripheral tissues
[13]. Low testosterone in obese patients may also reflect
adaptation to altered sex hormone-binding globulin
(SHBG) rather than true testosterone deficiency [14].
Proper counseling and management of patients with

NOA presents a challenge for andrologists, urologists,
and reproductive medicine specialists. Despite this, ad-
vances in molecular biology, hormone replacement ther-
apy, and microsurgical sperm retrieval, together with
modern techniques of in vitro fertilization (IVF), give
hope for natural paternity. By the way application of
MSC for treatment of NOA needs more clarification
which this systemic review attempts to do it.

Methods
Focused question
This systematic review was done to answer this question:
“Could MSCs be applied in treatment of NOA in
human?”

Search and study selection
Key words and subject terms included (“MSC” AND
“azoospermia”) OR (“MSC” AND “azoospermia” AND
“therapy”) OR (“MSC” AND “germ cell”) OR (“MSC”
AND “infertiltiy”) OR (“MSC” AND “reproductive”). The
search strategy was applied to Google Scholar and
ClinicalTrials.gov, being focused on the in vitro or
in vivo studies and clinical trials, respectively. English
language publications were considered. The reviews, ab-
stracts without full manuscripts, the manuscripts about
non-male reproductive system MSCs therapy, and stem
cell sources other than MSCs were excluded. Data were
collected from the full text of the articles as follows: (i)
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the source of MSCs, (ii) type of the study (in vitro,
in vivo, or clinical trials), and (iii) the obtained results.

Treatment of NOA
The NOA has been considered to be a condition not
responding to drug therapy [15]. Patients with NOA are
unable to have children of their own and have options of
either adoption or using donated sperm [16]. Despite
the marked changes in spermatogenesis, these patients
still have a chance to conceive. In such situations, the
preservation of spermatogenesis may be focal in testicu-
lar tissues [17]. Due to irreversible nature of spermato-
genesis damage in patients with NOA, testicular biopsy
and assisted reproductive technologies are the only ways
to obtain biological off-springs [18]. For men with NOA,
testicular sperm extraction (TESE) with intracytoplasmic
sperm injection (ICSI) remains the only choice to con-
ceive [19]. However, TESE-ICSI has limited success in
patients with NOA, as during the first TESE cycle,
sperm is found about 50% of cases [20], and the subse-
quent probability of egg fertilization with ICSI is about
50% [21]. As a result, the successful fertilization prob-
ability with this technique is about 13.4% [22]. There-
fore, considering this low success rate and due to their
unlimited source and high differentiation potential,
MSCs have been considered as a potential new thera-
peutic agent for the treatment of infertility.

MSC-therapy of NOA
The MSCs were first described by Alexander Frieden-
stein (1924–1998) [23]. He experimentally proved the
existence of stromal stem cells in the bone marrow and
in lymphoid organs [24]. This discovery confirmed that
the bone marrow contains a distinct population of stem
cells capable of forming clones of cells of connective and
hematopoietic lines [24]. Approximately 30% of the bone
marrow aspirate isolated by Friedenstein consisted of
MSCs [24]. These cells showed plastic adhesion capacity
and were able to support differentiation and growth of
various hematopoietic cell lines [24].
The MSCs are multipotent human stromal/stem cells

able to self-renew [25]. The general properties of MSCs
include high proliferative potential and adhesion cap-
acity, symmetric and asymmetric division, fibroblast-like
morphology, easily induced differentiation, and the for-
mation of colonies in a culture [25]. MSCs are able to
differentiate into chondrocytes, fibroblasts, osteoblasts,
adipocytes, and myoblasts [25]. The therapeutic effect of
MSCs is based on their ability to secrete a number of
signaling molecules, which simulate the functional activ-
ity of various targets in of the body [25]. The MSCs pro-
mote growth of hematopoietic progenitors by forming
the specific microenvironment (niche) [26]. To date, the
following markers have been detected on the surface of

MSC cells isolated from various tissues: CD105, CD106,
CD13, CD140b, CD140α, CD146, CD147, CD151,
CD166, CD276, CD29, CD44, CD47, CD49, CD49E,
CD54, CD56, CD59, CD73, CD81, CD9, CD90, CD90.1,
CD98, HLA-I, Klf-4, NANOG, nestin, NG2, Oct-3,
OCT-4, PDGF-R β, prolyl-4-hydroxylase, Sox-17, SSEA-
3, STRO-1, and α-SMA [27].
Besides MSCs, MSC-derived exosomes can mediate cell

activity and paracrine actions through carriage of proteins,
lipids miRNAs, and mRNAs into target cells [28, 29].
Moreover, exogenous exosomes regulate expression of
protein or target gene resulting regulation of function of
the recipient cell [30]. It has been reported that exosomes
have ability to stimulate effects of stem cell-like pro-
regenerative in damaged regions directly [31].
The bone marrow is one of the main sources of MSCs,

and although its aspiration is the most traumatic way
among the MSC isolation procedures, it is the most eval-
uated approach for cell therapy [32]. The MSC number,
differentiation potential, and the viability of the bone
marrow MSCs (BM-MSCs) decrease with age [33]. In
this regard, the ongoing search for alternative sources of
MSC is going on. MSCs derived from the adipose tissue
(AT-MSCs) can be alternative solution for BM-MSCs
due to their comparable differentiation and therapeutic
potential [34]. The adipose tissue is not only a metabolic
reservoir for storage and formation of high-energy sub-
strates, but also participates in hormone metabolism
[35]. More profound study of the adipose tissue struc-
ture was performed by Martin Rodbell (1925–1998) who
used techniques of proteolytic cleavage, mechanical
grinding, and differential centrifugation for isolating 2
fractions of the adipose tissue—mature adipocytes and,
more compact, cellular substance, which he later called
stromal-vascular fraction (SSF) [36]. The SSF is hetero-
geneous and includes MSCs, preadipocytes, endothelial
cells, pericytes, T cells, and M2 macrophages, fibroblasts,
and pre-adipocytes [37]. In 2001, Zuk et al. [38] noted
that properties of so-called AT-MSCs are similar to BM-
MSCs. In an adult bone marrow, the ratio of MSCs to
total cells is 1:10,000–100,000 [39], whereas in the adi-
pose tissue, the ratio of MSCs to total cells is 1:30 [40].
AT-MSCs are easier and safer to obtain than BM-MSCs.
The primary acquisition of AT-MSC is based on the
manually procedure performed with the involvement of
lipoaspirate fermentation technique [41]. The adipose
tissue suitable for MSC isolation can be obtained either
by skin flaps [42] or liposuction (LS) [43].

AT-MSC collection approaches for treatment of NOA
LS as a surgical intervention is preferable for aspirating
adipose tissue suitable for isolation of MSC [44]. Consid-
ering complications and the little traumatic impact of
LS, no long-term postoperative rehabilitation of patients
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Table 1 Differentiation of mesenchymal stromal/stem cells (MSC) into male germ cells in vitro

MSC source Source age Species Inducer References

Adipose tissue Adult Dog BMP4 [65]

Adipose tissue Adult Dog CD61 overexpression [66]

Adipose tissue Adult Goat BOULE overexpression
DAZL overexpression
STRA8 overexpression

[67]

Adipose tissue Adult Human Retinoic acid [68]

Adipose tissue Adult Mouse BMP4
EGF
GDNF
LIF
Retinoic acid

[69]

Adipose tissue Adult Mouse Sertoli cells co-culture
Retinoic acid
Testosterone

[70]

Adipose tissue Adult Mouse Testicular cell conditioned medium
Retinoic acid

[71]

Amniotic membrane Fetal Human Retinoic acid [72]

Amniotic membrane Fetal Mouse BMP4
Retinoic acid

[73]

Bone marrow Adult Goat BMP4
Retinoic acid

[74]

Bone marrow Adult Human Retinoic acid
Sertoli cell-conditioned medium

[75]

Bone marrow Adult Human Retinoic acid [76]

Bone marrow Adult Mouse BMP4 [77, 78]

Bone marrow
Adipose tissue

Adult Mouse BMP4
Retinoic acid

[79]

Bone marrow Adult Mouse BMP4
Retinoic acid

[80]

Bone marrow Adult Mouse Retinoic acid [81–83]

Bone marrow Adult Mouse Sertoli cell-condition medium [84]

Bone marrow Adult Mouse Static magnetic field
BMP4

[85]

Bone marrow Adult Mouse Retinoic acid
Testicular cell co-culture

[86]

Bone marrow Adult Rat bFGF
LIF
Retinoic acid

[87]

Bone marrow Adult Rat Retinoic acid [88]

Bone marrow Adult Rat Sertoli cell co-culture [89]

Bone marrow Adult Sheep Inorganic zinc (sulfate) [90]

Bone marrow Adult Sheep Inorganic zinc (sulfate)
Organic zinc (acetate)
Retinoic acid

[91]

Bone marrow Adult Sheep Retinoic acid
TGF-β1

[92]

Bone marrow Adult Sheep Retinoic acid [93]

Bone marrow Adult Sheep TGFb1
BMP4
BMP8b

[94]

Bone marrow Fetal Human Retinoic acid
Testicular extracts

[95]

Lung Fetal Human Retinoic acid [96]
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is required following this operation [45]. Currently, there
are various techniques for LS implementation as new
state-of-the-art equipment continues to emerge such as
ultrasound or laser [46, 47]. The most popular option
though is classical tumescent LS, where fat tissue in the
donor area of the patient’s body is infiltrated with a

mixture of sterile saline with low concentrations of local
anesthetic and epinephrine [48]. The LS technique may
have negative or positive effects on viability and quantity
of MSC isolated from fat tissue [49, 50]. With classical LS,
the negative pressure in the aspirator is reversely propor-
tional to the number of isolated stem cells [51]. According

Table 2 Differentiation of mesenchymal stromal/stem cells (MSC) into female germ cells in vitro

MSC source Source age Species Inducer References

Adipose tissue
Ovary
Skin

Adult Pig Follicular fluid [108]

Amniotic membrane
Chorion
Umbilical cord

Fetal Human BMP4 [109]

Follicular fluid Adult Human BMP15 [110]

Menstrual blood Adult Human Polylactic acid
Multi-wall carbon nanotubes

[111]

Menstrual blood Adult Human Follicular fluid [112]

Muscle Fetal Pig Follicular fluid [113]

Ovary Adult Mouse Oct4 overexpression [114]

Ovary Fetal Cow BMP4
BMP2
Follicular fluid

[115]

Peritoneum Adult Mouse Human follicular fluid
Human cumulus-conditioned medium

[116]

Skin Adult Pig Follicular fluid [117]

Umbilical cord Fetal Goat Follicular fluid [118]

Umbilical cord Fetal Human Follicular fluid [119]

Wharton’s jelly Fetal Human Follicular fluid
Cumulus cell-conditioned medium

[120]

Abbreviations: B MP bone morphogenetic protein

Table 1 Differentiation of mesenchymal stromal/stem cells (MSC) into male germ cells in vitro (Continued)

MSC source Source age Species Inducer References

Umbilical cord Fetal Human BMP4
Retinoic acid

[97, 98]

Umbilical cord Fetal Human BMP4 [99]

Umbilical cord Fetal Human pCD61-CAGG-TRIP-pur (oCD61) plasmid [100]

Umbilical cord Fetal Human Testicular cell co-culture [101]

Wharton’s jelly Fetal Human BMP4
Testicular cell-conditioned medium
Placental cell-conditioned medium
Retinoic acid

[102]

Wharton’s jelly Fetal Human BMP4
Placenta cell co-culture
Retinoic acid

[103]

Wharton’s jelly Fetal Human Retinoic acid
Testosterone
Testicular cell-conditioned medium

[104]

Wharton’s jelly Fetal Human Retinoic acid [105, 106]

Wharton’s jelly Fetal Human Sertoli cell co-culture [107]

Abbreviations: bFGF basic fibroblast growth factor, BMP bone morphogenetic protein, EGF epidermal growth factor, GDNF glial cell line-derived neurotrophic factor,
LIF leukemia inhibitory factor, TGFb1 transforming growth factor-beta 1

Zhankina et al. Stem Cell Research & Therapy          (2021) 12:229 Page 5 of 12



to Matsumoto et al. [52], in the case of applying this type
of surgical intervention, stem cells should be processed no
later than 1 day after the extraction of the fat material
from the body, since storage of the fatty substrate at a
room temperature decreases number of viable stem cells.
Small portions of autologous adipose tissue extracted from
the patient’s body with a syringe are easily processed for
MSC isolation, whereas the processing of large volume of
aspirated fat is associated with certain difficulties [53].
With classical LS, the aspirate is separated into 3

layers: top fatty layer contains homogenized mature adi-
pocytes destroyed during the operation; the middle layer
is intact adipose tissue and the bottom layer contains re-
siduals of the solution infiltrated into the patient’s tissue
before surgery with plasma and blood cells [54]. Both
top and bottom layers are removed from the container
before processing aspirated fat [54]. The remaining mid-
dle layer is washed in sterile phosphate buffer containing
antibacterial and antimycotic agents to avoid microbial
contamination of the material [54]. Next, the adipose tis-
sue is lysed in sterile collagenase solution to release the
components of the SSF containing stem cells [55]. Dif-
ferent types of enzyme are used, but collagenase type IA
is the most effective for MSC isolation [56]. Currently,
considering the side effects of enzymatic approaches on
the MSCs, non-enzymatic explant at isolation methods
has been developed [57].

Despite large numbers of registered preclinical and clin-
ical studies, safety of MSC-related therapies has remained
the major concern for clinicians. The main risks of MSCs
are proinflammatory properties, tumorigenicity, and fibro-
sis [58]. Among them, tumorigenicity is the most serious
and many studies have shown that MSCs have the ability
to converse into tumors as well as the ability to trigger
tumor development [59]. The excessive productions of cy-
tokines by MSC, such as growth factors and chemokines,
directly act on surface receptors of cancer cells, thereby
regulating tumor enhancement [60].

MSC therapy of azoospermia from bench to bed
MSC transplantation is a relatively new therapy pro-
posed to induce spermatogenesis and treat male infertil-
ity [61]. Since MSC are involved in processes such as
cell survival, proliferation, migration, angiogenesis, and
immune modulation, these cells are considered as an
ideal material for azoospermia treatment. Achieving this
therapeutic method for treatment of NOA using MSC
needs evaluation of in vitro and in vivo studies as well as
possibility of clinical trials with this purpose.

In vitro studies on MSC and spermatogenesis
Some studies have indicated that embryonic stem cells
very similar to MSCs found in the testes [62]. These
cells are located in the basal layer of the testicular

Table 3 Azoospermia treated with mesenchymal stromal/stem cells in in vivo model studies

Source Transplantation Donor species Therapeutics Recipient species Modeling References

Adipose tissue Allotransplant Hamster Cell Hamster Busulfan [121]

Adipose tissue Allotransplant Mouse Cell
Exosome

Mouse Busulfan [122]

Adipose tissue Allotransplant Rat Cell Rat Busulfan [70, 123, 124]

Adipose tissue Allotransplant Rat Cell Rat Cisplatin [125]

Adipose tissue Xenotransplant Human Cell Rat Torsion [126]

Amnion Allotransplant Mouse Cell Mouse Busulfan [127]

Bone marrow Allotransplant Guinea pig Cell Guinea pig Busulfan [128]

Bone marrow Allotransplant Hamster Cell Hamster Busulfan [129]

Bone marrow Allotransplant Mouse Cell Mouse Busulfan [130, 131]

Bone marrow Allotransplant Mouse Cell
Exosome

Mouse Busulfan [122]

Bone marrow Allotransplant Mouse Cell Mouse Cisplatin [132]

Bone marrow Allotransplant Rat Cell Rat Busulfan [87, 89, 133–138]

Bone marrow Allotransplant Rat Cell Rat Doxorubicin [139]

Bone marrow Allotransplant Rat Cell Rat Lead nitrate [140]

Bone marrow Allotransplant Rat Cell Rat Torsion [141]

Bone marrow Xenotransplant Goat Cell Mouse Busulfan [142]

Umbilical cord Xenotransplant Human Cell Mouse Busulfan [143–145]

Urine Allotransplant Mouse Cell
Exosome

Mouse Busulfan [146]

Zhankina et al. Stem Cell Research & Therapy          (2021) 12:229 Page 6 of 12



seminiferous tubules, and they can divide asymmetrically
and give rise to progenitor cells. These cells survive
chemotherapy and can trigger germinative cell differenti-
ation [63]. They, therefore, serve as a reserve storage for
stem cell population [64]. It is likely that the interaction
between these cells and the transplanted MSC plays a
crucial role in the fertility restoration.
A certain combination of growth factors, chemical

components, genetic manipulations, and/or co-culture
with other cells can be used to induce the differentiation
of MSCs into the male (Table 1) or female germ cell epi-
thelium (Table 2). For differentiation of various types of
MSCs into male germ cells, different types of differenti-
ation induction method have been developed as follows:
(1) retinoic acid, (2) growth factors, (3) minerals, (4) co-
culture, (5) conditioned media, (6) magnetic field, and
(7) gene over-expression (Table 1). The results of in vitro
studies have been published demonstrating that NOA

can be restored through MSC transplantation. Further-
more, differentiation of AT-MSCs into male germ cells
suggests that cell therapy can help reverse pathological
changes in the testicular seminiferous tubules.

MSC therapy in animal model of azoospermia
MSCs transplanted into the testes of chemical or surgi-
cal NOA animal models showed both induction of
spermatogenesis and/or differentiation of MSCs into
germ cells (Table 3). MSC transplantation improved the
expression of germ cell markers in the testes and can be
proposed as a suitable method for the treatment of infer-
tility. Several possible mechanisms of testicular function
restoration during MSC-induced tissue regeneration
have been shown: (1) MSCs may be involved in the sup-
pression of antisperm antibodies (ASA) [147]; (2) MSCs
can reduce factors that lead to infertility through reduc-
tion of apoptosis [127]; (3) MSCs can reduce oxidative

Table 4 Clinical trials on mesenchymal stromal/stem cells-based therapy for female and male reproductive diseases (U. S. National
Library of Medicine)

Sex Disease/syndrome Phase Date Country Source Transplantation Stage CT code

Female Atrophic endometrium 2 2019 Russia Bone marrow Autotransplant Completed NCT03166189

Female Fistula vagina 1 2020 United States ND Autotransplant Completed NCT03220243

Female Intrauterine adhesions
Endometrial dysplasia

4 2014 China Bone marrow Autotransplant ND NCT02204358

Female Intrauterine adhesions ND 2014 China Umbilical cord Allotransplant Completed NCT02313415

Female Intraventricular hemorrhage 2 2017 Korea Umbilical cord Allotransplant Recruiting NCT02890953

Female Ovarian cancer 1 2019 United States ND Autotransplant Completed NCT02530047

Female Ovarian disease 1&2 2015 Jordan Bone marrow Autotransplant Active NCT03069209

Female Premature ovarian failure 1&2 2018 China Umbilical cord Allotransplant Completed NCT02644447

Female Premature ovarian failure 1&2 2014 Egypt Bone marrow Autotransplant ND NCT02696889

Female Premature ovarian failure ND 2016 United States Bone marrow Autotransplant Active NCT02696889

Female Thin endometrium 1 2018 China Umbilical cord Allotransplant Recruiting NCT03592849

Female Thin endometrium 1 2020 Indonesia Endometrium Autotransplant Recruiting NCT04676269

Female Uterine scar 2 2020 China Umbilical cord Allotransplant Recruiting NCT02968459

Female Uterine scar 1 2020 China Umbilical cord Allotransplant Recruiting NCT03181087

Female Uterus injury 2 2020 China Umbilical cord Allotransplant Recruiting NCT03386708

Male Azoospermia ND 2015 Egypt Bone marrow Autotransplant Completed NCT02414295

Male Azoospermia 1&2 2014 Egypt Bone marrow Autotransplant ND NCT02025270

Male Azoospermia ND 2013 Egypt Bone marrow Autotransplant Recruiting NCT02008799

Male Azoospermia 1&2 2014 Egypt Bone marrow Autotransplant Recruiting NCT02041910

Male Azoospermia 1&2 2015 Jordan Bone marrow Autotransplant Recruiting NCT02641769

Male Azoospermia
Oligospermia

2 2018 Russia Adipose tissue Autotransplant Recruiting NCT03762967

Male Erectile dysfunction 1 2018 Jordan Wharton’s Jelly Allotransplant Completed NCT02945449

Male Erectile dysfunction 1&2 2019 Jordan Wharton’s Jelly Allotransplant Completed NCT03751735

Male Erectile dysfunction 1 2018 Korea Bone marrow Autotransplant Completed NCT02344849

Male Erectile dysfunction 2 2020 Korea Bone marrow Autotransplant Recruiting NCT04594850

ND no data
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stress [139]; (4) MSCs can stimulate testosterone pro-
duction [126] with differentiation into Laydig cells [148];
(5) MSCs can differentiate into target cells [133]; (6) the
transplanted cells secrete growth factors such as bone
morphogenetic proteins (BMPs) and transforming
growth factor beta (TGF-β), which are male germ cell
inducing factors with ability to stimulate restoration of
the recipient’s cellular function [149]; (7) MSCs connect
with endogenous cells, restoring the function of dam-
aged cells [150]; (8) MSCs reverse the glycolysis and
glycogenesis imbalance in sperm by regulating Akt/
glycogen synthase kinase 3 (GSK3) axis [151]; and (9)
MSCs can alter expression of some spermatogenesis-
related miRNAs and their target genes [134].

MSC therapy of azoospermia patients
Studies on in vitro differentiation of MSCs to germ cells
and MSC therapy of animal models of azoospermia have
showed the possibility of using MSC therapy to treat
azoospermia in humans. Various clinical trials for the
treatment of infertility in reproductive diseases in both
women and men have been recorded or completed
(Table 4). However, no studies have been published to
treat azoospermia with the help of MSCs except an ab-
stract from Jordan scientists demonstrating therapeutic
effects of intratesticular injections of CD34/CD133 BM-
MSCs in azoospermia men. At the same time, based on
the information available in the US National Library of
Medicine and in the Iranian Registry of Clinical Trials, 6
studies (Table 4) and 1 study (IRCT20190519043634N1),
respectively, have been recruited for this purpose.

Conclusions
The potential of MSCs in restoration of fertility in pa-
tients with NOA has been shown in this systematic re-
view. Mastering and successfully applying this technique
in clinical practice can help a vast group of patients to
revive spermatogenesis and enjoy fatherhood. Based on
the current knowledge answering to this important
question “which MSCs source have a better therapeutic
potential to azoospermia?” is not easy. Lack of compar-
ing studies between the MSCs’ sources for treatment of
azoospermia in the three layers of in vitro and in vivo
studies and clinical trials made it difficult to rank the cell
sources. By the way, considering the efficiency of cell
isolation and complications of achieving a good cell
source including higher number of cell yield, lower sur-
gical manipulations, and similarity of donor cells and re-
cipient, we can suggest adipose tissue-derived MSCs for
treatment of azoospermia. However, other MSC sources
may also be efficient for cell therapy of azoospermia.
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